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A DERIVATION OF THE LOSS

In this section we derive the objectives given in Eqs. (4) and (9), following a path similar to that
presented in Ho et al. [10]. Let st = (xt,yt

) be the state that combines both the inputs and
observations. We wish to find the set of parameters ✓ which maximise the likelihood given the initial
state, p✓(s0). While a direct evaluation of the likelihood appears intractable,

p✓(s0) =

Z
p✓(s0...T )ds1...T ,

this may be recast in a form which allows for a comparison to be drawn between the forward and
reverse trajectories [31]

p✓(s0) =

Z
p✓(sT )q(s1...T |s0)

TY

t=1

p✓(st�1|t)

q(st|st�1)
ds1...T .

The appeal of introducing the reverse process is that it is tractable when conditioned on the first state
s0, taking a Gaussian form

q(st�1 | st, s0) = N (st�1 | µ̃(st, s0), �̃tI).

Our loss function reflects a lower bound on the negative log likelihood

E[� log p✓(s0)]  Eq(s0:T )


log

q(s1:T | s0)

p✓(s0:T )

�
:= L✓ ,

which may be decomposed into two edge terms and a sum over the intermediate steps, as follows

L✓ = Eq

"
LT +

TX

t=2

Lt�1 + L0

#
,

where

L0 = � log p✓(s0 | s1) ,

Lt�1 = KL(q(st�1 | st, s0)kp✓(st�1 | st)) ,

LT = KL(q(sT | s0)kp✓(sT )) .

(10)

We can write

Lt�1 = Es0,"


1

2�2
kµ̃(st, s0)� µ

✓
(st, t)k

2

�
, (11)

where the mean is a function of the previous and first state

µ̃(st, s0) =

p
↵t(1� ↵̄t�1)

1� ↵̄t

st +

p
↵̄t�1�t

1� ↵̄t

s0

and the variance
�̃t =

1� ↵̄t�1

1� ↵̄t

�t .

It is helpful to consider the relationship between the initial and final states

s0 =
1

p
↵̄t

(st �
p
1� ↵̄t"s),

where "s = ("x, "y), so that we can rewrite the mean as

µ̃(st, "s) =
1

p
↵t

(st �
�t

p
1� ↵̄t

"s) . (12)
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Figure 7: Architecture of the NDP’s neural network noise models ✏x
✓

and ✏y
✓
. Compared to Fig. 3 this

architecture has two outputs, one to predict the corruption on the inputs xt and one to predict the
corruption on the function outputs y

t
. Both output share a lot of weights in the network and only

bifurcate in the last few layers.

Equation 11 can now be expressed as

Lt�1 = Es0,"s


�
2
t

2�2↵t(1� ↵̄t)
k"s � ✏s

✓
k
2

�
. (13)

Finally, since the variance schedule is fixed, and the edge terms are not found to improve empirical
performance, our simplified training objective is given by

L✓ = Ex0,y0,"x,"y,t

h
k"x � ✏x

✓
(xt,yt

, t)k
2
+ k"y � ✏y

✓
(xt,yt

, t)k
2
i
. (14)

So far we have derived the objective of the ‘full’ NDP model (i.e., the model which diffuses both x
and y) given in Eq. (9) of the main paper. In Fig. 7 we detail the architecture for the noise models
✏x
✓
(·) and ✏y

✓
(·).

A.1 DETERMINISTIC INPUT LOCATIONS

In supervised learning the inputs are typically known in advance, which renders the joint generative
distribution p(x0,y0) of less importance than the conditional p(y0 | x0). Therefore, if regression is
the use-case of your NDP model, we recommend not to diffuse the inputs, but instead keeping them
fixed, i.e. x0 = x1 = . . . = xT . Mathematically, this is equivalent to setting "x deterministically to
zero, which renders its corresponding predictor ✏x

✓
(·) unnecessary and thus reduces Eq. (14) to

L✓ = Ex0,y0,"y,t

h
k"y � ✏y

✓
(x0,yt

, t)k
2
i
, (15)

which matches Eq. (4) from the main paper. The noise model ✏y
✓
(·) now acts on the uncorrupted

inputs x0 but still on corrupted observations y
t
=

p
↵̄ty0 +

p
1� ↵̄t"y .

B ALGORITHMS

In this section we list pseudo-code for training and sampling NDPs. The code to handle the special
case of deterministic input locations (Appendix A.1) is marked by ‘OR’.

B.1 TRAINING

The training procedure is concerned with fitting the parameters of the NDP’s noise model neural
network, with outputs ✏x

✓
and ✏y

✓
, such that they can accurately predict the noise that was added to the

corrupted function draws. In each iteration, we create a batch of datasets, each originating from a
Gaussian process draw. We stress that the number of datapoints and even the input dimensionality of
the datasets can vary within the training procedure.
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Algorithm 1 Training

input Input distribution q(x0) and covariance function k , with prior over hyperparameters p .
Noise schedule �t for t 2 {1, 2, . . . , T}. A loss function L (e.g., MSE or MAE).

begin

Precompute �t =
p
1� ↵̄t and ↵̄t =

Q
t

j=1(1� �j).
for i = 1, 2, · · · , Niter do

Sample x0 ⇠ q(x0),  ⇠ p , y0 ⇠ N (0, k (x0,x0) + �
2I).

Sample "x, "y ⇠ N (0, I), and t ⇠ U({1, . . . , T}).
Compute xt =

p
↵̄tx0 + �t"x and y

t
=

p
↵̄ty0 + �t"y .

Update ✓ using gradient r✓

⇥
L("x, ✏x✓ (xt,yt

, t)) + L("y, ✏
y

✓
(xt,yt

, t))
⇤
. Eq. (9)

OR, in the case that we only diffuse on the observations: Eq. (4)
Update ✓ using gradient r✓L("y, ✏

y

✓
(x0,yt

, t)).

B.2 PRIOR AND CONDITIONAL SAMPLING

In practice, the code to sample the prior is a special case of the conditional code with an empty
context dataset. However, here we list them both for the clarity of the exposition.

Algorithm 2 Prior Sampling

input A pretrained NDP noise model ✏x
✓
(·) and ✏y

✓
(·). Precomputed �t and ↵̄t from a given noise

schedule �t.

begin

Sample a random initial state xT and y
T

from N (0, I).
for t = T, T � 1, . . . , 1 do

Sample using backward kernel: Eq. (3)

xt�1

y
t�1

�
⇠ N

⇣
1

p
1� �t

� xt

y
t

�
�
�t

�t


✏x
✓
(xt,yt

, t)

✏y
✓
(xt,yt

, t)

� �
,
�
2
t

�
2
t�1

�tI
⌘
.

OR, in the case that we only diffuse on the observations and the inputs x0 are given:

y
t�1 ⇠ N

� 1
p
1� �t

(y
t
�
�t

�t
✏y
✓
(x0,yt

, t)),
�
2
t

�
2
t�1

�tI
�
.

return (x0,y0)

The conditional sampling algorithm is based on recent advances in image inpainting using diffusion
models [19]. In Algorithm 3, for optimal results, we follow Lugmayr et al. [19] and use a re-sampling
step which mixes the predictions with the context dataset. In all our experiments U is set to 5.
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Algorithm 3 Conditional Sampling

input A context dataset D = {([xc

0]i 2 X , [yc

0]i 2 R)}N
i=1. A pretrained NDP noise model ✏x

✓
(·)

and ✏y
✓
(·). Precomputed �t and ↵̄t from a given noise schedule �t.

begin

Let the augmented states be x̆T = [xc

T
,xT ] and y̆

T
= [yc

T
,y

T
]. Sample them according to

x̆T ⇠ N (0, I) and y̆
T
⇠ N (0, I).

Create a mask m = [0, . . . , 0, 1, . . . , 1] indicating the positions of xc

t
/yc

t
with 0s and xt/yt

with
1s.
for t = T, T � 1, . . . , 1 do

for u = 1, . . . , U do

Sample backward from augmented intermediate state: Eq. (3)

x̆t�1

y̆
t�1

�
⇠ N

⇣
1

p
1� �t

� x̆t

y̆
t

�
�
�t

�t


✏x
✓
(x̆t, y̆t

, t)

✏y
✓
(x̆t, y̆t

, t)

� �
,
�
2
t

�
2
t�1

�tI
⌘

Select unknown part from the augmented state using the mask:

xt�1 = m� x̆t�1 and y
t�1 = m� y̆

t�1

Sample context points (t� 1)-steps forward from context dataset:

xc

t�1
yc

t�1

�
⇠ N

⇣xc

t�1
yc

t�1

�
|
p
↵̄t�1


xc

0
yc

0

�
, �

2
t�1In

⌘

Update the augmented intermediate state using the forward sampled context dataset and the
new intermediate state:

x̆t�1 =


xc

t�1
xt�1

�
and y̆

t�1 =


yc

t�1
y
t�1

�

Diffuse forward by one step

x̆t

y̆
t

�
⇠ N

�p
1� �t


x̆t�1

y̆
t�1

�
,�tI

�

return (x0,y0)

C PROOFS

In this section, we shall formally demonstrate that NDP’s noise model adheres to the symmetries
associated with permutations of the datapoint orderings and the permutations of the input dimensions.
We focus our attention to the full noise model of Fig. 7 because Fig. 3 is a simplification of it in
which we only keep a single output. We start by proving properties of its main building block: the
bi-dimensional attention block. We can then straightforwardly prove the equivariance and invariance
properties that hold for the NDP’s noise model. Before that, we start by setting the notation.

C.1 NOTATION, DEFINITIONS AND PRELIMINARY LEMMAS

Notation. Let s 2 RN⇥D⇥H be a tensor of rank (or dimension) three, where we refer to each
dimension according to the following convention:

shape(s) = [N,D,H].

First dim.: sequence length

Third dim.: embedding

Second dim.: input dimensionality
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In the next definitions we will use NumPy-based indexing and slicing notation. We assume the reader
is familiar with this convention. Most notably, we use a colon (:) to reference every element in a
dimension.
Definition 1. Let ⇧N be the set of all permutations of indices {1, . . . , N}. Let ⇡n 2 ⇧N and
s 2 RN⇥D⇥H . Then (⇡n � s) 2 RN⇥D⇥H denotes a tensor where the ordering of indices in the first
dimension are reshuffled (i.e., permuted) according to ⇡n. We write

⇡n � s = s⇡n(1),⇡n(2),...,⇡n(N); : ; :

Definition 2. Let ⇧D be the set of all permutations of indices {1, . . . , D}. Let ⇡d 2 ⇧D and
s 2 RN⇥D⇥H . Then (⇡d � s) 2 RN⇥D⇥H denotes a tensor where the ordering of indices in the
second dimension are reshuffled (i.e., permuted) according to ⇡d. We write

⇡d � s = s: ;⇡d(1),⇡d(2),...,⇡d(D); :.

Definition 3. A function f : RN⇥D⇥H
! RN⇥D⇥H is equivariant to ⇧ if for any permutation

⇡ 2 ⇧, we have
f(⇡ � s) = ⇡ � f(s).

Definition 4. A function f : RN⇥D⇥H
! RN⇥D⇥H is invariant to ⇧ if for any permutation ⇡ 2 ⇧,

we have
f(⇡ � s) = f(s).

Invariance in layman’s terms means that the output is not affected by a permutation of the inputs.
Lemma 1. The composition of equivariant functions is equivariant.

Proof. Let f and g be equivariant to ⇧, then for all ⇡ 2 ⇧:

(f � g)(⇡ � s) = f(g(⇡ � s)) = f(⇡ � g(s)) = ⇡ � f(g(s)),

which shows that the composition, f � g, is equivariant as well.

Lemma 2. An element-wise operation between equivariant functions remains equivariant.

Proof. Let f and g be equivariant to ⇧, then for all ⇡ 2 ⇧ and an element-wise operation �

(e.g., addition), we have

(f � g)(⇡ � s) = f(⇡ � s)� g(⇡ � s) = (⇡ � f(s))� (⇡ � g(s)) = ⇡ � (f � g).

which shows that the composition, f � g, is equivariant as well.

Lemma 3. A function f : RN⇥D⇥H
! RN⇥D⇥H which applies the same function g to all its rows,

i.e. f : s 7! [g(s1;:;:), g(s2;:;:), . . . , g(sN ;:;:)] with g : RD⇥H
! RD⇥H is equivariant in the first

dimension.

Proof. Follows immediately from the structure of f .

C.2 BI-DIMENSIONAL ATTENTION BLOCK

With the notation, definitions and lemmas in place, we now prove that the bi-dimensional attention
block is equivariant in its first and second dimension, respectively to permutations in the set ⇧N

and ⇧D. We start this section by formally defining the bi-dimensional attention block and its main
components attention components AttnN and AttnD. Finally, in Appendix C.3 we prove the properties
of the noise models ✏x

✓
and ✏y

✓
making use of the results in this section.

Definition 5. Ignoring the batch dimension B, let At : RN⇥D⇥H
! RN⇥D⇥H

; s 7! At(s) be
the bi-dimensional attention block. As illustrated in Fig. 7, it operates on three dimensional tensors
in RN⇥D⇥H and applies attention across the first and second dimension using AttnN and AttnD,
respectively. The final output At(s) is obtained by summing the two attention outputs, before applying
an element-wise non-linearity.

We now proceed by defining the component AttnD and its properties. Subsequently, in Definition 7
we define AttnN and its properties. Finally, we combine both to prove Proposition 1 in the main
paper about the bi-dimensional attention block.
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Definition 6. Let AttnD : RN⇥D⇥H
! RN⇥D⇥H be a self-attention block [35] acting across D.

Let � be a softmax activation function operating on the last dimension of a tensor. Then, AttnD is
defined as

AttnD(s)[n, d, h] =
DX

d0=1

⌃n,d,d0(s)sv
n,d0,h, where ⌃n,d,d0(s) = �

� 1
p
H

X

l

sk
n,d,`

sq
n,d0,`

�

given a linear projection of the inputs s which maps them into keys (k), queries (q) and values (v)

sk
n,d,`

=

X

j

sn,d,jW
k

j,`
, sq

n,d0,` =

X

j

sn,d,jW
q

j,`
, sv

n,d0,h =

X

j

sn,d,jW
v

j,`
.

Proposition 3. AttnD is equivariant to ⇧N and ⇧D (i.e., across sequence length and input dimen-
sionality).

Proof. We prove the equivariance to ⇧N and ⇧D separately. First, from the definition we can see
that AttnD is a function that acts on each element row of s separately. Thus, by Lemma 3, AttnD is
equivariant to ⇧N .

Next, we want to prove equivariance to ⇧D. We want to show that for all ⇡d 2 ⇧D:

AttnD(⇡d � s) = ⇡d � AttnD(s).

The self-attention mechanism consists of a matrix multiplication of the attention matrix ⌃ and the
projected inputs. We start by showing that the attention matrix is equivariant to permutations in ⇧D

⌃n,d,d0(⇡d � s) = �

⇣
1

p
H

X

`

�
⇡d � s

�k
n,d,`

�
⇡d � s

�q
n,d,`

⌘

= �

⇣
1

p
H

X

`,j

�
sn,⇡d(d),jW

k

j,`

��
sn,⇡d(d0),jW

q

j,`

�⌘

= ⌃n,⇡d(d),⇡d(d0)(s)

It remains to show that the final matrix multiplication step restores the row-equivariance

AttnD(⇡d � s) =
X

d0

⌃n,d,d0(⇡d � s)
�
⇡d � s

�v
n,d0,h

=

X

d0

⌃n,⇡d(d),⇡d(d0)(s)s
v

n,⇡d(d0),h

=

X

d0

⌃n,⇡d(d),d0(s)sv
n,d0,h = ⇡d � AttnD(s).

This concludes the proof.

We continue by defining and proving the properties of the second main component of the bi-
dimensional attention block: AttnN .
Definition 7. Let AttnN : RN⇥D⇥H

! RN⇥D⇥H be a self-attention block [35] acting across N
(i.e. the sequence length). Let � be a softmax activation function operating on the last dimension of a
tensor. Then AttnN is defined as

AttnN (s)[n, d, h] =
NX

n0=1

⌃n,d,n0(s)sv
n0,d,h, where ⌃n,d,n0(s) = �

� 1
p
H

X

l

sk
n,d,`

sq
n0,d,`

�

given a linear projection of the inputs s which maps them into keys (k), queries (q) and values (v)

sk
n,d,`

=

X

j

sn,d,jW
k

j,`
, sq

n0,d,` =

X

j

sn0,d,jW
q

j,`
, sv

n0,d,h =

X

j

sn0,d,jW
v

j,`
.

Proposition 4. AttnN is equivariant to ⇧N and ⇧D (i.e., across sequence length and input dimen-
sionality).
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Proof. Follows directly from Proposition 3 after transposing the first and second dimension of the
input.

Finally, we have the necessary ingredients to prove Proposition 1 from the main paper.
Proposition 5. The bi-dimensional attention block At is equivariant to ⇧D and ⇧N .

Proof. The bi-dimensional attention block simply adds the output of AttnD and AttnN , followed
by an element-wise non-linearity. Therefore, as a direct application of Lemma 2 the complete
bi-dimensional attention block remains equivariant to ⇧N and ⇧D.

C.3 NDP NOISE MODEL

By building on the equivariant properties of the bi-dimensional attention block, we prove the equivari-
ance and invariance of the NDP’s noise models, denoted by ✏x

✓
and ✏y

✓
, respectively. We refer to Fig. 7

for their definition. In short, ✏x
✓

consists of adding the output of several bi-dimensional attention
blocks followed by dense layers operating on the last dimension. Similarly, ✏y

✓
is constructed by

summing the bi-dimensional attention blocks, but is followed by a summation over D before applying
a final dense layer.

The following propositions hold:
Proposition 6. The function ✏x

✓
is equivariant to ⇧D and ⇧N .

Proof. The output ✏x
✓

is formed by element-wise summing the output of bi-dimensional attention
layers. Directly applying Lemma 1 and Proposition 5 completes the proof.

Proposition 7. The function ✏y
✓

is equivariant to ⇧N .

Proof. The summation over D does not affect the equivariance over ⇧N from the bi-dimensional
attention blocks as it can be cast as a row-wise operation.

Proposition 8. The function ✏y
✓

is invariant to ⇧D.

Proof. Follows from the equivariance of the bi-dimensional blocks and [41, Thm. 7].

C.4 CONSISTENCY

Consistency2 is achieved when marginalising over the conditional distribution of a random variable
y
0, we recover its original distribution.

p(y
0
) =

Z
p(y

0
|y

1
)p(y

1
)dy1. (16)

The reverse process of a diffusion model begins at T in a state of white noise, and progresses towards
step 0. The features represented at T , denoted y

T
:= (y

0
T
, y

1
T
) (for simplicity in this proof we only

pick two), are by construction a fully consistent stochastic process. We have p(y
T
) ⇠ N (0, I) and

the consistency is trivially satisfied.

The progression from step t to t � 1, involves using a deep neural network to estimate the noise
present, and subtracting that noise from the signal. This procedure leaves us with a new probability
distribution. Specifically, following Ho et al. [10], this is constructed as follows:

p✓(yt�1 | y
t
, t) := N

⇣
y
t�1; µ✓(yt

),�
2
t
I
⌘
. (17)

2see also https://yanndubs.github.io/Neural-Process-Family/text/CNPF.html
for a concise overview.
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where the new mean function µ(y
t
) is a deterministic function, controlled by a neural network, and

y
t

represents the data vector at step t. Notice the conditional independence of y0
t�1 and y

1
t�1 given

y
t

in the reverse process

N
�
y
0
t�1;µ

0
✓
(


y
0
t

y
1
t

�
),�

2
t

�
· N
�
y
1
t�1;µ

1
✓
(


y
0
t

y
1
t

�
),�

2
t

�
, (18)

where we use µ
0
✓
(·) and µ

1
✓
(·) to select the first and second entry of the neural network output.

Starting from the RHS of Eq. (16)

Z
p(y

0
t�1 | y

1
t�1) p(y

1
t�1)dy

1
t�1 (19)

=

Z

y
1
t�1

 Z

yt

p(y
t
)p(y

0
t�1 | y

1
t�1,yt

)dy
t

!
p(y

1
t�1)dy

1
t�1 (20)

=

Z

y
1
t�1

 Z

yt

p(y
t
)p(y

0
t�1 | y

t
)dy

t

!
p(y

1
t�1)dy

1
t�1 (21)

=

Z

yt

p(y
t
)p(y

0
t�1 | y

t
)dy

t
= p(y

0
t�1). (22)

In Eq. (20) we marginalised over the previous function values y
t
. This allowed us to make use of the

conditional independence between y
0
t�1 and y

1
t�1 given y

t
in Eq. (21). Finally, the random variable

y
1
t�1 integrates to 1, which leads to the LHS of Eq. (16). This argument can be repeated for each

step, until we reach y0. The NDP therefore offers samples drawn from a consistent set of conditional
distributions.

Summarising Consistency of the NDP samples is ensured because the neural network plays no role
in the conditioning step. It is therefore infeasible for it to be responsible for generating inconsistent
draws. By contrast, if we used a generic neural network to generate the conditional probability
distributions itself, there is no such guarantee to this consistency.

D ADDITIONAL INFORMATION ON THE EXPERIMENTS

D.1 EXPERIMENTAL SETUP

Here we provide more detailed information describing how the numerical experiments were con-
ducted.

All experiments share the same model architecture illustrated in Figure 3, there are however a number
of model parameters that must be chosen. An L1 (i.e., Mean Absolute Error, MAE) loss function
was used throughout. We use five bi-dimensional attention blocks, each consisting of multi-head
self-attention blocks [35] containing a representation dimensionality of H = 64 and 8 heads. Each
experiment used either 500 or 1, 000 diffusion steps, where we find larger values produce more
accurate samples at the expense of computation time. Following Nichol et al. [24] we use a cosine-
based scheduling of �t during training. The Adam optimiser is used throughout. Our learning
rate follows a cosine-decay function, with a 20 epochs linear learning rate warm-up to a maximum
learning rate of ⌘ = 0.001 before decaying. All NDP models were trained for 250 epochs with the
exception of the lengthscale marginalisation experiment, which was trained for 500 epochs. Each
epoch contained 4096 example training (y0,x0) pairs. Training data was provided in batches of 32,
with each batch containing data with the same kernel hyperparameters but different realisations of
prior GP samples. The complete configuration for each experiment is given in Table 2

Experiments were conducted on a 32-core machine and utilised a single Tesla V100-PCIE-32GB
GPU. Training of each model used in the experiments takes no longer than 30 minutes.

Time embedding The diffusion step t is a crucial input of the neural network noise estimator as
the model needs to be able to differentiate between noise added at the start or the end of the process.
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Table 2: Experiment configuration and training time. Bold values indicate a deviation from the
fiducial values used in the regression experiments.

Experiment Regression Hyperparameter Step High dim 1D opt
marginalisation BO

Epochs 250 500 250 250 250
Total samples seen 1024k 2048k 1024k 1024k 1024k
Batch size 32 32 32 32 32
Loss L1 L1 L1 L1 L1
LR decay cosine cosine cosine cosine cosine
LR init 0.001 0.001 0.001 0.001 0.001

LR warmup epochs 20 20 20 20 20
Num blocks 5 5 5 5 5
Representation dim (H) 64 64 64 64 64
Num heads 8 8 8 8 8
Num timesteps (T) 500 1000 1000 500 2000

Num data per batch (N) 100 100 100 256 100
Deterministic inputs True True True True False

Training time (mins) 17 33 16 21 16

Following Vaswani et al. [35] we use a cyclic 128-dimensional encoding vector for each step

t 7! [sin(10
0⇥4
63 t), sin(10

1⇥4
63 t), . . . , sin(10

64⇥4
63 t), cos(10

0⇥4
63 t), . . . , cos(10

64⇥4
63 t)] 2 R128

Data In our experiments, we provide training data to the models in the form of unique prior
samples from a ground truth GP model. The input for each prior sample, x0, may be randomly
sampled or deterministically spaced across the relevant input range. For all but the last experiment
we deterministically space x0 during training and inference in the hypercube [�1, 1]

D, where D

is the dimensionality of the input. For D  2 the spacing of points is is a simple linear spacing
(a grid for D = 2), in D > 2 we sample x0 according to a Halton sequence in the hypercube.
The corresponding output y0 is sampled from a GP prior y0|x0 ⇠ N

�
0, k (x0,x0) + �

2
�

where
the kernel is a stationary kernel (Matern 3

2 , Matérn-5/2 or exponentiated quadratic, indicated in
each experiment) with hyperparameters  = [`,�2

k
] corresponding to the automatic relevance

determination (ARD) lengthscales and kernel variance respectively. Kernel hyperparameters are fixed
for all experiments except for the hyperparameter marginalisation experiment where we allow the
model to observe data from a variety of different lengthscales during training. The noise variance is
fixed to �2

= 10
�6 and the kernel variance is fixed to �2

k
= 1.0 throughout.

D.2 ONE-DIMENSIONAL CONDITIONAL SAMPLES

In the experiment, we use GPflow [34] for the GP regression model using a kernel that matches
the training data: a squared exponential with lengthscale set to 0.2. The other baseline, namely the
Attentive Latent NP, is a pretrained model which was trained on a dataset with the same configuration.
The ALNP model originates from the reference implementation of Dubois et al. [3]. Figure 8 shows
additional conditional samples.

D.3 HIGH-DIMENSIONAL BAYESIAN OPTIMISATION

In this experiment, we perform Bayesian optimisation on the Hartmann 3D and 6D objectives.
We re-scale, without loss of generality, the inputs of the objectives such that the search space is
[�1, 1]

D for both. We refer to https://www.sfu.ca/~ssurjano/hart3.html and
https://www.sfu.ca/~ssurjano/hart6.html for more details about Hartmann 3D and
6D, respectively.
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(a) GP Regression

(b) Attentive Latent Neural Process

(c) Neural Diffusion Process (ours)

Figure 8: 1D regression: The blue curves are posterior samples from different probabilistic models.
We also plot the empirical mean and two standard deviations of the samples in black. From left to
right we increase the number of data points (black dots) and notice how the process gets closer to the
true underlying function.

The baseline models, GPR and Random, originate from Trieste [1] —a TensorFlow/GPflow based
Bayesian Optimisation Python package. We compare them against two NDP models: Fixed and
Marginalised. The Fixed NDP model is trained on Matérn-5/2 samples with a fixed lengthscale set to
0.5 along all dimensions. The Marginalised NDP model is trained on Matérn-5/2 samples originating
from different lengthscales, where the lengthscales are drawn from a log-Normal prior logN (0, 1).

D.4 COMPARISON TO NEURAL PROCESSES

Neural processes [8; 7] use an encoder and decoder architecture. The encoder is a neural network
which operates on a dataset D = (X,Y ) to output a dataset representation. Using this representation,
a decoder predicts the function output at a test location. For a NP this is given by

p(y⇤
| x⇤

,D) =

Y

n

N (y
⇤
n
| decµ(x

⇤
n
, enc(D)), dec�2(x

⇤
, enc(D)))

A latent NP works similarly but parameterises a latent variable z, over which we marginalise to make
a prediction:

p(y⇤
| x⇤

,D) =

Z

z

Y

n

N (y
⇤
n
| decµ(x

⇤
n
, z), dec�2(x

⇤
n
, z)) p(z | enc(D)) dz.

An attentive Neural processes (ANPs) [12] uses an attention mechanism [35] to parameterise the
encoder and decoder networks. While ANPs perform better than plain (L)NPs, they suffer from two
key weaknesses. Firstly, their predictions result in jittery functions as a result of shifting attention
patterns. This behaviour is well-known and can also be observed in the top row of Fig. 10 in the
supplementary. Secondly, ANP do not encode dimensionality invariance in their architecture, which
we show is critical for tabular data applications.

Figure 10 shows example fits for all the different models. We used https://github.com/wes
selb/neuralprocesses for the NP baselines and evaluation framework.

D.5 GLOBAL OPTIMISATION

E CODE

Full source code will be made publicly available upon acceptance.
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Figure 9: Global optimisation by diffusing the input locations. We condition the model at each
step on a target y⇤ value (dashed line), and use the NDP to sample from p(x

⇤
| y

⇤
,D). The panels

in the upper row illustrate the progression of the optimisation. Bottom row shows the distribution
p(x

⇤
| y

⇤
,D) and the red triangles mark the selected query point.

PREPROCESSING METHOD

The NDP’s noise model starts by rearranging the inputs xt 2 RN⇥D and y
t
2 RN to be of shape

[N, D, 2], as highlited in the red box in Figs. 3 and 7. Below we show the code which is
responsible for this preprocessing:

import tensorflow as tf

def preprocess(x: tf.Tensor, y: tf.Tensor) -> tf.Tensor:
"""
Transform inputs to split out the x dimensions for dimension-
agnostic processing.

:param x: [B, N, D]
:param y: [B, N, 1]
:return: [B, N, D, 2]
"""
D = tf.shape(x)[-1]
x = tf.expand_dims(x, axis=-1)
y = tf.repeat(tf.expand_dims(y, axis=-1), D, axis=2)
return tf.concat([x, y], axis=-1)
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Squared Exponential Matérn-5/2

Figure 10: Model predictions on 1D datasets. Black dots: context points (conditioning points). Red
crosses: Test/target points. Blue lines: sampels of the model, mean and 2 std. dev. Orange: mean and
2 std dev from the true underlying GP model.
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