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Abstract

In this paper, we study the generalization properties of Model-Agnostic Meta-
Learning (MAML) algorithms for supervised learning problems. We focus on
the setting in which we train the MAML model over m tasks, each with n data
points, and characterize its generalization error from two points of view: First, we
assume the new task at test time is one of the training tasks, and we show that,
for strongly convex objective functions, the expected excess population loss is
bounded byO(1/mn). Second, we consider the MAML algorithm’s generalization
to an unseen task and show that the resulting generalization error depends on the
total variation distance between the underlying distributions of the new task and
the tasks observed during the training process. Our proof techniques rely on the
connections between algorithmic stability and generalization bounds of algorithms.
In particular, we propose a new definition of stability for meta-learning algorithms,
which allows us to capture the role of both the number of tasks m and number of
samples per task n on the generalization error of MAML.

1 Introduction

In several machine learning problems, it is of interest to design algorithms that can be adjusted
based on previous experiences and tasks to perform better on a new task. In particular, meta-
learning algorithms achieve such a goal through various approaches, including finding a proper
meta-initialization for the new task [1–3], updating the model architecture [4–6], or learning the
parameters of optimization algorithms [7, 8].

A popular meta-learning framework that has shown promise in practice is Model-Agnostic Meta-
Learning (MAML), which was first introduced in [1]. MAML algorithm uses available training data
on a number of tasks to come up with a meta-initialization that performs well after it is slightly
updated at test time with respect to the new task. In other words, unlike standard supervised learning,
in which we aim to find a model that generalize well to a new task without any adaptation step, in
MAML our goal is to find an initial model for learning a new task when we have access to limited
labeled data for that task to run one (or a few) step(s) of stochastic gradient descent (SGD).

As shown in Fig. 1, in MAML we are given m tasks with m corresponding datasets {Si}mi=1 in the
training phase. Once the model is trained (w∗train), a new task is revealed at test time for which we
have access to K labeled samples drawn from Dtest. We use these labeled samples of the new task to
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update the trained model by running a step of SGD leading to a new model for the test task (w∗new).
We finally evaluate the performance of the updated model over the test task, denoted by Ltest(w∗new).

MAML and its variants have been extensively studied over the past few years from both empiri-
cal and theoretical point of view [2, 9–16]. In particular, [13] provided convergence guarantees

Training stage

Test stage

S1 ∼ p1 Sm ∼ pm

w∗
train

Dtest ∼ ptest ∇L̂(w∗
train,Dtest)
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∗
new)
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Figure 1: MAML framework

for MAML algorithm under the assumption that access to
fresh samples at any round of the training stage is possible,
and [15] extended this results to the case that multiple
gradient steps can be performed at test time. However, one
shortcoming of such analysis is that, at training stage, we
often do not have access to fresh samples at every iteration.
Instead, we have access to a large set of realized samples
and we typically do multiple passes over the data points
during the training stage.

Hence, it is essential to come up with a novel analysis that
addresses this issue by characterizing the training error and
generalization error of MAML separately. In this paper,
we accomplish this goal and showcase the role of different
problem parameters in the generalization error of MAML.
Specifically, we assume that we are given m supervised
learning tasks, with (possibly different) underlying distri-
butions p1, . . . pm, where for each task we have access to
n samples1. As we measure the performance of a model
by its loss after one step of SGD adaptation with K sam-
ples, the problem that one can solve in the training phase
is minimizing the average loss, over all given m tasks and
their n samples, after one step of SGD with K samples.
This empirical loss can be considered as a surrogate for
the desired expected loss (with respect to tasks data) over
all m tasks. Here, we focus on the case that MAML is
used to solve this empirical minimization problem, and
our goal is to quantify the test error of MAML output. To
tackle this problem, we first briefly revisit the results from
the optimization literature to bound the training error of MAML, assuming that the loss functions are
strongly convex. We next turn to the main focus of our paper which is the generalization properties
of MAML. More specifically, we address the following questions:

• If one of the m given tasks recurs uniformly at random at test time, then how well (in expectation)
would the trained model perform after adaptation with SGD over the fresh samples of that task?
In other words, having training error minimized, what would be the generalization error and our
guarantee on test error? Here, we show that for strongly convex objective functions, we could
achieve a generalization error that decays at O(1/mn). Our analysis builds on the connections
between algorithmic stability and generalization of the output of algorithms. While this relation is
well-understood in classic statistical learning [17, 18], here we propose a novel stability definition for
meta-learning algorithms which allows us to restore such connection for our setting.

• Assuming that the task at test time is NOT one of the m tasks at training, how would the model
perform on that task after the adaptation step? We answer this question by focusing on the case that
the revealed task at the test time is a new unseen task with underlying data distribution pm+1, and
formally characterizing the generalization error of MAML in this case. We show that when the task
at test time is new, the generalization error also depends on the total variation distance between pm+1

and p1, . . . , pm.

Related work: Recently, there has been significant progress in studying theoretical aspects of
meta-learning, in particular, MAML. Authors in [19] proposed iMAML which updates the model
using an approximation of one step of proximal point method and studied its convergence. In
[20], authors introduced the task-robust MAML by considering a minimax formulation rather than
minimization. Several papers have also studied MAML through more general frameworks such as
bilevel optimization [21], stochastic compositional optimization [22], and conditional stochastic

1More precisely, in our analysis we take 2n samples per each task to simplify derivations.
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optimization [23]. Also, several works have studied the extension of meta-learning theory to online
learning [24, 3], federated learning [25], and reinforcement learning [26, 27].

The most relevant paper to our work is [28] that studies generalization of meta-learning algorithms
using stability techniques and shows a O(1/

√
m) bound for nonconvex loss functions. Here we

focus on strongly convex objective functions and present an analysis that differs from this work in
two fundamental aspects. First, we present a different notion of stability that allows us to capture the
number of data points per task in our bound. In particular, our stability notion measures sensitivity of
the algorithm to perturbations that involve changing K data points which is the data unit involved
in the adaptation step of the MAML algorithm. This enables us to obtain a much tighter bound
O(1/mn) (compared to O(1/m) achieved in [28] for strongly convex functions), highlighting the
dependence on the number of the data samples available for each task. Second, we also consider the
generalization of MAML for the case that the task at test time is not one of the available tasks during
the training stage.

The generalization of MAML has also been studied in [29] from an empirical point of view. In
particular, they show that the generalization of MAML to new tasks is correlated with the coherence
between their adaptation trajectories in parameter space. This is aligned with the connection of
generalization and closeness of underlying distributions that we observe in our results.

2 Problem formulation

In this paper, we consider the supervised learning setting, where each data point is denoted by
z = (x, y) ∈ Z with x ∈ X being the input (feature vector) and y ∈ Y being its corresponding label.
We use the loss function l : Rd × Z → R+ to evaluate the performance of a model parameterized
by w ∈ W , where W is a convex and closed subset of Rd. In other words, for a data point
z = (x, y) ∈ Z , the loss `(w, z) denotes the error of model w in predicting the label y given input x.

We consider access to m tasks denoted by T1, . . . , Tm, where the data corresponding to each task Ti
is generated from a distinct distribution pi. The population loss corresponding to task Ti for model w
is defined as Li(w) := Ez∼pi [`(w, z)].

We further use the notation L̂(w;D) to denote the empirical loss corresponding to datasetD, which is
defined as the average loss of w over the samples of dataset D, i.e., L̂(w;D) := 1

|D|
∑
z∈D `(w, z),

where |D| is the size of dataset D. In general, and throughout the paper, we use the hat notation to
distinguish empirical losses from population losses.

Our goal is to find w ∈ W that performs well on average2 over all tasks, after it is updated with
respect to the new task and by using one step of stochastic gradient descent (SGD) with a batch of
size K. To formally introduce this problem we first define the function Fi(w) which captures the
performance of model w over task Ti once it is updated by a single step of SGD,

Fi(w) := EDtest
i

[
Li
(
w − α∇L̂(w,Dtest

i )
)]

= EDtest
i
Ez∼pi

[
`

(
w − α

K

∑
z′∈Dtest

i

∇`(w, z′), z
)]

(1)

where Dtest
i is a batch with K different samples, drawn from the probability distribution pi. Note that

the outer expectation is taken with respect to the choice of elements of Dtest
i while the inner one is

taken with respect to the data of task i.

As our goal is to find a model that performs well after one step of adaptation over all m tasks, we
minimize the average expected loss over all given tasks, which can be written as

min
w∈W

F (w) :=
1

m

m∑
i=1

Fi(w). (2)

As the underlying distribution of tasks are often unknown in most applications, we are often unable
to directly solve the problem in (2). On the other hand, for each task, we often have access to data
points that are drawn according to their data distributions. Therefore, instead of solving (2), we solve
its sample average surrogate problem in which each Fi is approximated by its empirical loss.

2Our analysis can be extended to the case that the distribution over tasks is not uniform.
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To formally define the empirical loss for each task, suppose for each task Ti we have access to a
training set Si, where its elements are drawn independently according to the probability distribution
pi. We further divide the set Si into two disjoint sets of size n defined as S in

i and Sout
i , i.e., Si :=

{S in
i ,Sout

i } and |S in
i | = |Sout

i | = n. Here, we use the elements of the S in
i to estimate the inner gradient

∇L̂(w,Dtest
i ) and use the samples in the set Sout

i to estimate the outer function Li(.). Specifically, we
define the sample average of Fi using data sets S in

i and Sout
i as

F̂i(w,Si) : =
1(
n
K

) ∑
Din

i ⊂S
in
i |D

in
i |=K

L̂
(
w − α∇L̂(w,Din

i ),Sout
i

)
(3)

=
1(
n
K

) ∑
Din

i ⊂S
in
i |D

in
i |=K

1

n

∑
z∈Sout

i

`

w − α

K

∑
z′∈Din

i

∇`(w, z′), z

 .

This expression shows that we use all n elements of Sout
i to approximate the expectation required for

the computation of Li, and we approximate the expectation with respect to the test set by averaging
over all subsets of S in

i that haveK elements. Given this expression, the sample average approximation
(empirical loss) of Problem (1) is given by

arg min
w∈W

F̂ (w,S) :=
1

m

m∑
i=1

F̂i(w,Si), (4)

where S := {Si}mi=1 is defined as the concatenation of all tasks data sets.

Having the dataset S, a (possibly randomized) optimization algorithm A with output A(S) can be
used to find an approximate solution to the problem in (4). The error of this solution with respect
to the MAML empirical loss, i.e., F̂ (A(S),S) − minW F̂ (.,S), is called training error. In this
paper, we are mainly interested to bound the test error which is the error of A(S) with respect to the
population loss, i.e., F (A(S))−minW F . The test error is also sometimes called excess (population)
loss. Note that the expected test error can be decomposed into three terms:

EA,S
[
F (A(S))−min

W
F
]

(test error) =

EA,S
[
F (A(S))−F̂ (A(S),S)

]
︸ ︷︷ ︸

generalization error

+EA,S
[
F̂ (A(S),S)−min

W
F̂ (.,S)

]
︸ ︷︷ ︸

training error

+ES
[
min
W

F̂ (.,S)
]
−min
W

F︸ ︷︷ ︸
≤0

.

It can be verified that the expectation of the third term (over A and S) is non-positive since
ES [minW F̂ (.,S)] ≤ minW ES [F̂ (.,S)] and ES [F̂ (.,S)] = F. Hence, to bound the expected
test error, we should bound the expectation of training and generalization errors.

The Model-Agnostic Meta-Learning (MAML) method proposed in [1] is designed to solve the
empirical minimization problem defined in (4). The steps of MAML are outlined in Algorithm 1.
MAML solves Problem (4) by using SGD update for the average loss function F̂ (w,S). To better
highlight this point, note that the gradient of∇F̂ (w,S) can be written as 1

m

∑m
i=1∇F̂i(w,Si), where

the i-th term corresponding to task Ti is given by

∇F̂i(w,Si) =
1(
n
K

) ∑
Din

i ⊂S
in
i

|Din
i |=K

[
(Id − α∇2L̂(w,Din

i ))×∇L̂
(
w − α∇L̂(w,Din

i ),Sout
i

)]
, (5)

which involves the second-order information of the loss function. Therefore, to compute a mini-batch
approximation for the above gradient, we consider the batchesDin

i ⊂ S in
i with sizeK andDout

i ⊂ Sout
i

with b elements. Replacing the above sums with their batch approximations leads to the following
stochastic gradient approximation

gi(w;Din
i ,Dout

i ) := (Id − α∇2L̂(w,Din
i ))∇L̂

(
w − α∇L̂(w,Din

i ),Dout
i

)
, (6)

which is indeed an unbiased estimator of the gradient ∇F̂i(w,Si) in (5). If for each task we perform
the update of SGD with gi and then compute their average it would be similar to running SGD for
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Algorithm 1: MAML [1]

Input: The set of datasets S = {Si}mi=1 with Si = {S in
i ,Sout

i }; test time batch size K; # of tasks
summoned at each round r; # of iterations T .
Choose arbitrary initial point w0 ∈ W;
for t = 0 to T − 1 do

Choose r tasks uniformly at random (out of m tasks) and store their indices in Bt;
for all Ti with i ∈ Bt do

Sample a batch Dt,ini of K different elements from S in
i with replacement;

Sample a batch Dt,out
i of size b from Sout

i and with replacement;

wt+1
i := wt − βt

(
Id − α∇2L̂(wt,Dt,ini )

)
∇L̂

(
wt − α∇L̂(wt,Dt,ini ),Dt,out

i

)
;

end for
wt+1 := rW

(
1
r

∑
i∈Bt

wt+1
i

)
;

end for
Return: wT and w̄T := 1

T+1

∑T
t=0 w

t

the average loss ∇F̂ (w,S). This is exactly how MAML is implemented in practice as outlined in
Algorithm 1. In this paper, we consider a constrained problem, and as a result, we also need an extra
projection step in the last step to ensure the feasibility of iterates. Finally, the output of MAML could
be the last iterate wT or the time-average of all iterates w̄T := 1

T+1

∑T
t=0 w

t.

As stated earlier, the convergence properties of MAML-type methods from an optimization point of
view have been studied recently under different set of assumptions. In this paper, as we characterize
the sum of training error and generalization error, we briefly discuss the optimization error of MAML
when it is used to solve the empirical problem in (4). However, the main focus of this paper is on
studying the generalization error of MAML with respect to new samples and new tasks. Specifically,
we aim to address the following questions: (i) How well does the solution of (4) generalize to the main
problem of interest in (2)? This could be seen as the generalization error of the MAML algorithm
over new samples for recurring tasks. (ii) How well does the solution of (4) generalize to samples
from new unseen tasks? To be more precise, how would the obtained model preform if the new task is
not one of the m tasks T1, . . . , Tm observed at training, and it is rather a new, unseen task Tm+1 with
an unknown underlying distribution pm+1? In the upcoming sections, we answer these questions
on the generalization properties of MAML in detail and characterize the role of number of tasks m,
number of samples per task n, and number of labeled samples revealed at test time K.

3 Theoretical results

In this section, we formally characterize the excess population loss (test error) of the MAML solution,
when we measure the performance of a model after one step of SGD adaptation. In particular, we
first discuss the training error of MAML in detail. Then, we establish a generalization error bound
for the case that the solution of MAML is evaluated over new samples of a recurring task. Finally,
we state the generalization error of MAML once its solution is applied to a new unseen task. Before
stating our results, we mention our required assumptions.

Assumption 1. For any z ∈ Z , the function `(., z) is twice continuously differentiable. Furthermore,
we assume it satisfies the following properties for any w, u ∈ Rd:

(i) For any z ∈ Z , the function `(., z) is µ-strongly convex, i.e., ‖∇`(w, z)−∇`(u, z)‖ ≥ µ‖w−u‖;
(ii) The gradient norm is uniformly bounded by G overW , i.e., ‖∇`(w, z)‖ ≤ G;

(iii) The loss is L-smooth over Rd, i.e., ‖∇`(w, z)−∇`(u, z)‖ ≤ L‖w − u‖;

(iv) Hessian is ρ-Lipschitz continuous over Rd, i.e., ‖∇2`(w, z)−∇2`(u, z)‖ ≤ ρ‖w − u‖.

We also require the following assumption on the tasks distribution. This assumption implies that,
with probability one, a set of finite samples generated from a distribution pi are all different.
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Assumption 2. We assume Z is a Polish space (i.e., complete, separable, and metric) and FZ is
the Borel σ-algebra over Z . Moreover, for any i, pi is a non-atomic probability distribution over
(Z,FZ), i.e., pi(z) = 0 for every z ∈ Z .

3.1 Training error

While the main focus of this paper is on studying the population error of MAML algorithm, we first
study its training error which is required to provide characterization of the excess loss of MAML. To
do so, we first state the following result from [24] and [13] on the strong convexity and smoothness
of `(w − α∇L̂(w,D), z) for any batch D and any z ∈ Z .
Lemma 1 ([13] & [24]). If Assumption 1 holds, then for an arbitrary batch D and z ∈ Z , and
with α ≤ 1

L , the function `(w − α∇L̂(w,D), z) is 4L + 2αρG smooth over W . Furthermore,
`(w − α∇L̂(w,D), z) is µ

8 -strongly convex, if α ≤ min{ 1
2L ,

µ
8ρG}.

An immediate consequence of this Lemma is that the MAML empirical loss F̂ defined in (4) is
also µ/8-strongly convex and 4L + 2αρG smooth over W . In addition, it can be shown that the
norm of gi(w;Din

i ,Dout
i ) defined in (6), which is the unbiased gradient estimate used in MAML, is

uniformly bounded above; for more details check Lemma 5 in Appendix A. Having these properties
of the MAML empirical loss established, we next state the following proposition on the training
error of MAML. This result is obtained by slightly modifying the well-known results on the conver-
gence of SGD in [30–32] in order to take into account the stepsize constraints that are imposed by
generalization analysis. For completeness, the proof of this result is provided in Appendix B.

Proposition 1. Consider F̂ (.,S) defined in (4) with α ≤ min{ 1
2L ,

µ
8ρG}. If Assumption 1 holds, then

for MAML with βt = min(β, 8
µ(t+1) ) for β ≤ 8/µ, and for any set S, the last iterate wT satisfies

E
[
F̂ (wT ,S)− F̂ (w∗S ,S)

]
≤ O(1)

G2(1 + 1
βµ )

µ2

(
L+ ραG

T
+

G√
T

)
, (7)

and the time-average of iterates w̄T satisfies

E
[
F̂ (w̄T ,S)− F̂ (w∗S ,S)

]
≤ O(1)

G2(log(T ) + 1
βµ )

µT
,

where w∗S := arg minw∈W F̂ (.,S) and the expectations are taken over the randomness of algorithm.

In the above expressions, the notation O(1) only hides absolute constants. It is worth noting that the
termG/

√
T in (7) vanishes, ifw∗S be a minimizer of the unconstrained problem, i.e.,∇F̂ (w∗S ,S) = 0.

3.2 Generalization error

We derive our generalization bounds for MAML by establishing its algorithmic stability properties.
The stability approach has been used widely to characterize the generalization properties for optimiza-
tion algorithms such as stochastic gradient descent [18] or differentially private methods [33]. These
arguments are based on showing the uniform stability of algorithms [17] which we restate it here.

Definition 1 ([17]). Consider the problem of minimizing the empirical function L̂(w,H) for some
datasetH. A randomized algorithm A with output wH given datasetH is called γ-uniformly stable
if the following condition holds: Take the dataset H̃ which is the same as H, except at one data
points. Then, we have supz̃∈Z EA [|`(wH, z̃)− `(wH̃, z̃)|] ≤ γ, where the expectation is taken over
the randomness of A.

The above definition captures the stability of an algorithm. Specifically, it states that Algorithm A is
γ-stable, if the resulting loss of its outputs, when it is run using to two different datasets that only
differ in one data point, are at most γ away from each other. Note that the above definition holds if
the difference between the losses evaluated at any point z̃ is bounded by γ. The main importance
of this definition is its connection with generalization error. In particular, it can be shown that if an
algorithm is γ-uniformly stable and “symmetric", then its generalization error is bounded above by γ;
see, e.g., [17]. Next, we formally state the definition of a symmetric algorithm.
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Definition 2. An algorithm A : Zn → Rd is called symmetric, if for any S ⊂ Zn, the distribution
of its output, i.e., A(S), does not depend on the ordering of elements of S, i.e., if we take S ′ as a
permutation of S, the distribution of A(S) and A(S ′) would be similar.

Note that Definition 1 is useful for the case where we measure the performance of a model w by its
loss function over a sample, i.e., `(w, z̃). However, in this paper we measure the performance of a
model by looking at its loss after one step of SGD which involves K data points, as defined in (6).
Therefore, we cannot directly use Definition 1 for characterizing the generalization error of MAML.
In fact, in what follows, we first propose a modified version of the uniform stability definition, which
is compatible with our setting, and then show how such stability could lead to generalization bounds
for MAML-type algorithms.
Definition 3. Consider the problem in (4). A randomized algorithm A with output wS given dataset
S is called (γ,K)-uniformly stable if the following condition holds for any i ∈ {1, . . .m}: Take the
dataset S̃ which is the same as S , except that S̃ in

i and S̃out
i differ from S in

i and Sout
i in at most K and

one data points, respectively. Then, for any z̃ ∈ Z and any K distinct points {z1, ..., zK} in Z ,

EA
[∣∣∣`(wS − α∇L̂(wS , {zj}Kj=1), z̃

)
− `
(
wS̃ − α∇L̂(wS̃ , {zj}

K
j=1), z̃

)∣∣∣] ≤ γ,
where the expectation is taken over the randomness of A.

A few remarks about the above definition follow. First, one might wonder, why it is needed to change
K points of the set S in

i , while we change only one point of the set Sout
i . Note that, going from (1) to

(3), the expectation EDtest
i

[.] is replaced by the sum over all
(
n
K

)
possible batches Din

i of size K from
S in
i . In other words, for the empirical sum in (3), each batch Din

i can be seen as a data unit. That said,
and similar to Definition 1, to characterize the stability, we need to change one data unit which is one
batch of size K. That is why we change K data points of S in

i in the definition of (γ,K)-uniformly
stability. On the other hand, we replace Li(.) = Ez∼pi [`(., z)] in (1) with a sum over n points of Sout

i
in (3), and thus, for this one, each data unit is just a single data point. So, similar to Definition 1, we
just change one data point for the set Sout

i .

Second, it is worth comparing this definition with the other definition given for stability of meta-
learning algorithms in [28]. In that paper, the definition of stability is based on modifying the whole
dataset Si rather than what we do here which is changing just K + 1 points. While taking such a
definition makes the analysis relatively simpler, it prohibits us from characterizing the dependence
of generalization error on n, and hence the resulting upper bound for generalization error would be
larger. We will come back to this point later when we derive the stability of MAML with respect to
Definition 3 and compare it with the one obtained in [28].

As we discussed, the main reason that we are interested in the uniform stability of an algorithm is its
connection with generalization error. In the next theorem, we formalize this connection for MAML
formulation and show that if an Algorithm A is (γ,K)-uniformly stable and symmetric, then its
output generalization error is bounded above by γ. The proof of this result is available in Appendix C.
Theorem 1. Consider the population and empirical losses defined in (2) and (4), respectively.
If Assumption 2 holds and A is a (possibly randomized) symmetric and (γ,K)-uniformly stable

algorithm with output wS ∈ W , then EA,S
[
F (wS)− F̂ (wS ,S)

]
≤ γ.

This result shows that if we prove a symmetric algorithm is (γ,K)-uniformly stable as defined in
Definition 3, then we can bound its output model generalization error by γ. Hence, to characterize the
generalization error of the model trained by MAML algorithm, we only need to capture the uniform
stability parameter of MAML. Before stating this result, it is worth noting that while we limit our
focus to MAML in this paper, Definition 3 and Theorem 1 could provide a framework for studying
the generalization properties of a broader class of gradient-based meta-learning algorithms such as
Reptile [34], First-order MAML [1], and Hessian-Free MAML [13].
Theorem 2. If Assumption 1 holds, then MAML (Algorithm 1) with both last iterate and average
iterate outputs and with α ≤ min{ 1

2L ,
µ

8ρG} and βt ≤ 1
4L+2αρG is (γ,K)-uniformly stable, where

γ := O(1)G
2(1+αLK)
mnµ .

According to the above discussion, the result of Theorem 2 guarantees that the generalization error of
MAML solution decays by a factor of O(K/mn), where m is the number of tasks in the training set
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and n is the number of available samples per task. The classic lower bound for SGD over strongly
convex functions translates to a O(1/mn) lower bound in our setting. Hence, our bound is tight
in the small K regime, which is generally the case in few-shot learning problems. However, one
shortcoming of this result is that it is not tight in the large K regime. In Appendix E we show how
we could improve this result for the large K regime. However, throughout the paper, we keep our
discussion limited to the small K regime.
Remark 1. If instead of using our uniform stability definition (i.e., Definition 3), one uses the stability
definition given in [28], the resulted stability constant γ would be proportional to (1/m) rather than
(1/mn). In fact, our proposed uniform-stability definition empowers us to obtain a better bound and
indicates the role of number of samples per task n in the generalization error.
Remark 2. The algorithmic stability technique is mainly limited to the convex setting, since, in the
nonconvex case, we need to keep learning rate very small to obtain meaningful generalization results
which makes it impractical (Check Appendix G for further discussions on this matter). In fact, the
main reason that we assume ` is strongly convex and α ≤ Ω(µ) is to ensure that the meta-objective
is convex, as, in general, relaxing any of these two could lead to a nonconvex meta-objective function.
However, these two assumptions together make the objective function strongly convex, which is not
necessarily needed in our analysis. In fact, if we assume that ` and the meta-function are convex
(but not necessarily strongly convex), we could still use Definition 3 to derive similar generalization
bounds.

Putting Proposition 1 and Theorem 2 together, we obtain the following result on the excess population
loss of MAML algorithm. We only report the result for the averaged iterates here, but one can obtain
the result for the last iterate similarly by using Proposition 1.
Proposition 2. Consider the function F defined in (2) with α ≤ min{ 1

2L ,
µ

8ρG}. If Assump-
tions 1 and 2 hold, then the average of iterates generated by MAML (Algorithm 1) with βt =
min( 1

4L+2αρG ,
8

µ(t+1) ) after T iterations satisfies

EA,S
[
F (w̄T )−min

W
F
]
≤ O(1)

G2

µ

(
log(T ) + L/µ

T
+

1 + αLK

mn

)
,

where the expectation is taken over the sampling of S and the randomness of MAML algorithm.

As an immediate application, the following corollary characterizes MAML test error.

Corollary 1. Under the premise of Proposition 2, MAML algorithm after T = Õ(mnL/µ) iterations
returns w̄T such that EA,S

[
F (w̄T )−minW F

]
≤ O

(
G2(1 + αLK)/(mnµ)

)
.

3.3 Generalization to an unseen task

As we discussed in Section 2, another generalization measure is how the model trained with respect to
the empirical problem in (4) performs on a new and unseen task Tm+1 with corresponding distribution
pm+1. To state our result for this case, we first need to introduce the following distance notion between
probability distributions.
Definition 4. For two distributions P and Q, defined over the sample space Ω and σ-field F , the
total variation distance is defined as ‖P −Q‖TV := supA∈F |P (A)−Q(A)|.

It is well-known that the total variation distance admits the following characterization

‖P −Q‖TV = sup
f :0≤f≤1

Ex∼P [f(x)]− Ex∼Q[f(x)]. (8)

Also, we require the following boundedness assumption for our result.
Assumption 3. For any z ∈ Z , the function `(., z) is M -bounded overW .

Considering these assumptions, we are ready to state our result for the case when the task at test time
is a new task and is not observed during training.
Theorem 3. Consider the population losses defined in (1) and (2). Suppose Assumptions 1, 2 and 3
hold. Then, for any w ∈ W , we have

|Fm+1(w)− F (w)| ≤ D(pm+1, {pi}mi=1), (9)

8



where

D(pm+1, {pi}mi=1) :=
4αG2

m

m∑
i=1

‖pm+1 − pi‖TV + (M + 2αG2)‖pm+1 −
1

m

m∑
i=1

pi‖TV . (10)

While the proof is provided in detail in Appendix F, here we discuss a sketch of it to highlight the
main technical contributions. To simplify the notation here, let us assume m = 1, meaning that p1 is
the distribution used for training and p2 is the distribution corresponding to the new task. Note that
we aim to bound |F2(w)− F1(w)|. Recalling the definition of population loss (2), we need to bound
the following expression (we drop the absolute value due to symmetry)

E{z2j∼p2}Kj=1,z̃
2∼p2

[
l
(
w − α∇L̂(w, {z2j }j), z̃2

)]
− E{z1j∼p1}Kj=1,z̃

1∼p1
[
l
(
w − α∇L̂(w, {z1j }j), z̃1

)]
.

(11)

Notice that this difference can be cast as E({zj}Kj=1,z̃)∼p
K+1
2

[X] − E({zj}Kj=1,z̃)∼p
K+1
1

[X], with

X := l
(
w − α∇L̂(w, {zj}Kj=1), z̃

)
. As a result, a naive approach would be using Lipschitz and

boundedness properties of l (Assumptions 1 and 3) along with (8) to obtain a bound depending on
‖pK+1

1 − pK+1
2 ‖TV = O(K)‖p1 − p2‖TV . However, this bound is not tight as it grows with K.

To address this issue, we exploit a coupling technique. Note that the expression in (11) does not
depend on the joint distribution of z1j and z2j , and instead, it only depends on the marginal distribution
of z1j and z2j . That said, for each j, we assume that z1j and z2j are sampled from a distribution µ on
Z × Z such that z1j ∼ p1, z2j ∼ p2, and µ(z1j 6= z2j ) = ‖p1 − p2‖TV . Such a coupling exists and
is called maximal coupling of p1 and p2 [35]. Using this idea, as we show in Appendix F, we can
eliminate the dependence on K, and as a result, the upper bound in (9) is independent of number of
available labeled samples at test time denoted by K.
Remark 3. Note that the terms 1

m

∑m
i=1 ‖pm+1 − pi‖TV and ‖pm+1 − 1

m

∑m
i=1 pi‖TV in

D(pm+1, {pi}mi=1) come from the fact that we consider uniform distribution over tasks in
the empirical problem (4). In particular, if we instead consider the empirical problem
arg minw∈W

∑m
i=1 qiF̂i(w,Si), for some non-negative weights qi with

∑m
i=1 qi = 1, then

D(pm+1, {pi}mi=1) on the right hand side of (9) would change to

(M + 2αG2)‖pm+1 −
m∑
i=1

qipi‖TV + 12αG2
m∑
i=1

qi‖pm+1 − pi‖TV .

This result shows that by changing the training problem we can achieve a lower generalization error
for MAML, if we have some information about the distribution pm+1 at training time. For instance,
if we know pm+1 will be much closer to p1 compared to p2, making the weight of p1 larger than p2
would decrease the generalization error of MAML.
Corollary 2. Recall the population loss Fm+1 defined in (2) and D(pm+1, {pi}mi=1) defined in
Theorem 3. Let A be an algorithm for solving the empirical problem (4) which achieves ε excess risk,
i.e., EA,S [F (A(S))]−minW F ≤ ε. If Assumptions 1, 2 and 3 hold, then algorithmA finds a model
wS which achieves ε+D(pm+1, {pi}mi=1) excess loss with respect to Fm+1,

EA,S [Fm+1(wS)]−min
W

Fm+1 ≤ ε+ 2D(pm+1, {pi}mi=1).

This corollary and Proposition 2 together imply that the MAML algorithm’s test error with respect
to the new task Tm+1 is O(1)

(
1
mn +D(pm+1, {pi}mi=1)

)
. As a result, if the new task’s distribution

pm+1 is sufficiently close to the other tasks’ distributions, MAML will have a low test error on the
new unseen task. On the other hand, if pm+1 is far from p1, . . . , pm in TV distance, then test error of
the model trained {T mi=1} over Tm+1 could be potentially large. In Appendix F.2 we show how this
result can be extended to the case that the task at test time is generated from a distribution over both
recurring tasks {Ti}mi=1 and the unseen task Tm+1.

4 Conclusion and future work

In this work, we studied the generalization of MAML algorithm in two key cases: a) when the
test time task is a recurring task from the ones observed during the training stage, b) when it is a

9



new and unseen one. For the first one, and under strong convexity assumption, we showed that the
generalization error improves as the number of tasks or the number of samples per task increases. For
the second case, we showed that when the distance between the unseen task’s distribution and the
distributions of training tasks is sufficiently small, the MAML output generalizes well to the new task
revealed at test time.

While we focused on the convex case in this paper, deriving generalization bounds when the meta-
function is nonconvex is a natural future direction to explore. However, this could be challenging
since the generalization of gradient methods is not well understood in the nonconvex setting even for
the classic supervised learning problem.
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Appendix

A Intermediate Results

In this section we list a number of results that will be helpful in proofs of our main results.
Lemma 2 (From [36] with modifications). Let φ be a γ-strongly convex and η-smooth function
which its gradient is bounded by G̃ over the convex and closed setW . Then, we have

λ

2
‖w − w∗‖2 ≤ φ(w)− φ(w∗) ≤ L

2
‖w − w∗‖2 + G̃‖w − w∗‖. (12)

Proof. Recalling the definition of strong convexity and smoothness, we have

λ

2
‖w−w∗‖2+∇φ(w∗)>(w−w∗) ≤ φ(w)−φ(w∗) ≤ L

2
‖w−w∗‖2+G̃‖w−w∗‖+∇φ(w∗)>(w−w∗).

(13)
Since w∗ = arg minW φ, we have ∇φ(w∗)>(w − w∗) ≥ 0, and hence from the left hand side of
(13), we immediately obtain the left hand side of (12). To obtain the right hand side, it just suffices to
use the bounded gradient assumption along with Cauchy–Schwarz inequality:

∇φ(w∗)>(w − w∗) ≤ G̃‖w − w∗‖.

Lemma 3. Suppose the conditions in Assumption 1 are satisfied. Then, with α ≤ 1/L, and for any
batch D and z ∈ Z , we have ∥∥∥∇`(w − α∇L̂(w,D), z

)∥∥∥ ≤ 2G. (14)

for any w ∈ W . Furthermore, if we take v ∈ W as well, we have∣∣∣`(w − α∇L̂(w,D), z
)
− `
(
v − α∇L̂(v,D), z

)∣∣∣ ≤ 4G‖w − v‖. (15)

Proof. First, note that∥∥∥∇`(w − α∇L̂(w,D), z
)∥∥∥ ≤ ‖∇`(w, z)‖+ αL‖L̂(w,D)‖

≤ (1 + αL)G ≤ 2G, (16)

where the first inequality follows from smoothness of `(., z̃) for any z̃, and the second inequal-
ity is obtained using the bounded gradient assumption. To show (15), let us define ψ(w) =

`
(
w − α∇L̂(w,D), z

)
for any w ∈ W . Note that

ψ(w)− ψ(v) =

∫ 1

0

∇ψ(v + s(w − v))>(w − v)ds, (17)

and hence,

|ψ(w)− ψ(v)| ≤
∫ 1

0

‖∇ψ(v + s(w − v))‖ · ‖w − v‖ds

= ‖w − v‖
∫ 1

0

∥∥∥(I − α∇2L̂(v + s(w − v),D)
)
∇`
(
v + s(w − v)− α∇L̂(v + s(w − v),D), z

)∥∥∥ ds
≤ 2‖w − v‖

∫ 1

0

∥∥∥∇`(v + s(w − v)− α∇L̂(v + s(w − v),D), z
)∥∥∥ ds, (18)

where the last inequality follows from ‖∇2L̂(v + s(w − v),D)‖ ≤ L and α ≤ 1/L. Therefore, it
suffices to bound ∥∥∥∇`(v + s(w − v)− α∇L̂(v + s(w − v),D), z

)∥∥∥ .
Using the fact thatW is convex, we have v + s(w − v) ∈ W , and hence we could use the same
approach in (16) and complete the proof.
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Lemma 4. Suppose Assumptions 1 and 3 hold. Then, with α ≤ 1/L, and for any batchD and z ∈ Z ,
we have ∥∥∥`(w − α∇L̂(w,D), z

)∥∥∥ ≤M + 2αG2, (19)

for any w ∈ W .

Proof. Let h(η) := `
(
w − η∇L̂(w,D), z

)
. Using Lemma 3, it is easy to verify that |h′(η)| ≤ 2G2,

and hence, using Mean-value Theorem, we have |h(α)− h(0)| ≤ 2αG2. This result, along with the
fact that |h(0)| = |` (w, z) | ≤M by Assumption 3 completes the proof.

As we stated in Section 2, MAML uses an unbiased gradient estimate at each iteration. The next
lemma provides an upper bound on the variance of such estimate.

Lemma 5. Consider the function F̂i(.,Si) defined in (4) with α ≤ 1
L . Suppose the conditions in

Assumption 1 are satisfied. Recall that for batches Din
i ⊂ S in

i with size K and Dout
i ⊂ Sout

i with size b,

gi(w;Din
i ,Dout

i ) =
(
Id − α∇2L̂(w,Din

i )
)
∇L̂

(
w − α∇L̂(w,Din

i ),Dout
i

)
is an unbiased estimate of∇F̂i(w,Si). Then, for any w ∈ W , we have

‖gi(w;Din
i ,Dout

i )‖ ≤ 4G,

EDin
i ,Dout

i

[∥∥∥gi(w;Din
i ,Dout

i )−∇F̂i(w,Si)
∥∥∥2]O(1)G2

(
α2L2

K
+

1

b

)
.

Proof. Recall from Lemma 3 that∥∥∥∇`(w − α∇L̂(w,Din
i ), z

)∥∥∥ ≤ 2G (21)

As a result, we have

‖gi(w;Din
i ,Dout

i )‖ ≤ ‖Id − α∇2L̂(w,Din
i )‖ · ‖∇L̂

(
w − α∇L̂(w,Din

i ),Dout
i

)
‖

≤ (1 + αL)2G ≤ 4G.

To show the second result, we first claim

EDin
i

[∥∥gi(w;Din
i ,Sout

i )− gi(w;S in
i ,Sout

i )
∥∥2] ≤ 36

α2L2G2

K
. (22)

To show this, let us define

eH :=
(
Id − α∇2L̂(w,Din

i )
)
−
(
Id − α∇2L̂(w,S in

i )
)

= α
(
∇2L̂(w,S in

i )−∇2L̂(w,Din
i )
)

eG := ∇L̂
(
w − α∇L̂(w,Din

i ),Sout
i

)
−∇L̂

(
w − α∇L̂(w,S in

i ),Sout
i

)
.

Note that, by Assumption 1, we have

‖eH‖ ≤ 2αL, ‖eG‖ ≤ αL‖∇L̂(w,Din
i )−∇L̂(w,S in

i )‖ ≤ 2αLG. (24)

In addition, using the fact that batch Din
i is chosen uniformly at random, we have

EDin
i
[‖eH‖2] ≤ α2L

2

K
· n−K
n− 1

, EDin
i
[‖eG‖2] ≤ α2L2G

2

K
· n−K
n− 1

. (25)

Next, note that

gi(w;Din
i ,Sout

i )− gi(w;S in
i ,Sout

i )

= eH∇L̂
(
w − α∇L̂(w,S in

i ),Sout
i

)
+ eG

(
Id − α∇2L̂(w,S in

i )
)

+ eGeH .
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Hence, using Cauchy-Schwarz inequality along with (21), we have

EDin
i

[∥∥gi(w;Din
i ,Sout

i )− gi(w;S in
i ,Sout

i )
∥∥2]

≤ 3(2G)2EDin
i
[‖eH‖2] + 3(1 + αL)2EDin

i
[‖eG‖2] + 3EDin

i
[‖eGeH‖2]

≤ 12G2EDin
i
[‖eH‖2] + 12EDin

i
[‖eG‖2] + 12α2L2G2EDin

i
[‖eH‖2].

where the last inequality is obtained using (24) and αL ≤ 1. Now, using (24), we have

EDin
i

[∥∥gi(w;Din
i ,Sout

i )− gi(w;S in
i ,Sout

i )
∥∥2]

≤ 12(2 + α2L2)
n−K
n− 1

· α
2L2G2

K
≤ 36

α2L2G2

K
.

which is the desired claim. Using this result and (21), we imply

EDin
i ,Dout

i

[∥∥∥gi(w;Din
i ,Dout

i )−∇F̂i(w,Si)
∥∥∥2]

≤ EDin
i

[∥∥∥gi(w;Din
i ,Sout

i )−∇F̂i(w,Si)
∥∥∥2]+

4G2

b

≤ 4

(
36
α2L2G2

K
+
G2

b

)
(26)

and the proof is complete.

B Proof of Proposition 1

Recall that
wt+1 =

∏
W

(
wt − βtgt

)
,

where gt := 1
r

∑
i∈Bt

gi(w
t;Dt,ini ,Dt,out

i ) is an unbiased estimate of F̂ (wt). Furthermore, by Lemma
5, we know that ‖gt‖ ≤ G̃ := 4G. Also, recall from Lemma 1 that F̂ is λ-strongly convex with
λ := µ/8.

Let F t be the σ-field generated by the information up to time t (and not including iteration t, such as
the randomness in Bt, etc.) It is worth noting that E[gt | F t] = ∇F̂ (wt).

First, we claim that similar to the proof of Lemma 1 in [30], we could show

E[‖wt+1 − w∗‖2] ≤ (1− 2βtλ)E[‖wt − w∗‖2] + β2
t G̃

2, (27)

where w∗ is the minimizer of F̂ (.,S) overW . To see this, and for the sake of completeness, let us
recall the steps of the proof. Note that

E
[∥∥wt+1 − w∗

∥∥2] = E

∥∥∥∥∥∏
W

(
wt − βtgt

)
− w∗

∥∥∥∥∥
2


≤ E
[∥∥wt − βtgt − w∗∥∥2] (28)

= E
[∥∥wt − w∗∥∥2]− 2βtE

[〈
gt, wt − w∗

〉]
+ β2

tE
[∥∥gt∥∥2]

= E
[∥∥wt − w∗∥∥2]− 2βtE

[〈
F̂ (wt), wt − w∗

〉]
+ β2

tE
[∥∥gt∥∥2] , (29)

where (28) follows from non-expansivity of projection and (29) comes from the fact that wt ∈ F t
and E[gt | F t] = ∇F̂ (wt). Now, having (29), and using ‖gt‖ ≤ G̃ along with the strong convexity
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of F̂ , we have

E
[∥∥wt+1 − w∗

∥∥2] ≤ E
[∥∥wt − w∗∥∥2]− 2βtE

[
F̂
(
wt
)
− F̂ (w∗) +

λ

2

∥∥wt − w∗∥∥2]+ β2
t G̃

2

≤ E
[∥∥wt − w∗∥∥2]− 2βtE

[
λ

2

∥∥wt − w∗∥∥2 +
λ

2

∥∥wt − w∗∥∥2]+ β2
t G̃

2

(30)

= (1− 2βtλ)E
[∥∥wt − w∗∥∥2]+ β2

t G̃
2,

where (30) follows from Lemma 2. Next, note that βt is given by

βt =

{
β, for t ≤ t∗ − 1

1
λ(t+1) , for t > t∗ − 1 , with t∗ := b 1

βλ
c.

For any t ≤ t∗, from (27) and Lemma 2 in [30], we obtain

E[‖wt − w∗‖2] ≤ G̃2

λ2
+ β2G̃2t ≤ G̃2(t+ 3)

λ2(t+ 1)
. (31)

Also, note that, for t ≥ t∗, we have

E[‖wt+1 − w∗‖2] ≤ (1− 2

t+ 1
)E[‖wt − w∗‖2] +

G̃2

λ2(t+ 1)2
. (32)

Hence, by induction, it can be seen that for any t, we have

E[‖wt − w∗‖2] ≤ G̃2(t∗ + 3)

λ2(t+ 1)
. (33)

Using Lemma 2 gives us (7).

To obtain the bound on the time-average iterate, first, we could similarly, modify the result in [31] to
obtain

2E[F̂ (w̄T )−F̂ (w∗)] ≤ 1

T

(
‖w0 − w∗‖2(

1

β1
− λ) +

T−1∑
t=1

E[‖wt − w∗‖2](
1

βt+1
− 1

βt
− λ) + G̃2

T∑
t=1

βt

)
.

It can be easily verified that for βt = min(β, 8
µ(t+1) ), the term 1

βt+1
− 1

βt
− λ is always non-positive.

Hence, we have

E[F̂ (w̄T )− F̂ (w∗)] ≤ ‖w0 − w∗‖2 1/β − λ
T + 1

+
2G̃2

T + 1

T∑
t=0

βt

≤ O(1)
G̃2

λT
(1 + log(T )− log(t∗)) ≤ O(1)

G̃2

λT

(
1

βλ
+ log(T )

)
, (34)

where the last inequality follows from the fact that 4G̃2/λ2 ≥ ‖w0 −w∗‖2 (see Lemma 2 in [30] for
the proof.)

C Proof of Theorem 1

To show the claim, it just suffices to show that for any i, we have

EA,S
[
Fi(wS)− F̂i(wS ,Si)

]
≤ γ. (35)

Consider
S in
i = {zin

1 , ..., z
in
n}, Sout

i = {zout
1 , ..., zout

n }.
To see this, first note that

Fi(wS) = E{zj}Kj=1,z̃

[
`
(
wS − α∇L̂(wS , {zj}Kj=1), z̃

)]
,

16



where {zj}Kj=1 are K distinct points sampled from pi and z̃ is also independently sampled from pi.
By Assumption 2, we could assume z̃ is different from K other points. Note that we have

ES [Fi(wS)] = ES,{zj}Kj=1,z̃

[
`
(
wS − α∇L̂(wS , {zj}Kj=1), z̃

)]
. (36)

Next, note that, we can write F̂i(wS ,Si) as

F̂i(wS ,Si) =
1(

n
K

)
|Sout
i |

∑
{ζj}Kj=1⊂[n]

ζ̃∈[n]

`
(
wS − α∇L̂(wS , {zin

ζj}
K
j=1), zout

ζ̃

)
.

Thus, we have

EA,S [F̂i(wS ,Si)] =
1(

n
K

)
|Sout
i |

∑
{ζj}Kj=1⊂[n]

ζ̃∈[n]

EA,S
[
`
(
wS − α∇L̂(wS , {zin

ζj}
K
j=1), zout

ζ̃

)]
.

Notice that, {ζj}Kj=1 are all different, and hence, due to the symmetry, all the expectations on the
RHS are equal. Hence, for a fixed {ζj}Kj=1 ⊂ [n] and ζ̃ ∈ [n], we have

EA,S [F̂i(wS ,Si)] = EA,S
[
`
(
wS − α∇L̂(wS , {zin

ζj}
K
j=1), zout

ζ̃

)]
= EA,S,{zj}Kj=1,z̃

[
`
(
wS − α∇L̂(wS , {zin

ζj}
K
j=1), zout

ζ̃

)]
(37)

Next, define the dataset S̃ by substituting zin
ζj

with zj , for all j, and zout
ζ̃

with z̃. It is straightforward
to see that

EA,S,{zj}Kj=1,z̃

[
`
(
wS − α∇L̂(wS , {zin

ζj}
K
j=1), zout

ζ̃

)]
= EA,S,{zj}Kj=1,z̃

[
`
(
wS̃ − α∇L̂(wS̃ , {zj}

K
j=1), z̃

)]
Therefore, using (37), we obtain

EA,S [F̂i(wS ,Si)] = EA,S,{zj}Kj=1,z̃

[
`
(
wS̃ − α∇L̂(wS̃ , {zj}

K
j=1), z̃

)]
. (38)

Putting (36) and (38) together, we have

EA,S
[
Fi(wS)− F̂i(wS ,Si)

]
≤ EA,S,{zj}Kj=1,z̃

[∣∣∣`(wS − α∇L̂(wS , {zj}Kj=1), z̃
)
− `
(
wS̃ − α∇L̂(wS̃ , {zj}

K
j=1), z̃

)∣∣∣]
= ES,{zj}Kj=1,z̃

[
EA
[∣∣∣`(wS − α∇L̂(wS , {zj}Kj=1), z̃

)
− `
(
wS̃ − α∇L̂(wS̃ , {zj}

K
j=1), z̃

)∣∣∣]]
(39)

where the last equality follows from Tonelli’ theorem. Finally, note that since A is (γ,K)-uniformly
stable, we could bound the the inner integral by γ, i.e.,

EA
[∣∣∣`(wS − α∇L̂(wS , {zj}Kj=1), z̃

)
− `
(
wS̃ − α∇L̂(wS̃ , {zj}

K
j=1), z̃

)∣∣∣] ≤ γ,
and thus, we obtain the desired result (35).

D Proof of Theorem 2

The stability definition says there is one i such that the two datasets S and S̃ differ only in the the
two following terms:

• S̃ in
i differs from S in

i in at mostK points. We show thoseK samples by {zj}Kj=1 and {z̃j}Kj=1,
respectively.

• S̃out
i differs from Sout

i in at most one point. We show those by ζ and ζ̃, respectively.
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Let’s consider two parallel processes of generating iterates {wt} and {w̃t} by using datasets S and
S̃ , respectively. We use the tilde superscript to refer to the second process throughout the proof. Also,
we use Dt,out

i and Dt,in
i to refer to indices of samples in Dt,out

i and Dt,ini , respectively. Also, with a
slight abuse of notation, by L̂(wt, D

in/out
i ) we mean L̂(wt,Din/out

i ).

Note that the randomness of algorithm comes from the randomness in drawing batches at each
iteration. We do a coupling argument here. We could assume the two parallel processes of generating
iterates {wt} and {w̃t} use the same random machine for sampling batches. In other words, Bt = B̃t,
Dt,out
i = D̃t,out

i , and Dt,in
i = D̃t,in

i

For one particular realization:

• Let ut be the number of times that the index corresponding to sample ζ (or ζ̃) is chosen in
Dt,out
i . Note that this number could be zero if i /∈ Bt, and it could be greater than one if

i ∈ Bt since Dt,out
i is chosen with replacement.

• Let vt be the number of indices corresponding to the samples {zj}Kj=1 (or {z̃j}Kj=1) that
appears in Dt,in

i . Again, this number could be zero if i /∈ Bt. Also, note that we take Dt,in
i

as a batch of K different samples from S in
i , and hence, each one of j indices appears at most

one time in Dt,in
i .

The rest of the proof has three steps:

1. First, recall the definition of b and r from Alghorithm 1. We claim

E[ut] =
br

nm
, E[vt] =

K2r

nm
. (40)

The first one is easy to see. Task i is in Bt with probability r/m, and if that happens, then
ut would have a binomial distribution with mean b/n. To see the second one, note that

P(vt = j) =

(
K

j

)(
n−K
K − j

)
,

and therefore,

E[vt|i ∈ Bt] =
1(
n
K

) K∑
j=0

j

(
K

j

)(
n−K
K − j

)
.

Using the fact that
(
K
j

)
= K

j

(
K−1
j−1
)
, we obtain

E[vt|i ∈ Bt] =
K(
n
K

) K∑
j=0

(
K − 1

j − 1

)(
n−K
K − j

)

=
K(
n
K

) K−1∑
j=0

(
K − 1

j

)(
(n− 1)− (K − 1)

(K − 1)− j

)
. (41)

However, note that
(
K−1
j

)(
(n−1)−(K−1)

(K−1)−j
)

is exactly the probability of vt = j if K → K − 1

and n → n − 1. Hence, the sum
∑K−1
j=0

(
K−1
j

)(
(n−1)−(K−1)

(K−1)−j
)

is equal to
(
n−1
K−1

)
, and

plugging this into (41) gives us the second part of the claim (40).
2. Second, we claim that under Assumption 1 we have

EA[‖wT − w̃T ‖] ≤ 4G

mn
(1 + αLK)

16(2L+ ραG) + µ

µ(2L+ ραG)
. (42)

Before showing its proof, note that since L ≥ µ, this could be simplified as

EA[‖wT − w̃T ‖] ≤ O(1)
G

mnµ
(1 + αLK). (43)

Now, let’s show why this is true. To simplify the notation, let us define ψ(w;D, z) :=

`
(
w − α∇L̂(w,D), z

)
. We start by revisiting the following lemma from [18]:
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Lemma 6. Let φ be a λ-strongly convex and η-smooth function. Then, for any β ≤ 2
λ+η ,

we have
‖(u− β∇φ(u))− (v − β∇φ(v))‖ ≤ (1− βλη

λ+ η
)‖u− v‖,

for any u and v.

Next, recall from Lemma 1 that for any batch D and any z ∈ Z , ψ(w;D, z) is 4L+ 2αρG
smooth and µ/8 strongly convex. Hence, using the above lemma, for any j ∈ Bt that j 6= i,
we have

‖wt+1
j − w̃t+1

j ‖ ≤
(

1− βt
2µ(2L+ ραG)

16(2L+ ραG) + µ

)
‖wt − w̃t‖. (44)

Next, let us assume i ∈ Bt. In this case, we have

‖wt+1
i − w̃t+1

i ‖ ≤1

b

∑
z∈Dt,out

i

∥∥∥(wt − βt∇ψ(wt;Dt,ini , z)
)
−
(
w̃t − βt∇ψ(w̃t; D̃t,ini , z)

)∥∥∥ .
(45)

+
1

b
βt

∑
z∈D̃t,out

i /Dt,out
i

∥∥∥∇ψ(w̃t; D̃t,ini , z)−∇ψ(wt;Dt,ini , z)
∥∥∥ . (46)

For (46), note that we know by Lemma 5 that ‖∇ψ(w; ,D, z)‖ ≤ 4G, and hence, since
|D̃t,out
i /Dt,out

i | = ut, we could bound the second term by 8βtGut/b. As a result, we have

‖wt+1
i − w̃t+1

i ‖ ≤ 8βtG
ut
b

+
1

b

∑
z∈Dt,out

i

∥∥∥(wt − βt∇ψ(wt;Dt,ini , z)
)
−
(
w̃t − βt∇ψ(w̃t; D̃t,ini , z)

)∥∥∥ .
(47)

Note that ∥∥∥(wt − βt∇ψ(wt;Dt,ini , z)
)
−
(
w̃t − βt∇ψ(w̃t; D̃t,ini , z)

)∥∥∥
≤
∥∥∥(wt − βt∇ψ(wt;Dt,ini , z)

)
−
(
w̃t − βt∇ψ(w̃t;Dt,ini , z)

)∥∥∥
+ βt

∥∥∥∇ψ(w̃t;Dt,ini , z)−∇ψ(w̃t; D̃t,ini , z)
∥∥∥ . (48)

Let us bound the two terms on the RHS of (48) separately. First, similar to how we derived
44, we could bound the first term by∥∥∥(wt − βt∇ψ(wt;Dt,ini , z)

)
−
(
w̃t − βt∇ψ(w̃t;Dt,ini , z)

)∥∥∥
≤
(

1− βt
2µ(2L+ ραG)

16(2L+ ραG) + µ

)
‖wt − w̃t‖. (49)

To bound the second term on the RHS of (48), note that∥∥∥∇ψ(w̃t;Dt,ini , z)−∇ψ(w̃t; D̃t,ini , z)
∥∥∥

=
∥∥∥(I − α∇2L̂(w̃t,Dt,ini ))∇`

(
w̃t − α∇L̂(w̃t,Dt,ini ), z

)
−(I − α∇2L̂(w̃t, D̃t,ini ))∇`

(
w̃t − α∇L̂(w̃t, D̃t,ini ), z

)∥∥∥
≤
∥∥∥∇`(w̃t − α∇L̂(w̃t,Dt,ini ), z

)
−∇`

(
w̃t − α∇L̂(w̃t, D̃t,ini ), z

)∥∥∥+

α
∥∥∥∇2L̂(w̃t,Dt,ini )∇`

(
w̃t − α∇L̂(w̃t,Dt,ini ), z

)
−∇2L̂(w̃t, D̃t,ini )∇`

(
w̃t − α∇L̂(w̃t, D̃t,ini ), z

)∥∥∥
≤ (1 + αL)

∥∥∥∇`(w̃t − α∇L̂(w̃t,Dt,ini ), z
)
−∇`

(
w̃t − α∇L̂(w̃t, D̃t,ini ), z

)∥∥∥+

2αG
∥∥∥∇2L̂(w̃t,Dt,ini )−∇2L̂(w̃t, D̃t,ini )

∥∥∥ , (50)
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where, in the last inequality, we used Lemma 3 along with the third condition of Assumption
1. Hence, what remains is to bound the two terms in (50). To do so, notice that∥∥∥∇`(w̃t − α∇L̂(w̃t,Dt,ini ), z

)
−∇`

(
w̃t − α∇L̂(w̃t, D̃t,ini ), z

)∥∥∥
≤ αL

∥∥∥∇L̂(w̃t,Dt,ini )−∇L̂(w̃t, D̃t,ini )
∥∥∥ ≤ 2αLG

vt
K
, (51)

and ∥∥∥∇2L̂(w̃t,Dt,ini )−∇2L̂(w̃t, D̃t,ini )
∥∥∥ ≤ 2L

vt
K
. (52)

By plugging (51) and (52) into (50) and using αL ≤ 1, we have∥∥∥∇ψ(w̃t;Dt,ini , z)−∇ψ(w̃t; D̃t,ini , z)
∥∥∥ ≤ 8αLG

vt
K
. (53)

Substituting this bound and (49) into (48) and plugging the result into (47), we have

‖wt+1
i − w̃t+1

i ‖ ≤
(

1− βt
2µ(2L+ ραG)

16(2L+ ραG) + µ

)
‖wt− w̃t‖+ 8βtG(

ut
b

+αL
vt
K

). (54)

Using (54) and (44), we obtain

‖1

r

∑
j∈Bt

wt+1
j − 1

r

∑
j∈Bt

w̃t+1
j ‖ ≤

(
1− βt

2µ(2L+ ραG)

16(2L+ ραG) + µ

)
‖wt − w̃t‖+ 8βtG(

ut
rb

+ αL
vt
rK

).

Since projections are non-expansive, we have

‖wt+1−w̃t+1‖ ≤
(

1− βt
2µ(2L+ ραG)

16(2L+ ραG) + µ

)
‖wt−w̃t‖+8βtG(

ut
rb

+αL
vt
rK

). (55)

Taking an expectation from both sides and using (40), we get

EA[‖wt+1−w̃t+1‖] ≤
(

1− βt
2µ(2L+ ραG)

16(2L+ ραG) + µ

)
EA[‖wt−w̃t‖]+8

βtG

mn
(1+αLK).

(56)
Note that we can rewrite this bound as

EA[‖wt+1 − w̃t+1‖] ≤ (1− βtλ)EA[‖wt − w̃t‖] + βtη,

where

λ :=
2µ(2L+ ραG)

16(2L+ ραG) + µ
, η :=

8G

mn
(1 + αLK).

Note that the claim (42) is in fact to show

EA[‖wt − w̃t‖] ≤ η

λ
.

This is true for t = 1 since β0 ≤ 1
4L+2ραG ≤

1
λ . Having this, we could easily obtain the

result by induction.

3. We are ready to conclude. Note that by Lemma 3, we have∣∣∣`(wT − α∇L̂(wT , {zj}Kj=1), z̃
)
− `
(
w̃T − α∇L̂(w̃T , {zj}Kj=1), z̃

)∣∣∣
≤ 4G

∥∥∥(wT − α∇L̂(wT , {zj}Kj=1), z̃
)
−
(
w̃T − α∇L̂(w̃T , {zj}Kj=1), z̃

)∥∥∥
≤ 4ψ(1 + αL)‖wT − w̃T ‖ ≤ 8G‖wT − w̃T ‖.

Taking expectations from both sides completes the proof for wT . Note that (43) can be
extended to w̄T as well, and using an argument similar to this step, we could show the same
stability bound for the average itrtaes as well.
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E Generalization bound for large K regime

Under the premise of Theorem 2, we claim

EA,S
[
F (wS)− F̂ (wS ,S)

]
≤ O(1)G2

(
1

mnµ
+ αmin

{
LK

mnµ
,

1√
K

})
. (57)

To show this, first, recall that

Fi(w) = EDtest
i

[
Li
(
w − α∇L̂(w,Dtest

i )
)]
.

Let Gi(w) := Li (w − α∇Li(w)) . Note that

|Fi(w)−Gi(w)| =
∣∣∣EDtest

i

[
Li
(
w − α∇L̂(w,Dtest

i )
)
− Li (w − α∇Li(w))

]∣∣∣
≤ 4αGEDtest

i

∣∣∣L̂(w,Dtest
i )−∇Li(w)

∣∣∣ ≤ 4α
G2

√
K
.

As a result, for G(w) = 1
m

∑m
i=1Gi(w), we have

|G(w)− F (W )| ≤ O(1)α
G2

√
K
.

Similarly, if we define

Ĝi(w) := L̂
(
w − α∇Li(w),Sout

i

)
, Ĝw :=

1

m

m∑
i=1

Gi(w),

we could show that

ES
∣∣∣Ĝ(w)− F̂ (w,S)

∣∣∣ ≤ O(1)α
G2

√
K
.

Finally, note that the well-known generalization results for strongly convex functions by using classic
stability definition (Definition 1) implies (see [18] for details)

EA,S |G(wA)− Ĝ(wA)| ≤ O(1)
G2

mnµ
,

where wA is MAML output. Putting these bounds together, we obtain O(1)
(
G2

mnµ + α G2
√
K

)
. Taking

minimum of this and Theorem 2 proves the aforementioned claim.

Finally, it is worth mentioning that while we are not sure whether our bound is tight for the large K
regime, this is not necessarily the case that the generalization bound improves as K increases. To see
this, consider MAML with only one task, i.e., m = 1, and the quadratic loss l(w, z) = (w>x− y)2

with z = (x, y). In addition, and to focus on the generalization error coming from test update, we
assume we have access to exact gradients for outer loop, i.e.,

F̂ (w) =
1(
n
K

) ∑
{zi}⊂Din

L

(
w − α

K∑
i=1

1

K
∇l(w, zi)

)

Let Λ = E[xx>] and ρ = E[xy]. Also, we denote the estimation of Λ and ρ over Din by Λ̂ and ρ̂,
respectively.

After some simplifications, it can be shown that

∇F (w) = Λw − ρ− 2αΛ2w + 2αΛρ+O(α2),

∇F̂ (w) = Λw − ρ+ 2αΛΛ̂w + αΛρ̂+ αΛ̂ρ+O(α2).

It can be seen that the difference of the two gradients is Ω(αn ) and does not decrease as K increases.
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F Proof of Theorem 3

First, we show the following lemma:
Lemma 7. For any z̃ and any w ∈ W , we have∣∣∣E{zm+1

j ∼pm+1}Kj=1

[
`
(
w − α∇L̂(w, {zm+1

j }Kj=1), z̃
)]
− E{zij∼pi}Kj=1

[
`
(
w − α∇L̂(w, {zij}Kj=1), z̃

)]∣∣∣
≤ 4αG2‖pm+1 − pi‖TV . (58)

Proof. Note that since pi are non-atmoic, we could assume zij’s are drawn independently. Same story
holds for zm+1

j ’s. Now, for any j, let us assume (zij , z
m+1
j ) is drawn from a joint distribution of pi

and pm+1 corresponding to the maximal coupling of these distributions, i.e.,

zij ∼ pi, zm+1
j ∼ pm+1, P(zij 6= zm+1

j ) = ‖pi − pm+1‖TV .

Hence, with probability
(
K
t

)
(‖pi − pm+1‖TV )t(1− ‖pi − pm+1‖TV )K−t, we have zij 6= zm+1

j for
t choices of j (out of 1, ...,K).

In addition, similar to the proof of Lemma 4, we could show that∥∥∥`(w − α∇L̂(w, {zm+1
j }Kj=1), z̃

)
− `
(
w − α∇L̂(w, {zij}Kj=1), z̃

)∥∥∥
≤ 2αG‖L̂(w, {zm+1

j }Kj=1)−∇L̂(w, {zij}Kj=1)‖.

Hence, if zij 6= zm+1
j for t choices of j, then we have∥∥∥`(w − α∇L̂(w, {zm+1

j }Kj=1), z̃
)
− `
(
w − α∇L̂(w, {zij}Kj=1), z̃

)∥∥∥
≤ 4αG2 t

K
.

As a result, we have

E{zm+1
j ∼pm+1}Kj=1

[
`
(
w − α∇L̂(w, {zm+1

j }Kj=1), z̃
)]
− E{zij∼pi}Kj=1

[
`
(
w − α∇L̂(w, {zij}Kj=1), z̃

)]
≤

K∑
t=0

(
K

t

)
(‖pi − pm+1‖TV )t(1− ‖pi − pm+1‖TV )K−t · 4αG2 t

K

= 4αG2(‖pi − pm+1‖TV )

K∑
t=0

t

K

(
K

t

)
(‖pi − pm+1‖TV )t−1(1− ‖pi − pm+1‖TV )K−t

= 4αG2(‖pi − pm+1‖TV ),

(59)

where the last equality follows from the fact that

t

K

(
K

t

)
(‖pi−pm+1‖TV )t−1(1−‖pi−pm+1‖TV )K−t =

(
K − 1

t− 1

)
(‖pi−pm+1‖TV )t−1(1−‖pi−pm+1‖TV )K−1−(t−1).

Let’s get back to the proof of Theorem 3. For any 1 ≤ i ≤ m+ 1 and any z̃, let us define

Xi(z̃) := E{zj∼pi}Kj=1

[
`
(
wS − α∇L̂(wS , {zj}Kj=1), z̃

)]
.

In other words, Xi is the loss over data point z̃ when the model is updated using the distribution of
task i. Next, note that

Fm+1(w)− Fi(w) = (60)

E{zj∼pm+1}Kj=1,z̃∼pm+1

[
`
(
w − α∇L̂(w, {zj}Kj=1), z̃

)]
− E{zj∼pi}Kj=1,z̃∼pi

[
`
(
w − α∇L̂(w, {zj}Kj=1), z̃

)]
.
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Note that by Lemma 4, the term inside expectation is bounded, and hence, by Fubini’s theorem, we
can cast this term as

Ez̃∼pm+1
[Xm+1(z̃)]− Ez̃∼pi [Xi(z̃)] (61)

By Lemma 7, we have |Xi(z̃)−Xm+1(z̃)| ≤ 4αG2‖pi − pm+1‖TV . Hence, we have

Fm+1(w)− Fi(w) = Ez̃∼pm+1
[Xm+1(z̃)]− Ez̃∼pi [Xi(z̃)] = Ez̃∼pm+1

[Xm+1(z̃)]− Ez̃∼pi [Xm+1(z̃)] + ei,m,

where |ei,m| ≤ 4αG2‖pi − pm+1‖TV . As a result, we have∣∣∣∣∣Fm+1(w)− 1

m

m∑
i=1

Fi(w)

∣∣∣∣∣ ≤
∣∣∣∣∣Ez̃∼pm+1

[Xm+1(z̃)]− 1

m

m∑
i=1

Ez̃∼pi [Xm+1(z̃)]

∣∣∣∣∣+ 4αG2‖pi − pm+1‖TV

(62)

Using Lemma 4, we have 0 ≤ Xm+1(z̃) ≤M + 2αG2. Hence, by (8), we have∣∣∣∣∣Ez̃∼pm+1
[Xm+1(z̃)]− 1

m

m∑
i=1

Ez̃∼pi [Xm+1(z̃)]

∣∣∣∣∣ ≤ (M + 2αG2)‖pm+1 −
1

m

m∑
i=1

pi‖TV . (63)

Plugging (63) into (62) gives us the desired result.

F.1 Proof of Corollary 2

Note that

EA,S [Fm+1(wS)]−min
W

Fm+1 ≤
(
EA,S [Fm+1(wS)− F (wS)]

)
+

(
EA,S [F (wS)]−min

W
F

)
+

(
min
W

F −min
W

Fm+1

)
,

where the second term on the right hand side is bounded by ε by assumption, and the first and last
term are both bounded by D(pm+1, {pi}mi=1) based on Theorem 3.

F.2 Generalization to a task drawn from a distribution of recurring and unseen tasks

Here we show how our result for generalization to an unseen task can be extended to the case that the
task at test time is generated from a distribution π over both recurring tasks {Ti}mi=1 and the unseen
task Tm+1.

Corollary 3. Under the premise of Theorem 3, and if the task at the test time is generated from the
distribution π over {Ti}m+1

i=1 , we have

|Eπ[Fi(w)]− F (w)| ≤ π(Tm+1) D(pm+1, {pj}mj=1)(1− π(Tm+1))

m∑
i=1

|π(Ti)−
1

m
| D(pi, {pj}mj=1),

where π(Ti) is the probability of task Ti according to distribution π.

Proof. Note that

|Eπ[Fi(w)]− F (w)| ≤ πm+1|Fm+1 − F (w)|+ (1− πm+1)

m∑
i=1

πi|Fi(w)− F (w)|. (64)

Note that by Theorem 3 we have

|Fm+1 − F (w)| ≤ D(pm+1, {pj}mj=1), |Fi − F (w)| ≤ D(pi, {pj}mj=1).

Plugging these into (64) completes the proof.
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G Limitations of the algorithmic stability analysis

Upon reviewers’ suggestion, we briefly discuss why the algorithmic stability technique does not lead
to meaningful generalization results for nonconvex loss functions. The main issue with applying
the stability framework for the nonconvex case is that we have to select a small stepsize to obtain
reasonable generalization bounds, but with such small stepsizes, we cannot guarantee that we will
find a first-order stationary point (FOSP) solution of the empirical loss in polynomial time.

To be more precise, consider Theorem 3.12 in Section 3.5 of [18]. There, the authors assume the
stepsize αt satisfies the condition αt ≤ c/t. To see how this prohibits us from finding an FOSP
efficiently, let us recall the convergence analysis of a non-convex smooth objective function f . There
the main inequality is the following (see Section 1.2.3 in [18]):

f(wT )− f∗ ≥
T∑
t=0

αt(1− αtL/2)‖∇f(wt)‖2,

where L is the smoothness parameter and wt is t-th iterate. It can be shown that by setting the
stepsize to αt = Θ(1/t), as suggested by [18], we would require exp(Θ(1/ε2)) iterations to find an
ε-FOSP. However, with a constant stepsize, we can achieve the significantly improved rate ofO(1/ε2)
which matches the lower bound for this setting. As this argument shows, to obtain a meaningful
generalization bound using algorithmic stability the stepsize should be selected much smaller than
the required threshold and as a result the overall iteration/sample complexity could be very large.

Considering this discussion, the algorithmic stability technique imposes a very restrictive assumption
on the stepsizes in the nonconvex setting which has a detrimental effect on the training error analysis.

H A toy example

In this section, we provide a simple numerical experiment to validate our theoretical results. We
consider a linear regression problem with dimension d = 10 for the case that we have m tasks and n
samples per task. For each task i, the feature vector x is drawn according to a normal distribution of
N (µi, 0.2Id), where µi is a vector uniformly at random drawn from [0, 1]d. In addition, for a given
x, the label y is given by y = a>i x+ εi, where εi ∼ N (0, 0.1) and ai is a random vector. To make
tasks similar, we generate the vectors ai according to ai = ui+1d

‖ui+1d‖ , where ui is a random vector,
uniformly drawn from [0, 1]d, and 1d is the all-one vector.

For the loss function, we consider quadratic loss with quadratic regularization, i.e., l(w, (x, y)) =
(w>x− y)2 + λ‖w‖2, with λ = 0.01. We choose the number of samples in the stochastic gradient
for adaptation as K = 5 and the test time learning rate α = 0.1, and run MAML for T = 20000
iterations.

Figure 2 shows the dependence of test error over recurring tasks on m and n. In this case the task at
test time is a recurring task. We see that the error decreases as m or n increases which is consistent
with our theoretical results.

Next, we consider the case that the task at test time is new and unseen. Note that, in this case, from
our theoretical results we know that the error bound includes a term D(pm+1, {pi}mi=1) which does
not decay with n. However, if the distributions are close, this term could be relatively small if m is
sufficiently large. To study this matter in our example, we consider two cases:

• First, we assume this new task is similar to the observed tasks in training. More formally,
similar to the first m tasks, we take am+1 = um+1+1d

‖ui+1d‖ , where um+1 is again a random
vector, uniformly drawn from [0, 1]d. Figure 3 shows the test error in this case. As we
expected, here we do not gain that much from increasing n, but the error decreases as m
increases. This matches our intuition, as for small m, i.e., m = 1, the distance between
two distributions p1 and p2 could be large. However, as m increases, we have tasks where
their distributions are close to pm+1, and hence the average distance between distributions
pi, · · · , pm and pm+1 decreases.
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a: Test error as a function of n for different m b: Test error as a function of m for different n
Figure 2: Test error over recurring tasks

a: Test error as a function of n for different m b: Test error as a function of m for different n
Figure 3: Test error over a new but similar task

a: Test error as a function of n for different m b: Test error as a function of m for different n
Figure 4: Test error over a new and less similar task

• Second, we make this new task less similar to the observed ones. To do so, this time, we
choose am+1 = um+1−1d

‖ui−1d‖ . In this case, we expect to see a relatively large error which does
not decrease with either m or n, and Figure 4 exactly shows this matter.
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