
A Empirical Application: Dataset and Code
From Febrero-Bande et al. [2022]: “a bitcoin address is a unique string of number and letters stored
in the bitcoin’s blockchain that can be the recipient or sender of bitcoins. A bitcoin transaction
can have multiple addresses as inputs and outputs. One could think the address as the number
of a bank account, but with some very distinct properties as public visibility of balance and all
transactions, anonymity, cannot hold negative quantities of bitcoins (debt), and each user in this
market usually has a large number of addresses. The user here, though, is not an actual individual,
but a company/website/organization that typically holds multiple addresses; we refer to it as “entity”.
The balance of an address is the amount (possibly zero) of bitcoins in that address at a given time.
The entity that a given address belongs to is usually unknown but some companies make some of
its addresses public for various reasons. Based on this public information, one can identify more
addresses as belonging to this same entity if they were inputs to the same transaction with one or more
inputs from this entity.”
The data used in our classification model is the cumulative credits of the first 3000 hours of the address.
In Figure 2 below we show some example of balances over time of some addresses. The dataset and
the R code used in this paper can be found here.

0

500

1000

time

va
lu

es

Figure 2: Example of cumulative credits for six different addresses across 501 data points. In red,
addresses associated with criminal activity, in blue, addresses associated with noncriminal activities.

B Functional Gradient for the Deconvolution Problem
Remember that the operator A is given by

A[f](x) =

∫
W
k(x−w)f(w)dµ(w). (8)

Hence,

⟨A[f], g⟩L2(X) = E[A[f](X)g(X)]

= E
[(∫

W
k(X−w)f(w)dµ(w)

)
g(X)

]
=

∫
W
E[k(X−w)g(X)]f(w)dµ(w)

= ⟨f,A∗[g]⟩L2(W),

where
A∗[g](w) = E[k(X−w)g(X)].

Therefore, we have Φ(x,w) = k(x−w), and we find, as in Eq. (5),

ui(w) = k(xi −w)∂2ℓ(yi, A[ĝi−1](xi)).

We highlight here the need to use each observation only once in order to compute the stochastic
gradient so we can have precisely n steps for the SGD-SIP/ML-SGD algorithm. In this case, the
samples can be used to provide unbiased estimators for the gradient of the risk function under the
populational distribution.

14

https://github.com/yuriresende/sgd_ip

C Numerical Studies: Synthetic Data
In this section we present the numerical studies of our proposed algorithms with standard benchmarks
from the literature. We studied both the Functional Linear Regression problem and the Deconvolution
problem. We remind the reader that the same framework can also be used to solve different types of
inverse problems under a statistical framework, such as ODEs and PDEs.

C.1 Functional Linear Regression
Recall Section 5 where for the FLR problem our goal is to recover f◦ when we have access to
observations of the form

Y = A[f◦](X) + ϵ,

where the operator A is given by

A[f](x) =

∫ T

0

f(s)x(s)ds. (9)

Recall the data generating process described in 5.1. We set W = [0, 1], f◦(w) = sin(4πw), and X
simulated accordingly a Brownian motion in [0, 1]. We also consider a noise-signal ratio of 0.2. Next,
we study also the case where f◦ oscillates between 1,−1 in the points w = 0.25, 0.5, 0.75, 1. We
generate 3000 samples of X and Y with the integral defining the operator A approximated by a finite
sum of 1000 points in [0, 1]. For the observed data used in the algorithm procedure, we consider a
coarser grid where and each functional sample is observed at only 100 equally-spaced times. For the
ML-SGD algorithm, we used smoothing splines as base learners. We compare our algorithm with
the Landweber method, which is a Gradient Descent version for deterministic Inverse Problems and
Functional Penalized Linear Regression (FPLR). For the ML-SGD, SGD and Landweber method,
the step sizes were taken fixed to be O(1/

√
N) (which satisfy the requirements discussed after 4.9).

We simulate the data generating process 10 times in order to compute the metrics performance. We
compare the methods in terms of Mean Square Error of the recovered function f◦.
In Figure 3 we present the Mean Squared Error and with Error Bars representing 2 standard deviations.
In this case, we can see that PFLR with different specifications out-perform our propposed algorithms,
which achieves similar performance as Landweber iterations. It is important to note here, that while
PFLR methods are tailored for this type of problems, ours, as well as Landweber iterations, are not.
Nevertheless, we can see in Figure 1a that essentially all the algorithms are capable of recovering the
true underlying function f◦.
In Figure 4 we have a similar setup in a harder problem, where the underlying f◦ is not as smooth as
before. In this case, the advantage of the PFLR reduces and the performance of all the methods are
very similar. It is important to note that our approach makes use of only one sample at each iteration of
our proposed algorithms. One can improve the stability and convergence of the estimated algorithms
by simply using more samples at each time. In case one uses all the samples in each iteration (such
as what is commonly done in Landweber iteration or boosting procedures in standard regression
problems), Theorem 4.9 cannot be applied directly but empirically the methods perform well. We
illustrate this approach in Figure 5, where we make use of all the samples in every iteration of our
algorithms.

0.01

0.02

Landweber MLSGD−Spl−k10 MLSGD−Spl−k20 MLSGD−Tree−30 PFLR_k10 PFLR_k15 PFLR_k20 SGD
model

M
S

E

model

Landweber
MLSGD−Spl−k10
MLSGD−Spl−k20
MLSGD−Tree−30
PFLR_k10
PFLR_k15
PFLR_k20
SGD

Figure 3: MSE with 2 standard deviations error bars for 10 simulations with f as the sine function.
Y-axis in square-root scale.

15

0.00

0.05

0.10

0.15

0.20

Landweber MLSGD−Spl−k10 MLSGD−Spl−k20 MLSGD−Tree−30 PFLR_k10 PFLR_k15 PFLR_k20 SGD
model

M
S

E

model

Landweber
MLSGD−Spl−k10
MLSGD−Spl−k20
MLSGD−Tree−30
PFLR_k10
PFLR_k15
PFLR_k20
SGD

Figure 4: MSE with 2 standard deviations error bars for 10 simulations with f as step function.

0.00

0.05

0.10

0.15

Landweber MLSGD−Spl−k10 MLSGD−Spl−k20 MLSGD−Tree−30 PFLR_k10 PFLR_k15 PFLR_k20 SGD
model

M
S

E

model

Landweber
MLSGD−Spl−k10
MLSGD−Spl−k20
MLSGD−Tree−30
PFLR_k10
PFLR_k15
PFLR_k20
SGD

Figure 5: MSE with 2 standard deviations error bars for 10 simulations with f as step function and
using all samples for the gradient computation.

C.2 Deconvolution
For the deconvolution problem we examine the following numerical exercise. We take two choices of
functional parameters for Eq. (8), as a peak function:

f(w) = e−w2

. (10)

We consider the kernel to be given by

k(z) = 1{z≥0}

and the following parameters for the data generating process. First we discretize the space W =
[−10, 10] with increments h = 0.01. We use the same for the space X = [−10, 10]. Next, we use
the discretized space to generate the true values A[f] where we approximate the integral by a finite
sum. The second step is to generate the random observations. For that, we consider a coarser grid
for X, with grid hobs = 0.1, i.e. 10 times less information than the simulation used to generate the
true observations. This reproduces the fact that in practice one cannot hope to observe the functional
data over all points. Moreover, when computing the operator A in our algorithm, we again consider a
coarser grid for W, with grid hobs = 0.1. We then add iid noise terms N(0, 2) to the observations
A[f] collected from the coarse grid. For the ML-SGD algorithm (Algorithm 2), we used smooth
splines with 5 degrees of freedom as H in order to estimate the stochastic gradients. We compare our
algorithms with the well-known landweber iteration, which resambles the standard Gradient Descent
algorithm when ignoring noise and using all the samples available in all the iterations. We start with
f0(z) = 0 in all the algorithms.
In Figure 6a we can see that ML-SGD outputs a smooth estimator for the functional parameter f◦

while the other two methods tends to overfit the data. Nevertheless, this apprently instability seems to

16

allow both the SGD-SIP and Landweber to better estimate the function in the peak, which compensate
in the Mean Square Error estimator despite the increase in the volatility of the estimator. In Figure 6b
we present the Mean Squared Errors and Error Bars with two standard deviations.

0.00

0.25

0.50

0.75

1.00

−10 −5 0 5 10

model

Landweber
MLSGD−Spl−k15
MLSGD−Spl−k20
MLSGD−Tree−30
SGD

(a)

0.01

0.02

0.03

Landweber MLSGD−Spl−k15 MLSGD−Spl−k20 MLSGD−Tree−30 SGD
model

M
S

E

model

Landweber
MLSGD−Spl−k15
MLSGD−Spl−k20
MLSGD−Tree−30
SGD

(b)

Figure 6: Numerical results for the deconvolution problem. In (a) we have an example of the fitted
functions for one simulation. In (b) we have the MSE with error bars representing two standard-
deviations.

D Proof of Theorem 4.9
Proof. First, it is straightforward to check that RA is convex in F : if f, g ∈ F and λ ∈ [0, 1], then

RA(λf + (1− λ)g) = E[ℓ(Y, A[λf + (1− λ)g](X))]

= E[ℓ(Y, λA[f](X) + (1− λ)A[g](X))]

≤ E[λℓ(Y, A[f](X))] + E[(1− λ)ℓ(Y, A[g](X))]

= λRA(f) + (1− λ)RA(g).

For simplicity of notation we will denote the norm and inner product in L2(W) by ∥ · ∥ and ⟨·, ·⟩.
By the Algorithm 1 procedure, we have that

1

2
∥ĝi − f◦∥2 =

1

2
∥ĝi−1 − αiui − f◦∥2

=
1

2
∥ĝi−1 − f◦∥2 − αi⟨ui, ĝi−1 − f◦⟩+ α2

i

2
∥ui∥2

=
1

2
∥ĝi−1 − f◦∥2 − αi⟨ui −∇RA(ĝi−1), ĝi−1 − f◦⟩+ α2

i

2
∥ui∥2 − αi⟨∇RA(ĝi−1), ĝi−1 − f◦⟩

≤ 1

2
∥ĝi−1 − f◦∥2 − αi⟨ui −∇RA(ĝi−1), ĝi−1 − f◦⟩+ α2

i

2
∥ui∥2 − αi(RA(ĝi−1)−RA(f

◦)),

where the last inequality follows from convexity of the loss function (Assumption 2). Rearranging
terms we get

RA(ĝi−1)−RA(f
◦) ≤ 1

2αi

(
∥ĝi−1 − f◦∥2 − ∥ĝi − f◦∥

)
+
αi

2
∥ui∥2−⟨ui−∇RA(ĝi−1), ĝi−1−f◦⟩.

Summing over i leads to
n∑

i=1

RA(ĝi−1)−RA(f
◦) ≤

n∑
i=1

1

2αi

(
∥ĝi−1 − f◦∥2 − ∥ĝi − f◦∥2

)
+

n∑
i=1

αi

2
∥ui∥2

−
n∑

i=1

⟨ui −∇RA(ĝi−1), ĝi−1 − f◦⟩.

17

For the first term, by Assumption 5, we find
n∑

i=1

1

2αi

(
∥ĝi−1 − f◦∥2 − ∥ĝi − f◦∥2

)
=

n∑
i=2

(
1

2αi
− 1

2αi−1

)
∥ĝi−1 − f◦∥2

+
1

2α1
∥ĝ0 − f◦∥2 − 1

2αn
∥ĝn − f◦∥2

≤
n∑

i=2

(
1

2αi
− 1

2αi−1

)
D2 +

1

2α1
D2 =

D2

2αn
,

since ĝi ∈ F for all i = 1, . . . , n.
To bound the second term, notice that4

∥ui∥2 = ∥Φ(xi, ·)∂2ℓ(yi, A[ĝi−1](xi))∥2 ≤ ∥Φ(xi, ·)∥2∥∂2ℓ(yi, A[ĝi−1](xi))∥2

≤ 2C̃∥Φ(xi, ·)∥2 · (∥yi∥2 + ∥A[ĝi−1](xi)∥2).

Hence, if we take C = supx∈X ∥Φ(x, ·)∥2 < +∞, we find5

E[∥ui∥2] ≤ 2CE[(∥Y∥2 + ∥A[ĝi−1](X)∥2)] = 2C(E[∥Y∥2] + ∥A[ĝi−1∥2L2(X))

≤ 2C(E[∥Y∥2] + ∥A∥2∥ĝi−1∥2L2(X)) ≤ 2C(E[∥Y∥2] + ∥A∥2D2).

Finally, for the third term, note that, after taking expectation, the tower property and the fact that ui is
an unbiased estimator of the gradient of RA (see Eq. (5)) give that

E[⟨ui −∇RA(ĝi−1), ĝi−1 − f◦⟩] = E[E[⟨ui −∇RA(ĝi−1), ĝi−1 − f◦⟩ | Di−1]]

= E[⟨E[ui −∇RA(ĝi−1) | Di−1],E[ĝi−1 − f◦ | Di−1]⟩]
= E[⟨E[ui | Di−1]−∇RA(ĝi−1), ĝi−1 − f◦⟩] = 0.

where Di−1 denotes the σ-algebra generated by the data {xk,yk}i−1
k=1.Again, by convexity of the risk

function, RA(f̂n) ≤ 1
n

∑n
i=1 RA(ĝi). Therefore,

E
[
RA(f̂n)−RA(f

◦)
]
≤ D2

2nαn
+

1

2n

n∑
i=1

αiE[∥ui∥2] ≤
D2

2nαn
+
C(E[|Y|2] + ∥A∥2D2)

n

n∑
i=1

αi,

and the theorem is proved.

4In the computations below we use the fact that the point-to-point loss function ordinarily has Lipschitz
gradients which implies at most linear growth. The two examples analyzed in this paper trivially satisfies this
bound.

5Abusing the notation and defining C as C C̃.

18

	Empirical Application: Dataset and Code
	Functional Gradient for the Deconvolution Problem
	Numerical Studies: Synthetic Data
	Functional Linear Regression
	Deconvolution

	Proof of Theorem 4.9

