
Appendix1

A. limitations2

Observation model Our algorithm can show differences in performance depending on how we set3

up the observation model. Our algorithm approximates the belief through a particle filter, and the4

weight of the particles is proportional to the observation likelihood. If an inappropriate observation5

model is set, the updated belief will not properly reflect this information even if the information6

gathering action is taken. Most failures in fetch domain occurred because there was no particle7

similar to the true state. For example, We set the Gaussian model using Chamfer distance as the8

observation model in fetching domains, as described in section 4. This model can sometimes be9

calculated to have a small distance between the actual and other class objects when parts of objects10

in different classes are similar to each other. This was the main reason for the task to fail when we set11

the number of particles to small. You could try to deal with this problem by increasing the number12

of particles, but this is not practical because it increases planning time. Therefore, in order for the13

algorithm to work effectively with a small particle, it is necessary to carefully set the observation14

space and observation model so that the observation obtained through the information gathering15

action can effectively reflect information on the true state.16

Belief generator Our algorithm is difficult to deal with unseen objects in fetching domain due to17

the limitations of the belief generator. As far as we know, there is no perception algorithm yet that18

can predict the shape and pose of all objects present in the scene through one image obtained from19

a fixed view and propose particles with reflecting uncertainty by occlusion. Therefore, we limited20

the classes of possible objects in the domain and assumed that if we could know the class of each21

object, we could know the shape of the object, in order to construct a generating pipeline that can22

operate by combining existing algorithms, such as Mask R-CNN [1] with dropout sampling [2] and23

PointNet [3]-based pose estimator.24

Planning time As you can see in the supplementary video, our algorithm can make a plan with less25

time than unguided search. However, it is not enough to apply it as a real-time yet. Our algorithm26

performed fairly well with a small number of particles through guided search, but more particles are27

needed for a higher success rate. Our algorithm based on serial tree search has a trade-off between28

planning time and performance improvement due to an increase in the number of particles. In [4],29

they proposed an algorithm that parallelly performs MCTS. In [5], they proposed an algorithm that30

operates at a real-time level in combination with this algorithm and a physical simulator that is31

advantageous for parallel processing. If we can also adapt these methods to tree search in parallel,32

we expect to effectively reduce the planning time of our algorithm.33

B. Implementation details for training34

B.1. Architecture of networks35

Backbone transformer36

• Light-dark room domain37

– Number of layers: 338

– Number of attention heads: 139

– Embedding dimension: 12840

– Input encoding41

* Observation input dimension: 242

* Action input dimension: 243

– Nonlinearity function: GeLU44

– Sequence length: 6145

1

• Fetching domains46

– Number of layers: 347

– Number of attention heads: 248

– Embedding dimension: 25649

– Input encoding50

* Observation input dimension:51

· RGB-D: 64×452

· Grasp detection identifier: 153

* Image encoder:54

· Number of convolutional layers: 455

· Number of max pool layers: 456

· Kernel size: 357

· Stride: 158

· Dimension of feature maps: (3, 16, 32, 64, 128)59

* Action input dimension: 860

– Nonlinearity function: GeLU61

– Sequence length: 1362

Header of value networks63

• Light-dark domain64

– Input dimension: 12865

– Output dimension: 166

– Number of layers: 167

• Fetching domains68

– Input dimension: 25669

– Output dimension: 170

– Number of layers: 271

– Hidden dimension: 25672

Header of policy network73

• Light-dark domain74

– Input dimension: 275

– Output dimension: 276

– Condition dimension: 12877

– Latent dimension: 6478

– Number of encoder layers: 379

– Number of decoder layers: 380

– Beta81

* Light-dark82

· Imitation: 0.2583

· Preference: 0.584

* Fetching domains85

· Imitation: 0.2586

· Preference: 0.587

• Fetching domain88

– Input dimension: 389

2

– Output dimension: 390

– Condition dimension: 25691

– Latent dimension: 6492

– Number of encoder layers: 493

– Number of decoder layers: 494

– Beta95

* Light-dark96

· Imitation: 0.2597

· Preference: 0.598

* Fetching domains99

· Imitation: 0.25100

· Preference: 0.5101

B.2. Hyperparameters102

• Light-dark domain103

– Batch size104

* Value105

· 128 for the dataset with 10 search trees106

· 512 for the dataset with 50 search trees107

· 2048 for the dataset with 100 or larger number of search trees.108

* Policy109

· 64110

– Learning rate: 1e-4 (1e-5 for dataset with 10 search trees)111

– Learning rate scheduler: None112

– Optimizer: AdamW113

– Weight decay: 1e-5114

– Dropout: 0.1115

• Fetching domains116

– Batch size117

* Value118

· 128 for the dataset with 10 search trees119

· 512 for the dataset with 50 search trees120

· 2048 for the dataset with 100 or larger number of search trees.121

* Policy122

· 64123

– Learning rate: 0.0001 (0.00001 for dataset with 10 search trees)124

– Learning rate scheduler: Multi-step scheduler with gamma = 0.1 and milestone=4000125

– Optimizer: Adam126

– Dropout: 0.1127

C. Guiding POMCPOW with the learned functions128

Using Ṽ , Q̃, and π̂θ, we guide POMCPOW in order to speed up planning. Algorithm 1 shows the129

pseudocode for the guided POMCPOW. The guided search takes in the trained value function and130

policy, initial belief, the total number of simulations n, and the maximum planning horizon T . The131

variables used throughout the algorithms are: an execution history ht = (o0, a1, o1, ..., at, ot), a list132

of child nodes C, a number of visits to a node N , a number of times that a given observation node133

has been generated M , and B and W are the list of the list of belief states and the weight associated134

with it respectively. C,N,M,B,W are implicitly initialized to ∅ or 0.135

3

Procedure GUIDEDSEARCH in Algorithm 1 describes the overall process of guided POMCPOW.136

The procedure takes initial belief b0(s), Ṽ , π̂θ, n, T . For each iteration, we sample a particle s137

from b0(s), then run SIMULATE procedure. iterate through the particles by simulating with each138

of them, and outputs action a with the highest Q value backed up by the simulation.139

The new action is sampled with a procedure ACTIONPROGWIDEN similar to the one proposed in140

POMCPOW[6]. However, to efficiently sample an action rather than resorting to a random policy,141

we use π̂θ to produce a new action sample (9). Then, an action is selected according to UCB1 (11).142

The SIMULATE is a recursive function that terminates when it reaches the maximum search depth143

of 0. Otherwise, it samples an action with ACTIONPROGWIDEN, expands observation node (line 6144

to 11) and action node (line 12 to 18). However, guided POMCPOW differs in that it leverages Ṽ145

instead of rollout by random policy (line 14) to reduce planning time.146

There are several hyperparameters for POMCPOW: progressive widening constants (kaαa, ko, αo)147

and exploration constant c for UCB. We set the progressive widening parameter as (kaαa, ko, αo) =148

(0.5, 0.5, 0.5, 0.5) for 2D light-dark room domain and (kaαa, ko, αo) = (3.0, 0.15, 3.0, 0.15) for149

two object fetching domains. Since the value outputs of each method in each domain have different150

scales, we set the exploration constant c differently for each method. In 2D light-dark room domain,151

we set it as 20 for PGP and SF-PGP, and 50 for IGP and unguided search. In object fetching domain152

with known object class, we set it as 0.5 for PGP and SF-PGP, and 100 for IGP and unguided search.153

In object fetching domain with unknown object class, we set it as 20 for PGP and SF-PGP, and 200154

for IGP and unguided search.155

Algorithm 1 Guided POMCPOW

1: procedure GUIDEDSEARCH(b0(s), Ṽ , π̂θ, n,
T)

2: Q← −∞, h← ∅
3: for i← 0 to n do
4: s ∼ b0(s)

5: SIMULATE(s, h, T, π̂θ, Ṽ)

6: return argmax
a

Q(ba)

7: procedure ACTIONPROGWIDEN(h)
8: if |C(h)| ≤ kaN(h)αa then
9: a ∼ π̂θ(h)

10: C(h)← C(h) ∪ {a}
11: return argmax

a∈C(h)

Q(ha) + c
√

logN(h)
N(ha)

1: procedure SIMULATE(s, h, d, π̂θ, Ṽ)
2: if d = 0 then
3: return 0
4: a← ACTIONPROGWIDEN(h, π̂θ)
5: s′, o, r ← G(s, a)
6: if |C(h)| ≤ kaN(h)αa then
7: M(hao)←M(hao) + 1
8: else
9: o← select o ∈ C(ha) w.p. M(hao)∑

o M(hao)

10: append s′ to B(hao)
11: append Z(o| s, a, s′) to W (hao)
12: if o /∈ C(ha) then
13: C(ha)← C(ha) ∪ {o}
14: total← r + γṼ (hao)
15: else
16: s′ ← select B(hao)[i] w.p. W (hao)[i]∑m

j=1 W (hao)[j]

17: r ← R(s, a, s′)
18: total← r+ γSIMULATE(s′, hao, d−

1)

19: N(h)← N(h) + 1
20: N(ha)← N(ha) + 1

21: Q(ha)← Q(ha) + total−Q(ha)
N(ha)

22: return total

D. Experiment setup for fetching domains156

To ensure that each pick or place actions are in contact with the object, we use rejection sampling.157

To sample PICK, we first choose a particle from a belief state, and for the given object, we choose158

4

a point on the upper surface of the object as a contact point. Then, we check two things: the cosine159

similarity between the normal vector at the contact point and the z-axis must be within 0.95, and160

the entire suction cup must be enclosed inside the object when we project it down along the z-axis.161

If these are not met, we sample another PICK and repeat the procedure. For PICK that passed the162

tests, we check the existence of an IK solution and collision-free motion plan using biRRT [7], and if163

they do not exist, we sample another PICK and restart from the beginning. PLACE simply samples164

a pose that is either inside the cabinet or the goal region.165

Perception System166

In real-world object fetching with unknown object classes domain, we use Mask R-CNN [1] with167

dropout sampling [2] to model the class distribution of an object, p(c|o). For efficient data pro-168

curement, We utilize the Bullet physics simulator [8] to collect RGB images and mask annotation.169

Nonetheless, the data from the simulation, especially the RGB image, does not generalize to the170

real-world scene due to the sim2real gap. To overcome this, we render the image with NVISII [9] to171

create photo-realistic texture while using the mask annotation from Bullet simulator and train Mask172

R-CNN with these images.173

To estimate p(q|c, o), we train a pose estimator per each class. It is a PointNet [3]-based architecture174

with 2 heads of MLP layers for orientation and position. We bin the orientation into 2048 classes and175

train the orientation head to predict the unit quaternion closest to the ground truth orientation while176

the position head is trained with regression. During an inference, we decide which pose estimator177

to use according to the class label predicted by Mask R-CNN. Then, we feed the partial point cloud178

obtained from the depth image and the segmentation result and get p(q|c, o). To generate the data,179

we randomly sample about 130k positions on the cabinet and yaw angle (roll and pitch angles of the180

objects are fixed to 0). Then, we load random objects to the Bullet simulator with the sampled pose,181

capture the partial point cloud using the depth camera, and label them with corresponding object182

poses given by the simulator.183

Initial belief generator184

In real-world object fetching with unknown object classes domain, the initial belief generator uses185

the result from the perception system to sample initial belief over the state p(s|o). For class uncer-186

tainty, we sample Nshape number of class labels from the class distribution output by Mask R-CNN.187

Then, for each class, we run our pose estimator to sample Npose number of poses. There are total188

Nshape × Npose candidates for beliefs, and we randomly choose Nparticle particles for the initial189

belief with rejection sampling. The criteria for rejection is the existence of collision between objects190

or cabinet, grasp affordance of the vacuum gripper, and the misclassification of target(red) objects191

(i.e. hammer, drill, driver) to the non-target object class label (i.e. box) or vice-versa.192

E. Evaluation193

Qualitative results for object fetching with known object classes194

Figure 1 (a) shows the visualization of the outputs of value networks, which are normalized between195

0 and 1, for PLACE action on the same scene. After the robot picks the non-target object, to196

achieve information-gathering actions, the robot should prefer the region where the target object can197

be visible, such as the side of the area, except the area where the target object can be invisible. Our198

approach can tell the clear difference between such areas, whereas other approaches do not show199

clear differences, or even show the same value across all areas. (b) and (c) from Figure 1 shows the200

action samples when PICK on both target and non-target object. When a target object is picked,201

the robot should prefer the action samples around the goal region. Here, our model shows a high202

preference in that area. When the non-target object is picked, the robot should prefer the action203

samples where the target object can be visible, and also not the goal area. Our approach avoids204

around the target object, whereas others take action samples around the target object and goal area.205

5

Figure 1: Qualitative comparisons on object fetching with known object classes. (a) shows
normalized V-values of PLACE actions obtained from 3 different value networks (b) purple dots
show 100 PLACE action samples from the trained policy after PICK non-target object. (c) purple
dots show 100 PLACE action samples from the trained policy after PICK target object when the
target object is visible. The networks used in these figures were trained using data from 50 search
trees.

Quantitative results of fetching domains with different sizes of data206

We compared the results of a guided search using networks trained in various data sizes to evaluate207

data efficiency. Figure 2 (a) shows the result of object fetching with known object classes domain,208

using data from 50 and 300 search trees in addition to the results shown in the main document.209

The first row shows that the results are consistent with our hypotheses. With 50 and 300 tree210

searches, SF-PGP and PGP show higher success rates than IGP. The second row shows that211

PGP achieves a more optimal solution than other approaches. With 300 tree searches, PGP finds212

near-optimal plans, while other approaches struggle to do so. IGP comes close, but note that it has213

a lower success rate than PGP. Figure 2 (b) shows the result of real-world object fetching with214

unknown object classes domain evaluated in PyBullet [8] simulation, using data from 10 and 100215

search trees. The two columns on the left show that the results are consistent with our hypotheses216

again. With 10 and 100 tree searches, SF-PGP and PGP again show higher success rates than IGP.217

The two columns on the right show that PGP again finds the most optimal plans.218

6

(a) Quantitative results of object fetching with known object classes. Data from 50 search trees
and 300 search trees are compared. The first row shows the success rates of guided search using
networks learned from data obtained from the different number of search trees. The second row
shows on the right show the average time-step of success trajectories obtained from these searches.

(b) Quantitative results of real-world object fetching with unknown object classes in PyBul-
let [8] simulation. Data from 10 search trees and 100 search trees are compared. The two columns
on the left show the success rates of guided search using networks learned from data obtained from
the different number of search trees. The two columns on the right show the average time-step of
success trajectories obtained from these searches.

Figure 2: Quantitative comparisons on object fetching domains All plots depict the mean and
95% confidence intervals (CIs) based on 400 experiments conducted with trained networks using
three different random seeds.

7

References219

[1] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn. In Proceedings of the IEEE220

international conference on computer vision, pages 2961–2969, 2017.221

[2] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncer-222

tainty in deep learning. ArXiv, abs/1506.02142, 2015.223

[3] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d classifica-224

tion and segmentation. In Proceedings of the IEEE conference on computer vision and pattern225

recognition, pages 652–660, 2017.226

[4] G. M. B. Chaslot, M. H. Winands, and H. J. van Den Herik. Parallel monte-carlo tree search.227

In Computers and Games: 6th International Conference, CG 2008, Beijing, China, September228

29-October 1, 2008. Proceedings 6, pages 60–71. Springer, 2008.229

[5] B. Huang, A. Boularias, and J. Yu. Parallel monte carlo tree search with batched rigid-body sim-230

ulations for speeding up long-horizon episodic robot planning. In 2022 IEEE/RSJ International231

Conference on Intelligent Robots and Systems (IROS), pages 1153–1160. IEEE, 2022.232

[6] Z. Sunberg and M. Kochenderfer. Online algorithms for pomdps with continuous state, action,233

and observation spaces. In Proceedings of the International Conference on Automated Planning234

and Scheduling, volume 28, pages 259–263, 2018.235

[7] J. J. Kuffner and S. M. LaValle. Rrt-connect: An efficient approach to single-query path plan-236

ning. In Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on237

Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), volume 2, pages 995–238

1001. IEEE, 2000.239

[8] E. Coumans and Y. Bai. Pybullet, a python module for physics simulation for games, robotics240

and machine learning. http://pybullet.org, 2016–2021.241

[9] N. Morrical, J. Tremblay, Y. Lin, S. Tyree, S. Birchfield, V. Pascucci, and I. Wald. Nvisii: A242

scriptable tool for photorealistic image generation, 2021.243

8

http://pybullet.org

