
A Notation

Symbol Meaning

D Data set of the observed trajectories
n Total number of observed trajectories in D
π Evaluation policy
βi Behavior policy for the ith trajectory
ρi Importance ratio for the observed trajectory Hi

S State set
O, Õ Observation set for the behavior policy and the evaluation policy, respectively
A Action set
P Transition dynamics, P : S ×A → ∆(S)
R Reward function,R : S ×A → ∆(R)
Ω Observation function for behavior policy, Ω : S → ∆(O)

Ω2 Observation function for the evaluation policy, Ω2 : S ×O → ∆(Õ)
γ Discounting factor
d0 Starting state distribution
T Finite horizon length

Hi, Hπ ith observed trajectory in the dataset and complete trajectory under policy π, respectively
Gi, Gπ Return observed in the ith trajectory in the dataset and return under any policy π, respectively

Gmin, Gmax Minimum and maximum value of a return, respectively
Fπ,dFπ True CDF of returns under policy π and its associated probability distribution, respectively
F̂n, F̄n Off-policy CDF estimator and weighted off-policy CDF estimator using n samples, respectively
F−, F+ Lower and upper bound on the CDF
F The set of all CDFs between the upper bound and the lower bounds

κi,K ith key point and total number of key points, respectively
α Value for defining inverse CDF-based statistics
ψ Generic functional for a distributional parameter/statistic

ψ−, ψ+ Lower and upper bounds for ψ(Fπ)
δ Failure rate for the bounds

Deval,Dtrain Evaluation and training split of the dataset D
CI−,CI+ Lower and upper confidence bounds for a given random variable

θ Parameters that are used to construct F
A Euclidean area enclosed within F
X∗i ith bootstrap resampled value for any random variable X
ε, ε Some small value in Assumption 1 and Assumption 2, respectively
wν , φ Regression weights and basis function for the assumption on smooth non-stationarity
L, ` Number of past and future episodes being considered in the smooth non-stationary setting

Table 1: List of symbols used in the main paper and their associated meanings.

B Broader Impact

While our estimators and bounds are both theoretically sound and intuitively simple, it is important
for a broader audience to understand the limitations of our method, assumptions being made, and
what can be done when these assumptions do not hold. Understanding these assumptions can also
help in mitigating any undesired biases in applications built around UnO and can thus avoid any
potential negative societal impacts. In the following, we briefly allude to possible alternatives when
the required assumptions are violated.

B.1 Discussion of Assumptions and Requirements of UnO

Knowledge of Subset Support: Through Assumption 1, UnO requires that all the behavior policies
(βi)

n
i=1 have sufficient support for actions that have non-zero probability under π. Particularly, it

requires that the β(a|o) is bounded below by (an unknown) ε when π(a|o) > 0. This ensures
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that importance ratios are bounded and thus simplifies analysis for UnO’s consistency results and
constructing confidence intervals. This assumption is common both in the off-policy literature
[47, 104, 105] and in real applications [87]

The above assumption is also equivalent to assuming bounded exponentiated-Renyi-divergence (for
α =∞) between the probability distributions of trajectories under the behavior and the evaluation
policies [61]. As the UnO’s bound for the CDF uses CIs for the mean as a sub-routine, the above
assumption can be relaxed by using CIs for the mean that depend on Renyi-divergence for other
values of α [61]. Similarly, consistency results for UnO rely upon finite variance, which can also be
achieved by instead assuming that the Renyi-divergence is bounded for α = 2.

Alternatively, Assumption 1 can be relaxed to only absolute continuity by using methods that provide
valid CIs for the mean by clipping the importance weights. (See the work by Thomas et al. [91,
Theorem 1] for removal of the upper bound on the importance weights when lower-bounding the
mean, and the work by Chandak et al. [18, Theorem 5] for removal of the upper bound on the
importance weights when upper-bounding the mean). Furthermore, prior work has also shown how
even the assumption of absolute continuity can in some cases be removed (See discussion around
Eqn 8 in the appendix of the work by Thomas et al. [91]). If the supports for the behavior and
the evaluation policies are unequal, Thomas and Brunskill [89] also present a technique to reduce
variance resulting from IS.

Further, WIS might also be helpful in relaxing the assumptions on the IS ratios. Specifically, WIS-
based mean bounds [53] can also be used along with the WIS-based UnO estimator (27) to get a valid
confidence band for the entire CDF.

Using multi-importance sampling (MIS), the subset support requirement for all (βi)
n
i=1 can be

relaxed to the requirement that the union of supports under the behavior policies (βi)
n
i=1 has sufficient

support [98, 67, 61]. MIS can also help in substantially reducing variance. However, this relaxation
requires an alternate assumption that a complete knowledge of all the behavior policies (βi)

n
i=1, not

just the probabilities of the action executed using them, is available.

Knowledge of Action Probabilities under Behavior Policies (βi)
n
i=1: UnO requires access to

the probability β(a|o) (only the scalar probability value and not the entire policy β) of the actions
available in the data set,D, to compute the importance sampling ratios in (3). Access to the probability
β(a|o) is often available when D is collected using an automated policy; however, it might not be
available in some cases, such as when decisions were previously made by humans.

When the probability β(a|o) is not available, one natural alternative is to estimate it from the data and
use this estimate of β(a|o) in the denominator of the importance ratios. This technique is also known
as regression importance sampling (RIS) and is known to provide biased but consistent estimates
for the mean [41, 69] in the Markov decision process setting (MDP) setting. For UnO, F̂n(ν) is
analogous to mean estimation of X := ρ

(
1{G≤ν}

)
, for any ν. Therefore, the findings of RIS can be

directly extended to UnO in the MDP setting, where Õ = O = S. In the following, we provide a
high-level discussion for the setting when β(a|o) is not available and the states are partially observed,

• Partial observability with Õ = O: In this setting, as β(a|o) = β(a|õ), one can use density
estimation on the available data, D, to construct an estimator β̂(a|o) of Pr(a|õ) = β(a|õ) and use
RIS to get a biased but consistent estimator for Fπ . Here, bias results from the estimation error in
β̂(a|o) but consistency follows as the true β(a|o) can be recovered in the limit when n→∞.
In context of UnO, using β̂(a|o) instead of β(a|o) violates the unbiased condition for F̂n, which was
necessary to obtain the CIs and construct F . Therefore, high-confidence bounds with guaranteed
coverage cannot be obtained using UnO in this setting. However, point estimates and approximate
bootstrap bounds can still be obtained.

• Partial observability with Õ 6= O: In this setting, using RIS will produce neither an unbiased
nor a consistent estimator for Fπ . As D only has õ and not o, at best it is only possible to estimate
Pr(a|õ) =

∑
x∈O β(a|x) Pr(x|õ) through density estimation using data D. However, in general,

since β(a|o) = Pr(a|o) 6= Pr(a|õ) we cannot even consistently estimate the denominator for
importance sampling unless some other stronger assumptions are made. See work by Namkoong
et al. [65], Tennenholtz et al. [85], Bennett et al. [9] and Kallus and Zhou [48] for possible
alternative assumptions and approaches to tackle this setting.
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Knowledge of Gmin, Gmax: To construct the CDF band F , UnO requires knowledge of Gmin and
Gmax in (5). Notice from Figure 2 that knowing Gmax helps in clipping the lower bound for the
upper tail (LBUT) of F , which otherwise would have extended to +∞. Similarly, knowing Gmin

helps in clipping the upper bound for the lower tail (UBLT) of F , which otherwise would have
extended to −∞.

Typically, even ifGmin orGmax is not known, they can be obtained asRmin/(1−γ) orRmax/(1−γ),
respectively, where Rmin and Rmax are known finite lower and upper bounds for any individual
reward. Otherwise, knowledge of Gmin or Gmax can be relaxed if the desired bound on ψ does not
depend on UBLT or LBUT, respectively. For example, observe from Figure 3 that (a) The lower
bound for the mean or quantile does not depend on LBUT. Analogously, if only an upper bound for
the mean or quantile is required, then UBLT is not needed. (b) The lower bound on CVaR depends
on UBLT, however, (for small values of α) the upper bound on CVaR neither depends on LBUT nor
UBLT. (c) For an upper bound on variance, both LBUT and UBLT are required. However, for the
variance’s lower bound, neither LBUT nor UBLT are required. See Figure 6 for intuition.

Knowledge of Function Class φ: For the smoothly non-stationary setting, through Assumption 3,
UnO requires access to the basis functions φ that can be used with least-squares regression to
analyze the trend in the distributions of returns (F

(i)
π (ν))Li=1 for any ν ∈ R. In practice, one can use

sufficiently flexible basis functions to model time-series trends (e.g., Fourier basis [12]). To avoid
overfitting or underfitting, one could also use goodness-of-fit tests to select the functional class φ for
the trend [19].

Knowledge of Bound ε on the Distribution Shift: Unlike the smoothly non-stationary setting, if
the underlying shift can be discrete and arbitrary, prior data may not contain any useful information
towards characterizing the shift. Therefore, avoiding domain knowledge may be inevitable when
setting the value for ε unless some other stronger assumptions are made.

C Extended Discussion on Related Work

In the on-policy RL literature, parameters other than the mean have also been explored [44, 81, 21,
101, 27, 54, 4], and recent distributional RL methods extend this direction by estimating the entire
distribution of returns [62, 63, 7, 22, 23, 24, 75]. Our work builds upon many of these ideas and
extends them to the off-policy setting.

In the off-policy RL setup, there is a large body of literature that tackles the off-policy mean estimation
problem [71, 83]. Some works also aim at providing high-confidence off-policy mean estimation
using concentration inequalities [91, 53] or bootstrapping [92, 40, 51]. Several recent approaches
build upon a dual perspective for dynamic programming [72, 100, 64] for both estimating and
bounding the mean [57, 104, 45, 95, 25, 35]. However, these methods are restricted to domains
with Markovian dynamics and full observability. Some works have also focused on estimating the
mean return in the setting where states are partially observed [65, 85, 48] or when there is non-
stationarity [16, 17, 50, 66]. Recent work by Chandak et al. [18] also looks at (high-confidence)
off-policy variance estimation. Our work extends these research directions by tackling these settings
simultaneously, while also providing a general procedure to estimate and obtain high-confidence
bounds for any parameter of the distribution of returns. Particularly, UnO is a single, unified, and
universal procedure that can be used to mitigate the complexity associated with estimating different
parameters for different domain settings.

A popular RL method that has similar name to UnO is the Universal value function approximator
(UVFA) by Schaul et al. [77]. However, UVFA is fundamentally different from UnO: UVFA
estimates expected return E[Gπ] from a state given any desired goal. By comparison, UnO estimates
any parameter of the return Gπ for a single “goal”. Recent work by Harb et al. [42] and Faccio et al.
[33] propose using supervised learning to estimate parametric models that can map a representation
of a policy π to the corresponding distribution of Gπ . By training over a given distribution of policies,
new policies in the test set can be evaluated without using new data. By comparison, UnO does
not requires any parametric assumptions or any train-test distribution. Further, UnO also provides
high-confidence bounds for all the parameters of the return distribution.
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D Proofs for Theoretical Results

The main results in this paper are for the setting where both the evaluation and the behavior policies
have the same observation set. In the following, we present generalized results where the available
observations, Õ, for the evaluation policy can be different from the behavior policy’s observations, O.
Further, for notational ease, in the main paper we had focused only on finite sets. In the following,
we present a more general setting where states, actions, observations, and rewards are all continuous.
Let Ω2 : S × O → ∆(Õ) be the distribution over Õ, conditioned on state s ∈ S and observation
o ∈ O, which determines how the observations Õ are generated.

Let D = (Hi)
n
i=1 be the available observed trajectories, where each H contains

(Õ0, A0, β(A0|O0), R0, Õ1, ...). Note that when the random variables Õ = O = S, we recover
a standard fully observable MDP setting. By comparison, Hπ is the random variable corresponding
to the complete trajectory (S0, O0, Õ0, A0, R0, S1, O1, Õ1, ...) under any policy π. Of course, Hπ is
unknown. To make the dependence between a trajectory h ∈ Hπ and its associated return G and
importance ratios ρ explicit, we use the shorthand g(h) and ρ(h) to denote the return and importance
ratios for the full trajectory h, respectively. To tackle this generalized setting, we also generalize the
support assumption introduced earlier,
Assumption 1. The set D contains independent (not necessarily identically distributed) observed
trajectories generated using (βi)

n
i=1, such that for some (unknown) ε > 0, (β(a|o) < ε) =⇒

(π(a|õ) = 0), for all s ∈ S, o ∈ supp(Ω(s)), õ ∈ supp(Ω2(s, o)), a ∈ A, and i ∈ {1, . . . , n}.
Theorem 1. Under Assumption 1, F̂n is an unbiased and uniformly consistent estimator of Fπ . That
is,

∀ν ∈ R, ED
[
F̂n(ν)

]
= Fπ(ν), sup

ν∈R

∣∣∣F̂n(ν)− Fπ(ν)
∣∣∣ a.s.−→ 0.

Proof. This theorem has two results: unbiasedness and consistency of F̂n. Therefore, we break the
proof into two parts.

Part 1 (Unbiasedness). We begin by expanding Fπ for any ν ∈ R using the definition of the CDF.

Fπ(ν) = Pr(Gπ ≤ ν) =

∫ ν

−∞
p(Gπ = x)dx =

∫ ν

−∞

(∫
Hπ

p(Hπ = h)1{g(h)=x}dh

)
dx, (8)

where we used the fact that the probability density of the return Gπ being x is the integral of the
probability densities of the trajectories h whose return equals x. Therefore, as the integrands in
(8) are finite and non-negative measurable functions, using Tonelli’s theorem for interchanging the
integrals, (8) can be expressed as,

Fπ(ν) =

∫
Hπ

p(Hπ = h)

(∫ ν

−∞
1{g(h)=x}dx

)
dh =

∫
Hπ

p(Hπ = h)
(
1{g(h)≤ν}

)
dh, (9)

where the last term follows because the output of g(h) is a deterministic scalar given h and thus the
indicator function can be one for at most a single value less than ν, and where the red color is used
to highlight changes. Next, using Assumption 1 to change the support of the distribution in (9) and
using importance weights we obtain,

Fπ(ν) =

∫
Hβ

p(Hπ = h)
(
1{g(h)≤ν}

)
dh =

∫
Hβ

p(Hβ = h)
p(Hπ = h)

p(Hβ = h)

(
1{g(h)≤ν}

)
dh. (10)

To simplify (10), we recursively use the fact that p(X,Y ) = p(X)p(Y |X) and note that under a
given policy π the probability density of a trajectory with partial observations and non-Markovian
structure is

p(Hπ = h) =p(s0)p(o0|s0)p(õ0|o0, s0)p(a0|s0, o0, õ0;π)

×
T−1∏
i=0

(
p(ri|hi)p(si+1|hi)p(oi+1|si+1, hi)p(õi+1|si+1, oi+1, hi)

× p(ai+1|si+1, oi+1, õi+1, hi;π)

)
p(rT |hT ), (11)
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where conditioning on π emphasizes that each action is sampled using π, and hi represents the
trajectory of all the states, partial observations, and actions up to time step i. Therefore, using (11),
the ratio between p(Hπ = h) and p(Hβ = h) can be written as,

p(Hπ = h)

p(Hβ = h)
=
p(a0|s0, o0, õ0;π)

p(a0|s0, o0, õ0;β)

T−1∏
i=0

p(ai+1|si+1, oi+1, õi+1, hi;π)

p(ai+1|si+1, oi+1, õi+1, hi;β)

=

T∏
i=0

π(ai|õi)
β(ai|oi)

= ρ(h). (12)

Combining (10) and (12),

Fπ(ν) =

∫
Hβ

p(Hβ = h)ρ(h)
(
1{g(h)≤ν}

)
dh. (13)

Finally, it can be shown that our proposed estimator F̂n is an unbiased estimator of Fπ by taking the
expected value of F̂n,

ED
[
F̂n(ν)

]
= ED

[
1

n

n∑
i=1

ρi

(
1{Gi≤ν}

)]

=
1

n

n∑
i=1

ED
[
ρi

(
1{Gi≤ν}

)]
=

1

n

n∑
i=1

∫
Hβi

p(Hβi = h)ρ(h)
(
1{g(h)≤ν}

)
dh

(a)
=

1

n

n∑
i=1

Fπ(ν)

= Fπ(ν), (14)

where (a) follows from (13), which holds for any behavior policy β that satisfies Assumption 1.

Note: Hπ or Hβ were invoked only for the purposes of the proof. Notice that the proposed estimator,
F̂n(ν) = 1

n

∑n
i=1 ρi

(
1{Gi≤ν}

)
, only depends on the quantities available in the observed trajectory

(Hi)
n
i=1 from D.

Part 2 (Uniform Consistency). For this part, we will first show pointwise consistency, i.e., for
any ν, F̂n(ν)

a.s.−→ Fπ(ν), and then we will use this to establish uniform consistency, as required. To
do so, let

Xi := ρi

(
1{Gi≤ν}

)
.

From Assumption 1, we know that trajectories are independent and that β(a|o) ≥ ε when π(a|õ) > 0.
This implies that the denominator in the IS ratio is bounded below when π(a|õ) 6= 0, and hence
the Xi’s are bounded above and have a finite variance. Further, as established in (14), the expected
value of Xi for all i equals Fπ(ν). Therefore, using Kolmogorov’s strong law of large numbers [78,
Theorem 2.3.10 with Proposition 2.3.10],

F̂n(ν) =
1

n

n∑
i=1

Xi
a.s.−→ ED

[
1

n

n∑
i=1

Xi

]
= Fπ(ν). (15)

In the following, to obtain uniform consistency, we follow the proof for the Glivenko-Cantelli theorem
[38, 15, 79, 82] using the pointwise consistency of the off-policy CDF estimator F̂n established
in (15). The proof relies upon the construction of K key points such that the difference in Fπ at
successive key points is bounded by a small ε1. However, this would not be possible directly as there
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can be discontinuties/jumps in Fπ that are greater than ε1. To tackle such discontinuties, we introduce
some extra notation, Formally, let, ∀ν ∈ R,

Fπ(ν−) := Pr(Gπ<ν) = Fπ(ν)− Pr(Gπ = ν), F̂n(ν−) :=
1

n

n∑
i=1

ρi

(
1{Gi<ν}

)
. (16)

Then, using arguments analogous to the ones used for (15), it can be observed that

F̂n(ν−)
a.s−→ Fπ(ν−). (17)

Let ε1 > 0, and let K be any value more than 1/ε1. Let (κi)
K
i=0 be K key points,

Gmin = κ0 < κ1 ≤ κ2.... ≤ κK−1 < κK = Gmax,

which create K intervals such that for all i ∈ (1, ...,K − 1),

Fπ(κ−i ) ≤ i

K
≤ Fπ(κi).

Then by construction, if κi−1 < κi,

Fπ(κ−i )− Fπ(κi−1) ≤ i

K
− i− 1

K
=

1

K
< ε1. (18)

Intuitively, as Fπ is monotonically non-decreasing, (18) restricts the intermediate values for any
Fπ(ν), to be within an ε1 distance of the CDF values at its nearby key points. Notice the role of κ−i
here: it would not have been possible to bound difference between Fπ(κi) and Fπ(κi−1) by ε1 as
there could have been ‘jumps’ of value greater than ε1 in Fπ. However, κ− and κ can be used to
consider key points right before and after any jump in Fπ , which ensures that we can always construct
sequence of key points such that Fπ(κ−i )− Fπ(κi−1) is instead bounded by ε1.

For the CDF estimates at the key points, let,

∆n := max
i∈(1...K−1)

{ ∣∣∣F̂n(κi)− Fπ(κi)
∣∣∣ , ∣∣∣F̂n(κ−i )− Fπ(κ−i )

∣∣∣ }. (19)

From (15) and (17), as F̂n(ν) and F̂n(ν−) are consistent estimators of Fπ(ν) and Fπ(ν−), respec-
tively, and since the maximum is over a finite set in (19), it follows that as n→∞,

∆n
a.s.−→ 0. (20)

For any ν, let κi−1 and κi be such that κi−1 ≤ ν < κi. Then,

F̂n(ν)− Fπ(ν) ≤ F̂n(κ−i )− Fπ(κi−1)

≤ F̂n(κ−i )− Fπ(κ−i ) + ε1, (21)

where the last step follows using (18). Similarly,

F̂n(ν)− Fπ(ν) ≥ F̂n(κi−1)− Fπ(κ−i )

≥ F̂n(κi−1)− Fπ(κi−1)− ε1. (22)

Then, using (21) and (22), ∀ν ∈ R,

F̂n(κi−1)− Fπ(κi−1)− ε1 ≤ F̂n(ν)− Fπ(ν) ≤ F̂n(κ−i )− Fπ(κ−i ) + ε1, (23)

and thus using (19) and (23), ∣∣∣F̂n(ν)− Fπ(ν)
∣∣∣ ≤ ∆n + ε1. (24)

Using (20), we obtain the following property of the upper bound in (24):

∆n + ε1
a.s−→ ε1. (25)

Finally, since (24) holds for ∀ν ∈ R and (25) is valid for any ε1 > 0, making ε1 → 0 gives the
desired result,

sup
ν∈R

∣∣∣F̂n(ν)− Fπ(ν)
∣∣∣ a.s.−→ 0. (26)
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Variance-reduced estimation: It is known that importance-sampling-based estimators are subject
to high variance, which can often be limiting in practice [39]. A popular approach to mitigate variance
is to use weighted importance sampling (WIS), which trades off variance for bias. Leveraging this
approach, we propose the following variance-reduced estimator, F̄n, of Fπ ,

∀ν ∈ R, F̄n(ν) :=
1∑n
j=1 ρj

(
n∑
i=1

ρi

(
1{Gi≤ν}

))
. (27)

In the following theorem, we show that F̄n is a biased estimator of Fπ , though it preserves consistency.
Property 1. Under Assumption 1, F̄n may be biased but is a uniformly consistent estimator of Fπ ,

∀ν ∈ R, ED
[
F̄n(ν)

]
6= Fπ, sup

ν∈R

∣∣∣F̄n(ν)− Fπ(ν)
∣∣∣ a.s.−→ 0.

Proof. Similar to the proof for Theorem 1, we break this proof in two parts, one to establish bias and
the other to establish consistency of F̂n.

Part 1 (Biased): We prove this using a counter-example. Let n = 1 and π 6= β1, so

∀ν ∈ R, ED
[
F̄n(ν)

]
= ED

[
1∑1
j=1 ρj

(
1∑
i=1

ρi1{Gi≤ν}

)]
= ED

[
1{G1≤ν}

]
(a)
=

∫
Hβ1

p(Hβ1 = h)
(
1{g(h)≤ν}

)
dh

= Fβ1(ν)

6= Fπ(ν),

where (a) follows analogously to (9).

Part 2 (Uniform Consistency): First, we will establish pointwise consistency, i.e., for any ν,
F̄n(ν)

a.s.−→ Fπ(ν), and then we will use this to establish uniform consistency, as required.

∀ν ∈ R, F̄n(ν) =
1∑1
j=1 ρj

(
1∑
i=1

ρi1{Gi≤ν}

)

=

 1

n

n∑
j=1

ρj

−1( 1

n

n∑
i=1

ρi1{Gi≤ν}

)
.

Let Xn := 1
n

∑n
j=1 ρj and Yn := 1

n

∑n
i=1 ρi1{Gi≤ν}. Now, as F̄n(ν) is a continuous function of

both Xn and Yn, if both ( lim
n→∞

Xn)−1 and ( lim
n→∞

Yn) exist then using the continuous mapping
theorem [96, Theorem 2.3],

∀ν ∈ R, lim
n→∞

F̄n(ν) =
(

lim
n→∞

Xn

)−1 (
lim
n→∞

Yn

)
. (28)

Notice using Kolmogorov’s strong law of large numbers [78, Theorem 2.3.10 with Proposition 2.3.10]
that the term in the first parentheses will almost surely converge to the expected value of importance
ratios, which equals one [71]. Similarly, we know from (15) that the term in the second parentheses
will converge to Fπ(ν) almost surely. Therefore, both parenthetical terms of (28) exist, and thus

∀ν ∈ R, F̄n(ν)
a.s.−→ (1)−1(Fπ(ν)) = Fπ(ν). (29)

Now, similar to the proof for Theorem 1, combining (29) with arguments from (16) to (26), it can be
observed that

sup
ν∈R

∣∣∣F̄n(ν)− Fπ(ν)
∣∣∣ a.s.−→ 0.
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Theorem 2. Under Assumption 1, for any δ ∈ (0, 1], if
∑K
i=1 δi ≤ δ, then the confidence band

defined by F− and F+ provides guaranteed coverage for Fπ . That is,

Pr
(
∀ν, F−(ν) ≤ Fπ(ν) ≤ F+(ν)

)
≥ 1− δ.

Proof. Let Ai be the event that for the key point κi, CI−(κi, δi) ≤ Fπ(κi) ≤ CI+(κi, δi), for all
i ∈ (1, ...,K). Let superscript c denote a complementary event; then by the union bound, the total
probability of the bounds holding at each key point simultaneously is

Pr
(
∩Ki=1 Ai

)
= 1− Pr

(
(∩Ki=1Ai)

c
)

= 1− Pr
(
∪Ki=1 A

c
i

)
≥ 1−

K∑
i=1

Pr
(
Aci

) (a)

≥ 1− δ, (30)

where (a) holds because the conditions of the theorem assert that the sum of probabilities of the
bounds failing at each key point is at most δ. Therefore, using (30),

Pr (∀i ∈ (1, ...,K), CI−(κi, δi) ≤ Fπ(κi) ≤ CI+(κi, δi)) ≥ 1− δ. (31)

Since by construction, at the key points (κi)
K
i=1, F−(κi) = CI−(κi, δi) and F+(κi) = CI+(κi, δi),

it follows from (31) that

Pr (∀i ∈ (1, ...,K), F−(κi) ≤ Fπ(κi) ≤ F+(κi)) ≥ 1− δ. (32)

Using the monotonically non-decreasing property of a CDF, at any point ν ∈ R such that κi ≤ ν ≤
κi+1, we know that Fπ(κi) ≤ Fπ(ν) ≤ Fπ(κi+1). Therefore, when the bounds at the key points
hold, Fπ at the key points can also be upper and lower bounded: F−(κi) ≤ Fπ(ν) ≤ F+(κi+1).
Therefore, by (32) and the construct in (6), it immediately follows that

Pr
(
∀ν, F−(ν) ≤ Fπ(ν) ≤ F+(ν)

)
≥ 1− δ.

Theorem 3. Under Assumption 1, for any 1− δ confidence band F , the confidence interval defined
by ψ− and ψ+ provides guaranteed coverage for ψ(Fπ). That is,

Pr
(
ψ− ≤ ψ(Fπ) ≤ ψ+

)
≥ 1− δ.

Proof. Recall that the confidence band F is a random variable dependent on the data D. Let EF [·]
represent expectation with respect to F , then repeatedly using the law of total probability,

Pr
(
ψ− ≤ ψ(Fπ) ≤ ψ+

)
= EF

[
Pr
(
ψ− ≤ ψ(Fπ) ≤ ψ+

∣∣∣F)]
= EF

[
Pr
(
ψ− ≤ ψ(Fπ) ≤ ψ+

∣∣∣Fπ ∈ F ,F)Pr
(
Fπ ∈ F

∣∣∣F)
+ Pr

(
ψ− ≤ ψ(Fπ) ≤ ψ+

∣∣∣Fπ 6∈ F ,F)Pr
(
Fπ 6∈ F

∣∣∣F)]
≥ EF

[
Pr
(
ψ− ≤ ψ(Fπ) ≤ ψ+

∣∣∣Fπ ∈ F ,F)Pr
(
Fπ ∈ F

∣∣∣F)]
(a)
= EF

[
Pr
(
Fπ ∈ F

∣∣∣F)]
= Pr

(
Fπ ∈ F

)
(b)

≥ 1− δ,
where (a) follows from that fact that Fπ ∈ F implies ψ− ≤ ψ(Fπ) ≤ ψ+. Step (b) follows from
Theorem 2.

Proof (Alternate). This proof is shorter but requires a theoretical construct of a set of sets of functions.
That is, let F be any set of cumulative distribution functions and F be a set of such sets, such that

F :=
{
F
∣∣∣Fπ ∈ F

}
.
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In other words, F is the set of CDFs which contains the true CDF Fπ, and F is the set of all such
sets F. From Theorem 2, we know that the confidence band F contains Fπ with probability at least
1− δ. Therefore, it also holds that

Pr(F ∈ F ) ≥ 1− δ.

However, the event (F ∈ F ) implies that ψ− ≤ ψ(Fπ) ≤ ψ+ as Fπ is contained in this specific F
used to construct ψ− and ψ+. Therefore, it also holds that

Pr(ψ− ≤ ψ(Fπ) ≤ ψ+) ≥ 1− δ.

Theorem 4. Under Assumptions 1 and 2, for any δ ∈ (0, 1], the confidence band defined by F (2)
−

and F (2)
+ provides guaranteed coverage for F (2)

π . That is,

Pr
(
∀ν, F (2)

− (ν) ≤ F (2)
π (ν) ≤ F (2)

+ (ν)
)
≥ 1− δ.

Proof. From Assumption 2, sup
ν∈R

∣∣∣F (1)
π (ν)− F (2)

π (ν)
∣∣∣ ≤ ε. Or equivalently,

∀ν ∈ R, F (1)
π (ν)− ε ≤ F (2)

π (ν) ≤ F (1)
π (ν) + ε. (33)

Using Theorem 2 for the bound obtained on F (1)
π for the first domain,

Pr
(
∀ν, F (1)

− (ν) ≤ F (1)
π (ν) ≤ F (1)

+ (ν)
)
≥ 1− δ. (34)

Therefore, combining (33) and (34),

Pr
(
∀ν, F (1)

− (ν)− ε ≤ F (2)
π (ν) ≤ F (1)

+ (ν) + ε
)
≥ 1− δ. (35)

Then by the construct in (7), it follows from (35) that

Pr
(
∀ν, F (2)

− (ν) ≤ F (2)
π (ν) ≤ F (2)

+ (ν)
)
≥ 1− δ.

E Extended Discussion for UnO

E.1 Nuances for CDF Inverse and CVaR

For brevity, some nuances for F̂−1n (α) and CVaRαπ(F̂n) were excluded from the main paper. We
discuss them in this section.

As discussed earlier in Remark 1, it is possible that F̂n(ν) > 1 for some ν ∈ R due to the use of
importance weighting. Similarly, it is also possible that F̂n(ν) < 1 for all ν ∈ R. Specifically, if
F̂n(ν) < α for all ν, then it raises the question: how can one obtain an estimate of F−1π (α)? To
resolve this issue, we use the following estimator of F−1π (α) for UnO:

F̂−1n (α) :=

{
min

{
g ∈ (G(i))

n
i=1

∣∣∣F̂n(g) ≥ α
}
, if ∃ g s.t. F̂n(g) ≥ α,

max(G(i))
n
i=1 otherwise.

However, it is known from Theorem 1 that F̂n is a uniformly consistent estimator of Fπ . Therefore,
the edge case that F̂n(ν) < α for all ν cannot occur in the limit as n→∞. Resolving this is required
mostly when the sample size is small.

Regarding CVaR, it is known [1] that when the distribution of a random variable (which is Gπ for
UnO) is continuous, then CVaR can be expressed as,

CVaRαπ(Fπ) = E
[
Gπ
∣∣Gπ ≤ F−1π (α)

]
, (36)
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and thus an off-policy sample estimator for (36) can be constructed as,

CVaRαπ(F̂n) :=
1

α

n∑
i=1

dF̂n(G(i))G(i)1{G(i)≤Qαπ(F̂n)}.

However, for distributions that are not continuous, a more generic definition for CVaR is [13],

CVaRαπ(Fπ) = inf
g

{
g − 1

α
E
[

max
(
0, g −Gπ

)]}
. (37)

We extend the sample estimator by Brown [13] for (37) and use the following off-policy estimator for
UnO:

CVaRαπ(F̂n) := F̂−1n (α)− 1

α

n∑
i=1

dF̂n(G(i))
(

max
(
0, F̂−1n (α)−G(i)

))
E.2 Optimizing Confidence Bands for Tighter Bounds:

Constructing F requires selecting K key points for which CIs are computed. If too many key points
are selected, then each δi has to be a very small positive value so that

∑K
i=1 δi ≤ δ, as required by

Theorem 2. This will make the confidence intervals wide at each key point. In contrast, if too few
key points are selected, then the confidence intervals at the κi’s will be relatively tighter, but this will
not tighten the intervals between the κi’s due to the way F− and F+ are constructed in (5). Further,
the overall tightness of F is also affected by the location of each κi and its respective failure rate δi.
Therefore, to get a tight F , we propose searching for a θ :=

(
K, (κi)

K
i=1, (δi)

K
i=1

)
that minimizes the

area enclosed in F . That is, let ∆i+1 := κi+1 − κi, then the area enclosed in F is

A (θ) :=

K∑
i=0

(CI+(κi+1, δi+1)− CI−(κi, δi)) ∆i+1.

To avoid multiple comparisons [8], we first partition D into Dtrain and Deval. Subsequently, Dtrain is
used to search for θ∗ as follows, and then θ∗ is used with Deval to obtain F .

θ∗ := arg min
θ

A (θ) (38)

s.t. Gmin < κi < Gmax,

K∑
i=1

δi ≤ δ, δi ≥ 0, ∀i ∈ (1, ...,K).

Remark 5. A global optimum of (38) is not required—any feasible θ can be used with Deval to obtain
a confidence band F . Optimization only helps by making the band tighter.

For our experimental results, when searching θ∗ for (38), we keep the number of key points, K, fixed
to log(n), where n is the number of observed trajectory samples in D. To search for the locations
(κi)

K
i=1 and the failure rates (δi)

K
i=1 at each key point, we use the BlackBoxOptim library2 available

in Julia [11]. To perform this optimization, we constructDtrain using 5% of data fromD, and construct
Deval using the rest of the data. Following the idea by Thomas et al. [91], when searching for θ∗
using Dtrain, bounds for the key points (κi)

K
i=1 are obtained as if the number of samples are equal

to the number of samples available in Deval (see Equation 7 in the work by Thomas et al. [91] for
more discussion on this). Instead of using a single split, one could potentially also leverage results by
Romano and DiCiccio [73] to use multiple splits; we leave this for future work.

E.3 Bound Specialization

In (38), θ was searched to minimize the area A (θ) enclosed within F(θ), where F(θ) represents
the CDF band obtained using the parameter θ. This was done without any consideration of the
downstream parameter ψ for which the bounds would be constructed using F(θ). Therefore, the

2https://github.com/robertfeldt/BlackBoxOptim.jl
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band F(θ) is tight overall, but need not be the best possible if only a specific parameter ψ’s bounds
are required using F(θ).

For example, consider obtaining bounds for CVaRαπ . As can be seen from the geometric insight
in Figure 3, bounds for CVaR are mostly dependent on the tightness of F(θ) near the lower tail.
Therefore, if one can obtain F(θ) that is tighter near the lower tail, albeit looser near the upper tail,
that would provide a better bound for CVaR as opposed to a band F(θ) that has uniform tightness
throughout.

To get a tight F(θ) in such cases where there is a single downstream parameter of interest, we propose
searching for a θ :=

(
K, (κi)

K
i=1, (δi)

K
i=1

)
that directly optimizes for the final parameter of interest

instead of the area enclosed in F(θ). For example, if only the lower bound for ψ(Fπ) is required,
then let

ψ−(θ) := inf
F∈F(θ)

ψ(F ).

Next, the optimization using Dtrain can then be modeled as the following,
θ∗ := arg max

θ
ψ−(θ)

s.t. Gmin < κi < Gmax, ∀i ∈ (1, ...,K),

K∑
i=1

δi ≤ δ, δi ≥ 0, ∀i ∈ (1, ...,K),

This would result in θ∗ that when used with Deval can be expected to provide the CDF band which
will yield the highest lower bound for ψ(Fπ).

E.4 Approximate Bounds for Any Parameter using Bootstrap

In Algorithm 1, we provide the pseudo code for obtaining bootstrap-based bounds for any parameter
ψ(Fπ). In Line 1, B datasets (D∗i )Bi=1 are generated from D using resampling, and for each of these
resampled data sets, B (weighted IS-based) CDF estimates (F̄ ∗n,i)

B
i=1 are obtained. In Line 3, sample

estimates (ψ(F̄ ∗n,i))
B
i=1 for the desired parameter ψ(Fπ) are constructed using the B estimated CDFs.

In Line 4, these sample estimates for ψ(Fπ) can be subsequently passed to the bias-corrected and
accelerated (BCa [32]) bootstrap procedure to obtain approximate lower and upper bounds (ψ−, ψ+).

Algorithm 1: Bootstrap Bounds for ψ(Fπ)

1 Input: Dataset D, Confidence level 1− δ
2 Bootstrap B datasets (D∗i )Bi=1 and create (F̄ ∗n,i)

B
i=1

3 Bootstrap estimates (ψ(F̄ ∗n,i))
B
i=1 using (F̄ ∗n,i)

B
i=1

4 Compute (ψ−, ψ+) using BCa((ψ(F̄ ∗n,i))
B
i=1, δ)

5 Return (ψ−, ψ+)

E.5 Extended Discussion of High-Confidence Bounds for Any Parameter

Section 4 of the main paper discussed how high-confidence bounds ψ− and ψ+ can be obtained for
any parameter ψ(Fπ) using the confidence band F . Specifically, in Figure 3, geometric insights
for obtaining the analytical form of the bounds for the mean, quantile, and CVaR were discussed.
Extending that discussion, Figure 6 provides geometric insights for bounding other parameters,
namely variance, inter-quantile ranges, and entropy, in the off-policy setting.

An advantage of having the CDF band F is that it can permit bounding other novel parameters that
might be of interest. While analytical bounds using geometric insights, as discussed for a number of
popular parameters, should also be the first attempt for the desired novel parameter, it may be the case
that such geometric insight cannot be obtained. In such cases, a CDF F can be directly parameterized
using a spline curve, or a piecewise non-decreasing function that is constrained to be within F .
Depending on how rich this parameterization is, it may be feasible to use a black-box optimization
routine and obtain a globally optimal F that minimizes (maximizes) the desired parameter ψ(F ). If
not feasible, an approximate bound can be achieved by using the best found local optima.
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Figure 6: Similar to Figure 3, given a confidence band F , lower and upper bounds for several
other parameters can also be obtained using simple geometric insights. (Left) An upper bound
for the variance can be obtained by observing that variance is maximized when the probability of
events on either extreme are maximized. Therefore, the CDF F ∈ F for such a distribution will
initially follow (from left to right) F+ and then make a horizontal jump (at a specific jump point) to
F−, which it then follows until 1. The variance of the distribution with this CDF, F , will give the
desired upper bound. Analogously, the CDF that initially follows F− and then jumps vertically (at
a specific jump point) to F+, assigns highest probability to events near the mean and thus results
in the lowest variance [74]. (Middle) An upper bound for the inter-quantile range can be obtained
by maximizing the value of upper α2-quantile and subtracting the minimum value for the lower α1-
quantile. This can be obtained by F−1− (α2)−F−1+ (α1). Analogously, a lower bound can be obtained
using max(0, F−1+ (α2) − F−1− (α1)). (Right) An upper bound on the entropy can be obtained by
what Learned-Miller and DeStefano [55] call a “string-tightening” algorithm. That is, if the ends
of a tight string are held at the bottom-left and the upper-right corner of F , and the entire string is
constrained to be within F , then the path of the string corresponds to the F ∈ F that has highest
entropy. In our figure, such an F corresponds to the CDF of the uniform distribution, which is
known to have maximum entropy. Unless some stronger assumptions are made, the lower bound on
differential entropy is typically −∞ if there is any possibility of a point mass.

E.6 Tackling Smooth Non-stationarity using Wild Bootstrap

From Theorem 1, it is known that the proposed estimator F̂n(κ) provides unbiased estimates for
Fπ(κ), even with a single observed trajectory. In the non-stationary setting, let the true underlying
CDF of returns for π in the episode i be F (i)

π (κ), and the estimate of F (i)
π (κ) using the trajectory

observed during the episode i be

F̂ (i)
n (κ) := ρi1{Gi≤κ} ∀i ∈ {1, 2, ..., L}.

Next, the trend of the sequence
(
F̂

(i)
n (κ)

)L
i=1

can be analyzed to forecast F̂ (L+`)
n (κ) for the future

episode L+ ` when the policy π will be executed. Particularly, under Assumption 3, ∃wκ, such that,
∀i ∈ (1, ..., L+ `), F

(i)
π (κ) = φ(i)>wκ. Therefore, using the unbiased estimates

(
F̂

(i)
n (κ)

)L
i=1

of(
F

(i)
π (κ)

)L
i=1

, we propose searching for wκ using least-squares regression. Let X := [1, 2, ...., L]
be the episode numbers in the past, then the predicates Φκ, the targets Yκ, and the corresponding
least-squares solution wκ can be obtained as,

Φκ := [φ(X1), φ(X2), ..., φ(XL)] ∈ RL×d,

Yκ := [F̂ (1)
n (κ), F̂ (2)

n (κ), ..., F̂ (L)
n (κ)] ∈ RL×1,

wκ :=
(
Φ>κ Φκ

)−1
Φ>κ Yκ ∈ Rd×1.

Using wκ, an unbiased estimate of F (L+`)
π (κ) can be obtained as,

F̂ (L+`)
n (κ) := φ(L+ `)>wκ. (39)

The point forecast F̂ (L+`)
n (κ) from (39) can then be combined with Algorithms 1 and 2 presented

by Chandak et al. [16] to obtain wild-bootstrap-based confidence intervals for F (L+`)
π (κ). Once

the confidence intervals are obtained at different key points, (5) can be used to construct an entire
confidence band for F (L+`)

π .
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F Empirical Details

F.1 Domain Details

In this section, we discuss domain details and how π and β were selected for these domains.
The code for the domains, baselines [91, 18], and the proposed UnO estimator can be found at
https://github.com/yashchandak/UnO.

Recommender System: Systems for online recommendation of tutorials, movies, advertisements,
etc., are ubiquitous [86, 88]. In these settings, it may be beneficial to fully characterize a customer’s
experience once the new system/policy is deployed. To abstract such settings, we created a simulated
domain where the user’s interest for a finite set of items is represented using the corresponding item’s
reward.

Using an actor-critic algorithm [83], we find a near-optimal policy π, which we use as the evaluation
policy. Let πrand be a random policy with uniform distribution over the actions (items). Then for an
α = 0.5, we define the behavior policy β(a|s) := απ(a|s) + (1 − α)πrand(a|s) for all states and
actions.

Gridworld: We also consider a standard continuous-state Gridworld with partial observability
(which also makes the domain non-Markovian in the observations), stochastic transitions, and eight
discrete actions corresponding to up, down, left, right, and the four diagonal movements. The
off-policy data was collected using two different behavior policies, β1 and β2, and the evaluation
policies for this domain were obtained similarly as for the recommender system domain discussed
above. Particularly, using α = 0.5, we define β1(a|o) := απ(a|0) + (1− α)πrand(a|o) for all states
and actions. Similarly, β2 was defined using α = 0.75.

Diabetes Treatment: This domain is modeled using an open source implementation [103] of the
U.S. Food and Drug Administration (FDA) approved Type-1 Diabetes Mellitus Simulator (T1DMS)
[59] for the treatment of type-1 diabetes. An episode corresponds to a day, and each step of an
episode corresponds to a minute in an in silico patient’s body and is governed by a continuous time
nonlinear ordinary differential equation (ODE) [59]. In such potentially critical medical applications,
it is important to go beyond just the expected performance and to characterize the risk associated
with it, before deployment.

To control the insulin injection, which is required for regulating the blood glucose level, we use a
policy that controls the parameters of a basal-bolus controller. This controller is based on the amount
of insulin that a person with diabetes is instructed to inject prior to eating a meal [6]:

injection =
current blood glucose− target blood glucose

CF
+

meal size
CR

,

where “current blood glucose” is the estimate of the person’s current blood glucose level, “target
blood glucose” is the desired blood glucose, “meal size” is the estimate of the size of the meal the
patient is about to eat, and CR ∈ [CRmin, CRmax] and CF ∈ [CFmin, CFmax] are two parameters
of the controller that must be tuned based on the body parameters to make the treatment effective.
We designed an RL policy that acts on the discretized space of the parameters, CR and CF , for the
above basal-bolus controller. Behavior and evaluation policies were selected similarly as discussed
for the recommender system domain.

F.2 Extended Discussion on Results for Stationary Settings

The main results for the stationary setting are provided in Figure 4 of the main body. In this section,
we provide some additional discussion on the observed trends for the bounds.

Notice in Figure 4 that UnO-CI bounds for the variance can require up to an order of magnitude
less data compared to the existing bound for the variance [18]. This can be attributed to the fact that
Chandak et al. [18] construct the bounds using E[ρG2]− E[ρG]2, where it can be observed that the
second term depends quadratically on ρ. This makes the variance of that term effectively “doubly
exponential” in the horizon length. This does not happen in the CDF-based approach as the bounds at
any key point κ depend on E[ρ1G<κ]), which does not have any higher powers of ρ.
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Another thing worth noting in Figure 4 is that not only the bounds for different parameters, but even
the upper and lower bounds for the same parameter converge at different rates (especially for smaller
values of n). Therefore, there are two particular trends to observe: (a) how close the bounds are to the
true value at the beginning, and (b) how quickly they improve. Both of these depend on the direction
for which clipping plays a major role and also how the bounds depend on the tails. For example, for
the mean, as the distributions are right skewed (because evaluating policy π is a near-optimal policy),
the bounds on the CDF are clipped more from the lower end (so that F (ν) >= 0 always). Therefore,
since the upper bound on the mean depends on the lower CDF bound (see Figure 3), it starts close
to the estimate itself but the progress actually seems slow because shrinking CDFs bounds at any
specific F (ν) from the lower end does not impact the bound until the point where clipping is not
required anymore.

For variance, the upper bound depends on both the upper bound on the lower tail and the lower bound
on the upper tail (see Figure 6), and these two benefit from clipping the least and also converge the
slowest. In contrast, the lower bound for variance depends on the upper bound on the upper tail
and the lower bound on the lower tail, which are clipped immediately to be below 1 and above 0,
respectively. Appendix B.1 (knowledge of Gmin, Gmax) and Fig 6 provide more intuition on this.
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