
Published as a conference paper at ICLR 2024

SHEARED LLAMA: ACCELERATING LANGUAGE
MODEL PRE-TRAINING VIA STRUCTURED PRUNING

Mengzhou Xia1, Tianyu Gao1, Zhiyuan Zeng2 , Danqi Chen1

1Princeton Language and Intelligence, Princeton University
2Department of Computer Science and Technology, Tsinghua University
{mengzhou,tianyug,danqic}@cs.princeton.edu
zengzy20@mails.tsinghua.edu.cn

ABSTRACT

The popularity of LLaMA (Touvron et al., 2023a;b) and other recently emerged
moderate-sized large language models (LLMs) highlights the potential of build-
ing smaller yet powerful LLMs. Regardless, the cost of training such models
from scratch on trillions of tokens remains high. In this work, we study struc-
tured pruning as an effective means to develop smaller LLMs from pre-trained,
larger models. Our approach employs two key techniques: (1) targeted structured
pruning, which prunes a larger model to a specified target shape by removing
layers, heads, and intermediate and hidden dimensions in an end-to-end manner,
and (2) dynamic batch loading, which dynamically updates the composition of
sampled data in each training batch based on varying losses across different do-
mains. We demonstrate the efficacy of our approach by presenting the Sheared-
LLaMA series, pruning the LLaMA2-7B model down to 1.3B and 2.7B param-
eters. Sheared-LLaMA models outperform state-of-the-art open-source models
of equivalent sizes, such as Pythia, INCITE, OpenLLaMA and the concurrent
TinyLlama models, on a wide range of downstream and instruction tuning eval-
uations, while requiring only 3% of compute compared to training such models
from scratch. This work provides compelling evidence that leveraging existing
LLMs with structured pruning is a far more cost-effective approach for building
competitive small-scale LLMs.1

1 INTRODUCTION

Large language models (LLMs) are extremely performant on a wide range of natural language tasks,
but they require enormous amounts of compute to train (OpenAI, 2023; Anthropic, 2023). As such,
there is growing interest in building strong moderate-sized models, such as LLaMA (Touvron et al.,
2023a;b), MPT (MosaicML, 2023), and Falcon (Almazrouei et al., 2023), that allow for efficient
inference and fine-tuning. These LLMs are available in varied sizes suited for different use cases, but
training each individual model from scratch—even the smallest billion-parameter models—requires
substantial computational resources that are cost-prohibitive for most organizations. In this work,
we seek to address the following question:

Can we produce a smaller, general-purpose, and competitive LLM by leveraging existing
pre-trained LLMs, while using much less compute than training one from scratch?

We explore structured pruning as a means to achieve this goal. Pruning is commonly viewed as a so-
lution for compressing task-specific models (Han et al., 2016; Li et al., 2016; Lagunas et al., 2021;
Xia et al., 2022; Kurtic et al., 2023), removing redundant parameters and accelerating inference
without sacrificing task performance. However, for general-purpose LLMs, pruning inevitably re-
sults in performance degradation compared to original models (Frantar & Alistarh, 2023; Sun et al.,
2023; Ma et al., 2023), especially when without significant compute invested post-pruning. In this
work, we use pruning as an effective approach for developing smaller yet competitive LLMs that
require only a fraction of the training compute compared to training them from scratch.

1Please find our code and models at https://github.com/princeton-nlp/LLM-Shearing.
We present frequently asked questions and answers in Appendix G.

1

https://github.com/princeton-nlp/LLM-Shearing

Published as a conference paper at ICLR 2024

We identify two key technical challenges in this problem. First, how can we decide on fi-
nal pruned architectures that are strong in performance and efficient for inference? Exist-
ing structured pruning techniques for LLMs (Xia et al., 2022; Ma et al., 2023) do not spec-
ify targeted structures and lead to suboptimal pruned models in terms of performance and in-
ference speed (Table 4 and Appendix F.2). Second, how can we continue pre-training the
pruned model to reach desired performance? We observe that training using the original pre-
training data leads to imbalanced rates of loss reduction across different domains, compared to
when training such models from scratch. This indicates that the pruned model retains vary-
ing levels of knowledge for different domains (e.g., GitHub vs. C4) and simply using the pre-
training domain proportion results in an inefficient use of data (Figure 4). To address these is-
sues, we propose “LLM-shearing”, an algorithm consisting of the following two components:

OPT

Pythia

INCITE

OpenLLaMA v1

Sheared-LLaMA (ours)
OpenLLaMA v2

32x faster

Figure 1: Sheared-LLaMA-2.7B surpasses a se-
ries of open-source models at a similar scale and
only requires 1/32 (3%) of budget to achieve on-
par performance with OpenLLaMA-3B-v2.

• We propose a novel pruning algorithm,
dubbed targeted structured pruning, which
prunes a source model to a specified tar-
get architecture. The target architecture
is determined by leveraging the configura-
tions of existing pre-trained models. Our
pruning approach searches for substruc-
tures within the source model that maxi-
mally preserve performance while adher-
ing to the given constraints.

• We devise a dynamic batch loading algo-
rithm that loads training data from each
domain in proportion to its rate of loss re-
duction, thereby making an efficient use of
the data and accelerating the overall per-
formance improvement.

We demonstrate the efficacy of our proposed method by pruning a LLaMA2-7B model (Touvron
et al., 2023b) into two smaller LLMs: Sheared-LLaMA-1.3B and Sheared-LLaMA-2.7B. Despite
using only 50 billion addtional tokens (i.e., 5% of OpenLLaMA’s pre-training budget) for prun-
ing and continued pre-training, Sheared-LLaMA-1.3B and Sheared-LLaMA-2.7B outperform other
popular LLMs at similar scales, including Pythia (Biderman et al., 2023), INCITE (TogetherAI,
2023b), and OpenLLaMA (Geng & Liu, 2023), on 11 representative downstream tasks (Figure 1;
commonsense, reading comprehension, and world knowledge) and instruction tuning for open-
ended generation. Additionally, the downstream performance trajectory suggests that further train-
ing the pruned model with more tokens would result in even greater gains. While we only conduct
experiments with up to 7B parameter models, our LLM-shearing algorithm is highly generalizable
and can be extended to large language models of any size in future work.

2 LLM-SHEARING

Given an existing large modelMS (the source model), we study how to efficiently produce a smaller,
strong modelMT (the target model). We consider this as a two-stage process: (1) PruningMS into
MT . This reduces the number of parameters but inevitably incurs a performance drop. (2) Continue
pre-trainingMT with a standard language modeling objective to reach a target performance. While
most recent efforts (Xia et al., 2022; Ma et al., 2023) focus on the former stage, we find the latter
stage crucial for producing competitive general-purpose LLMs from structured pruning.

2.1 TARGETED STRUCTURED PRUNING

Structured pruning removes groups of model parameters to compress models and accelerate infer-
ence. However, existing structured pruning approaches often result in unconventional model config-
urations that deviate from popular architectures. For example, CoFiPruning (Xia et al., 2022) pro-
duces models with non-uniform layer configurations (e.g., different numbers of heads across layers),
which incurs inference overhead compared to standard uniform layer configurations (Section 4.2).

2

Published as a conference paper at ICLR 2024

MHA 1EMB FFN 1

MHA 1EMB FFN 1 MHA 2 FFN 2

MHA 3 FFN 3MHA 2 FFN 2

Structured
Pruning

Source Model Target Model

Figure 2: Targeted structured pruning produces a compact and dense model of a pre-specified shape.
Light colors indicate pruned substructures. Masking variables z are learned to control whether a
substructure is pruned (z = 0) or retained (z = 1).

In this work, we aim to prune the source model into any target configuration that we specify.This
goal is challenging because it requires surgically scaling down all dimensions in a transformer ar-
chitecture, an endeavor that, to our knowledge, has not been accomplished before for large language
models. We leverage the configurations of existing pre-trained models as the target architectures,
based on the intuition that these configurations have already been well-optimized to balance model
expressivity and inference efficiency. For example, we use the INCITE-Base-3B architecture (To-
getherAI, 2023a) as the target structure when producing a 2.7B model.

Our method learns a set of pruning masks on model parameters at different granularities—from
global ones like layers and hidden dimensions (persist across all layers), to local ones like attention
heads and intermediate dimensions. Assume that the source modelMS has LS layers, with each
layer consisting of one multi-head attention module (MHA) and one feed-forward network (FFN).
MS has a hidden state dimension of dS , HS heads in each MHA, and an intermediate dimension of
mS in each FFN. We introduce the following mask variables:

Granularity Layer Hidden dimension Head Intermediate dimension

Pruning masks zlayer ∈ RLS zhidden ∈ RdS zhead ∈ RHS (×LS) zint ∈ RmS (×LS)

Each mask variable controls whether the associated substructure is pruned or retained. For example,
we remove a layer if its corresponding zlayer = 0. Figure 2 illustrates an example of how the pruning
masks control the pruned structures.

We formulate pruning as a constrained optimization problem (Platt & Barr, 1987) where we
learn pruning masks to search for a subnetwork matching a pre-specified target architecture while
maximizing performance.2 Following the ℓ0 regularization approach (Louizos et al., 2018), we
parametrize the pruning masks to model hard concrete distributions. These distributions have sup-
port on [0, 1] but concentrate their probability mass at 0 or 1, enabling discrete prune or retain
decisions. While prior work usually control for a target sparsity (Wang et al., 2020; Xia et al.,
2022), we use a pair of Lagrange multipliers to impose constraints on the pruned model shape di-
rectly. For example, for a target number of heads HT (and we use LT , dT , and mT to represent the
target number of layers, hidden dimension, and intermediate dimension respectively), we have the
imposed constraint on a single layer as:

L̃head(λ, ϕ, z) = λhead ·
(∑

zhead −HT

)
+ ϕhead ·

(∑
zhead −HT

)2

.

Similar constraints are applied to pruning other substructures. Overall, we jointly optimize the
model weights and pruning masks by a min-max objective minθ,z maxλ,ϕ Lprune(θ, z, λ, ϕ):

Lprune(θ, z, λ, ϕ) = L(θ, z) +
LS∑
j=1

L̃head
j +

LS∑
j=1

L̃int
j + L̃layer + L̃hidden,

where L(θ, z) is the language modeling loss computed with the masked model weights. This objec-
tive will produce a pruned model with the target shape. Ideally, running this pruning algorithm on
a large amount of data will directly produce a strong compact model. In practice, the pruning stage
is expensive (roughly 5× slower compared to standard LM training), and we find that the learned

2Please find a more detailed exposition of the algorithm in Appendix A.

3

Published as a conference paper at ICLR 2024

Algorithm 1: Dynamic Batch Loading

Require: Training data of k domains D1, D2, · · · , Dk, validation data Dval
1 , Dval

2 , · · · , Dval
k ,

initial data loading weights w0 ∈ Rk, reference loss ℓref ∈ Rk, LM loss L or pruning loss
Lprune, training steps T , evaluation per m steps, model parameters θ (θ, z, ϕ, λ for pruning)

for t = 1, · · · , T do
if t mod m = 0 then

ℓt[i]← L(θ, z,Dval
i) if pruning else L(θ,Dval

i)
∆t[i]← max {ℓt[i]− ℓref [i], 0} ▷ Calculate loss difference
wt ← UpdateWeight(wt−m, ∆t) ▷ Update data loading proportion

end
Sample a batch of data B from D1, D2, · · · , Dk with proportion wt;
if pruning then

Update θ, z, ϕ, λ with Lprune(θ, z, ϕ, λ) on B
else

Update θ with L(θ,B)
end

end

Subroutine UpdateWeight(w, ∆)
α← w · exp (∆) ▷ Calculate the unnormalized weights
w ← α∑

i α[i]
return w ▷ Renormalize the data loading proportion

return θ

masks often converge fast. Therefore, we only allocate a limited budget for pruning (see Table 5).
Following pruning, we finalize the pruned architecture by preserving the highest-scoring compo-
nents associated with the mask variables in each substructure, and continue pre-training the pruned
model with the language modeling objective. We refer to this second stage as continued pre-training.

2.2 DYNAMIC BATCH LOADING

Continued pre-training on a large amount of data is crucial for recovering the pruned model perfor-
mance. We observe a surprising finding in our preliminary experiments: continuing pre-training our
pruned models on an existing pre-training dataset RedPajama (TogetherAI, 2023b; LLaMA’s repli-
cated pre-training dataset) reduces loss at different rates across domains compared to pre-training a
model from scratch, which signifies an inefficient use of data.

To be more specific, we begin by fitting a scaling function (Hoffmann et al., 2022; details in Ap-
pendix B) on the series of LLaMA2 models for each domain. Using this function, we predict the
loss of a hypothetical 1.3B LLaMA2 model if it were trained from scratch on the same data. We
then compare these estimated reference losses to the losses of our pruned model after continued
pre-training. Figure 4 (left) shows that our model’s loss on GitHub is better than the reference loss,
while it is significantly worse than the reference loss on C4. This observation indicates that pruning
preserves a greater amount of knowledge in low-entropy and smaller domains (e.g., GitHub) com-
pared to high-entropy and larger domains (e.g., C4). Simply reusing the original pre-training data
distribution3 results in an inefficient use of data and worse downstream performance, even if the
overall loss is seemingly low, as demonstrated later in Section 4.1.

Inspired by recent work (Xie et al., 2023), we propose dynamic batch loading, an efficient algorithm
to adjust domain proportions on the fly based on losses. The goal is to ensure the model achieves
the reference loss at roughly the same time across domains. We introduce the algorithm below.

Problem setup. The pre-training data comprises of k domains D1, D2, · · · , Dk and we have a held-
out validation dataset for each domain, denoted as Dval

i . At each training step t, a proportion wt[i]
of the data comes from domain Di. We set a reference validation loss ℓref(Di) for each domain and
train the pruned model to reach the reference loss.

3The LLaMA2 pre-training data is not public. We conducted the same analysis on LLaMA1 models and
observed a similar phenomenon, indicating that this is a universal issue unrelated to specific pre-training data.

4

Published as a conference paper at ICLR 2024

Dynamic batch loading. We present the full algorithm in Algorithm 1. In a sketch, for every m
steps, we evaluate the model to get the validation loss ℓt (step t) on Dval, and update wt based on the
difference ∆t(Di) between ℓref [i] and ℓt[i] on each domain. The update rule is exponential ascent
following Xie et al. (2023),

αt = wt−m · exp(∆t); wt =
αt∑
i αt[i]

.

We apply dynamic batch loading to both the pruning stage and the continued pre-training stage. For
pruning, we use the original pre-training data’s domain weights as w0. For continued pre-training,
we use the final weights from the pruning stage as w0. Dynamic batch loading is an on-the-fly
solution that adjusts data proportions during training without the need for training auxiliary models.
It leverages reference losses on validation sets and adjusts the weights dynamically, adding minimal
overhead to standard training. This approach differs from Xie et al. (2023), which requires a complex
multi-stage process to train reference and proxy models.

More broadly, dynamic batch loading can train an LLM to match any reference model’s performance
by using open-source pre-training datasets like RedPajama, even without knowing the reference
model’s exact training data.

Choices of reference losses. By default, we use the loss predicted by the fitted scaling function
as the reference (denoted as scaling reference). We also experiment with an alternative where we
directly use the source model’s domain validation loss as the reference (denoted as source reference).
We show in F.4 that while both variants perform well, using scaling reference leads to slightly better
downstream results, especially on math and coding tasks. However, source reference is a viable
alternative when a series of source models at different scales is not available.

3 EXPERIMENTS

3.1 SETUP

Model configurations. We use the LLaMA2-7B model (Touvron et al., 2023b) as the source
model throughout all of our main experiments.4 We then conduct structured pruning experiments
to compress this model down to two smaller target sizes—2.7B and 1.3B parameters. We compare
to strong pre-trained language models of similar sizes, including OPT-1.3B (Zhang et al., 2022),
Pythia-1.4B (Biderman et al., 2023), TinyLlama-1.1B (Zhang et al., 2024), OPT-2.7B, Pythia-2.8B,
INCITE-Base-3B (TogetherAI, 2023b), OpenLLaMA-3B-v1, and OpenLLaMA-3B-v2 (Geng &
Liu, 2023). We use Pythia-1.4B and INCITE-Base-3B as the target architecture for the 1.3B and
the 2.7B model respectively. Table 8 summarizes model architecture details of all these models.

Table 1: A summary of pre-training
datasets used by Sheared-LLaMA and
other models.

Model Pre-training Data #Tokens

LLaMA1 LLaMA data 1T
LLaMA2 Unknown 2T

OPT OPT data5 300B
Pythia The Pile 300B
INCITE-Base RedPajama 800B
OpenLLaMA v1 RedPajama 1T
OpenLLaMA v2 OpenLLaMA data6 1T
TinyLlama TinyLlama data7 3T
Sheared-LLaMA RedPajama 50B

Data. As the training data for LLaMA2 is not pub-
licly accessible, we use RedPajama (TogetherAI, 2023b),
which is a replicated pre-training dataset of the LLaMA1
models (Touvron et al., 2023a), for pruning and
continued-pretraining. This dataset encompasses training
data from seven domains: CommonCrawl, C4, Github,
Wikipedia, Books, ArXiv, and StackExchange. We con-
struct a held-out validation set with 2 million tokens
(equivalent to 500 sequences of 4,096 tokens) for each do-
main. We allocate 0.4 billion tokens for the pruning phase
and 50 billion tokens for the continued pre-training pro-
cess. Following the conventions of LLaMA2, we main-
tain a sequence length of 4,096 tokens. Table 1 provides
a summary of the pre-training data used by our models and the baseline models.

4Please find results on LLaMA1 models in Appendix F.6 and Pythia models in Appendix F.5.
5OPT data contains BookCorpus (Zhu et al., 2015), Stories (Trinh & Le, 2018), CCNews (Hamborg et al.,

2017), the Pile (Gao et al., 2020), and PushShift.io Reddit (Baumgartner et al., 2020).
6OpenLLaMA v2 is pre-trained with a mixture of RefinedWeb (Penedo et al., 2023), StarCoder (Li et al.,

2023), and part of RedPajama.
7TinyLlama data is a mixture of SlimPajama (Shen et al., 2023) and StarCoder data.

5

Published as a conference paper at ICLR 2024

Table 2: Sheared-LLaMA outperforms publicly available models of comparable size on downstream
tasks. The shot number used is noted in parentheses, with 0-shot if not specified. Models with † use
a different training data from RedPajama. Please refer to Table 1 for details.

Commonsense & Reading Comprehension
Model (#tokens for training) SciQ PIQA WinoGrande ARC-E ARC-C (25) HellaSwag (10)

LLaMA2-7B (2T)† 93.7 78.1 69.3 76.4 53.0 78.6

OPT-1.3B (300B)† 84.3 71.7 59.6 57.0 29.7 54.5
Pythia-1.4B (300B)† 86.4 70.9 57.4 60.7 31.2 53.0
TinyLlama-1.1B (3T)† 88.9 73.3 58.8 55.3 30.1 60.3
Sheared-LLaMA-1.3B (50B) 87.3 73.4 57.9 61.5 33.5 60.7

OPT-2.7B (300B)† 85.8 73.7 60.8 60.8 34.0 61.5
Pythia-2.8B (300B)† 88.3 74.0 59.7 64.4 36.4 60.8
INCITE-Base-3B (800B) 90.7 74.6 63.5 67.7 40.2 64.8
Open-LLaMA-3B-v1 (1T) 91.3 73.7 61.5 67.6 39.6 62.6
Open-LLaMA-3B-v2 (1T)† 91.8 76.2 63.5 66.5 39.0 67.6
Sheared-LLaMA-2.7B (50B) 90.8 75.8 64.2 67.0 41.2 70.8

Continued LM World Knowledge
Model (#tokens for training) LogiQA BoolQ (32) LAMBADA NQ (32) MMLU (5) Average

LLaMA2-7B (2T)† 30.7 82.1 28.8 73.9 46.6 64.6

OPT-1.3B (300B)† 26.9 57.5 58.0 6.9 24.7 48.2
Pythia-1.4B (300B)† 27.3 57.4 61.6 6.2 25.7 48.9
TinyLlama-1.1B (3T)† 26.3 60.9 58.8 12.1 25.5 50.0
Sheared-LLaMA-1.3B (50B) 26.9 64.0 61.0 9.6 25.7 51.0

OPT-2.7B (300B)† 26.0 63.4 63.6 10.1 25.9 51.4
Pythia-2.8B (300B)† 28.0 66.0 64.7 9.0 26.9 52.5
INCITE-Base-3B (800B) 27.7 65.9 65.3 14.9 27.0 54.7
Open-LLaMA-3B-v1 (1T) 28.4 70.0 65.4 18.6 27.0 55.1
Open-LLaMA-3B-v2 (1T)† 28.1 69.6 66.5 17.1 26.9 55.7
Sheared-LLaMA-2.7B (50B) 28.9 73.7 68.4 16.5 26.4 56.7

Evaluation. We use the lm-evaluation-harness package (Gao et al., 2021) to evaluate
on an extensive suite of downstream tasks: (1) We follow Pythia and LLaMA2 to report the 0-shot
accuracy of ARC easy (ARC-E; Clark et al., 2018), LAMBADA (Paperno et al., 2016), LogiQA (Liu
et al., 2020), PIQA (Bisk et al., 2020), SciQ (Welbl et al., 2017), and WinoGrande (Sakaguchi et al.,
2021). (2) We report accuracy of the tasks used by Open LLM Leaderboard (Beeching et al., 2023),
including 10-shot HellaSwag (Zellers et al., 2019), 25-shot ARC Challenge (ARC-C; Clark et al.,
2018), and 5-shot MMLU (Hendrycks et al., 2021). (3) We also report exact match of 32-shot
Natural Questions (NQ; Kwiatkowski et al., 2019) to measure the factual knowledge in the model.

As training models to follow instructions has become a crucial application of LLMs (Ouyang et al.,
2022; Taori et al., 2023), we evaluate our models on instruction tuning and fine-tune both baseline
models and Sheared-LLaMA on instruction-response pairs sampled from the ShareGPT dataset.8
Please refer to Appendix E for more details.

3.2 SHEARED-LLAMA OUTPERFORMS LMS OF EQUIVALENT SIZES

We demonstrate that Sheared-LLaMA outperforms existing LLMs of similar sizes on both standard
LLM benchmarks and instruction tuning, while using only a fraction of the compute budget required
to train those models from scratch.

Downstream tasks. Table 2 presents the zero-shot and few-shot downstream task performance
of Sheared-LLaMA and similarly-sized pre-trained models. Even with a limited budget of ap-
proximately 50B tokens for pruning and continued pre-training, Sheared-LLaMA models outper-
form existing models pre-trained on significantly larger compute. Sheared-LLaMA-1.3B outper-
forms OPT-1.3B, Pythia-1.4B (pre-trained with 300B tokens), and TinyLlama-1.1B (pre-trained

8https://sharegpt.com/

6

https://sharegpt.com/

Published as a conference paper at ICLR 2024

57.4% 42.7%

25.0% 50.0% 75.0%

Sheared-LLaMA-1.3B Pythia-1.4B

63.5% 36.6%

25.0% 50.0% 75.0%

Sheared-LLaMA-2.7B INCITE-Base-3B

54.3% 45.8%

25.0% 50.0% 75.0%

Sheared-LLaMA-2.7B Open-LLaMA-v2-3B

56.6% 43.5%

25.0% 50.0% 75.0%

Sheared-LLaMA-2.7B Open-LLaMA-v1-3B

Figure 3: Sheared-LLaMAs outperform Pythia-1.4B, INCITE-Base-3B, OpenLLaMA-3B-v1 and
OpenLLaMA-3B-v2 in instruction tuning.

on 3T tokens). Sheared-LLaMA-2.7B outperforms INCITE-Base-3B (pre-trained on 800B Red-
Pajama tokens), OpenLLaMA-3B-v1 (pre-trained on 1T RedPajama tokens), and OpenLLaMA-3B-
v2 (trained on 1T tokens from RedPajama, RefinedWeb, and StarCoder). The most noteworthy
result is that Sheared-LLaMA-1.3B outperforms TinyLlama-1.1B, despite TinyLlama-1.1B being
pre-trained on 3T tokens—more than the total data used for pre-training LLAMA2-7B and our
pruning process combined. This demonstrates that structured pruning is a more sample-efficient
approach for training smaller-scale LLMs.

Instruction tuning. As shown Figure 3, instruction-tuned Sheared-LLaMA achieves higher win
rates compared to all the other pre-trained models at a comparable scale. This demonstrates that our
2.7B model can serve as a strong foundation for instruction tuning and has the capacity to generate
long, coherent and informative responses (See examples in Appendix E).

4 ANALYSIS

4.1 EFFECTIVENESS OF DYNAMIC BATCH LOADING

We analyze the effectiveness of dynamic batch loading by examining its impact on three aspects:
(1) the final LM loss across domains, (2) the data usage of each domain throughout training, (3) the
downstream task performance. All results in this section are based on Sheared-LLaMA-1.3B.9

Loss differences across domains. Dynamic batch loading aims to balance the rate of loss reduc-
tion across domains, ensuring that the losses reach the reference value at roughly the same time.
Figure 4 shows the difference between our model’s loss (with both original and dynamic batch load-
ing) and the reference loss, estimated by fitting a scaling function to a hypothetical 1.3B parameter
LLaMA2 model. The original batch loading results in widely varying loss differences across do-
mains; for example, the GitHub loss decreases below the reference value, while the C4 loss lags
behind. Dynamic batch loading, however, reduces losses evenly and leads to very similar loss dif-
ferences across domains, suggesting more efficient data use.

Data usage. Table 3 compares the data proportion of RedPajama and the data usage of our dy-
namic loading approach (Figure 6 illustrates how the domain weights change during training). It
shows that dynamic batch loading loads more data from the Book and C4 subsets, indicating that
these domains are more challenging for a pruned model to recover.

Table 3: Domain data usage with dynamic batch loading compared to the original proportions.

CC GitHub Book StackExchange Wiki ArXiv C4
RedPajama (Original) 67.0% 4.5% 4.5% 2.0% 4.5% 2.5% 15.0%
Dynamic Batch Loading 36.1% 0.8% 9.1% 1.0% 3.1% 0.7% 49.2%

Downstream performance. As shown in Figure 5, pruned models trained with dynamic batch
loading achieve better downstream performance than when trained on the original RedPajama dis-
tribution. This suggests that the more balanced loss reduction from dynamic batch loading transfers
to improved downstream capabilities.

9We also experiment with a heuristic approach to exclude the easy domains from pruning, but find that the
loss disparaty issue persists after continued pre-training. Please refer to Appendix F.8 for mode details.

7

Published as a conference paper at ICLR 2024

CC

GitH
ub
Boo

k SE
W

iki
ArX

iv C4

0.0

0.1

Lo
ss

 D
iff

er
en

ce

Original

CC

GitH
ub
Boo

k SE
W

iki
ArX

iv C4

0.0

0.1

Dynamic Batch Loading

Figure 4: Loss difference between the pruned
model (1.3B) and estimated reference loss, with
original vs. dynamic batch loading.

10 20 30 40 50
#Tokens for Training (B)

47

48

49

50

51

Av
er

ag
e

D
ow

ns
tre

am
 A

cc
 (%

)

Original
Dynamic Batch Loading

Figure 5: Downstream task performance of
Sheared-LLaMA-1.3B with original data pro-
portion and dynamic batch loading.

4.2 COMPARISON TO OTHER PRUNING APPROACHES

We compare our LLM-shearing to other pruning approaches on validation perplexity, a strong indi-
cator of overall model capabilities (Xia et al., 2023).

Targeted pruned models have a higher inference speed. Previous works like CoFiPruning (Xia
et al., 2022) produce structued pruned models, but these models often have non-uniform layer con-
figurations (e.g., different numbers of heads across layers). Such non-uniformity across layers intro-
duces training and inference overhead due to irregularities in model architectures. We experiment
with both CoFiPruning and targeted structured pruning, with a 0.4B pruning budget with the Red-
Pajama data proportion for a fair comparison. Table 4 shows that our targeted pruned models have
a higher inference speed compared to the non-uniformly pruned CoFiPruning model at the same
sparsity, despite having a slightly higher perplexity. Targeted structured pruning needs about 0.5B
more tokens in continued pre-training to match CoFiPruning’s perplexity. However, this one-time
extra compute during training is justified, as it results in a more efficient model architecture that is
essential for real-world applications and effective practical use. Please find more details on inference
speed of different pruning methods in Appendix F.9.

Table 4: Validation perplexity and generation speed during inference (tokens/second) of targeted
structured pruning with a uniform layer configuration, and CoFiPruning, with a non-uniform layer
configuration. Inference speed is measured on a Nvidia A100 (80G) GPU, on a singal instance
generating up to 512 tokens.

Layer Config PPL ↓ Speed ↑ Layer Config PPL ↓ Speed ↑

1.3B CoFiPruning 9.1 51 2.7B CoFiPruning 7.0 37
Targeted pruning 10.3 58 Targeted pruning 7.7 43

Comparison to LLM-Pruner (Ma et al., 2023). We compare targeted structured pruning to
LLM-Pruner, a recent work in structured pruning, in Appendix F.2. We demonstrate that, given
the same compute budget, sparsity level, and training data distribution, our pruned models achieve
lower perplexity, have a more optimized architecture, and faster inference speed.

4.3 ADDITIONAL ANALYSIS

Table 5: Data budget allocation to prun-
ing and continued pre-training (CT) and
corresponding perplexity.

Tokens PPL

Pruning CT Pruning CT

0.2B 4.6B 12.99 7.46
0.4B 4.4B 10.29 7.32
0.8B 4.0B 9.01 7.23
1.6B 3.2B 8.04 7.08

Budget allocation for pruning and continued pre-
training. Intuitively, allocating more compute to the
pruning stage helps identify better subnetwork structures.
We explore distributing data across pruning and contin-
ued pre-training stages differently, within a fixed budget
of 5B tokens. Table 5 shows that when controlling the to-
tal amount of tokens, increasing the pruning budget con-
sistently improves perplexity. However, since pruning is
more expensive than continued pre-training, we decide
to allocate 0.4B tokens to pruning. Please refer to Ap-
pendix C for details on training throughputs.

8

Published as a conference paper at ICLR 2024

More analysis. We provide further analysis in the appendix: (1) Sheared-LLaMA evaluation on
math and coding (Appendix F.3), (2) Pythia model pruning (Appendix F.5), and (3) impact of ex-
cluding easy domains during pruning (Appendix F.8).

5 RELATED WORK

Pruning. Structured pruning has been extensively studied as a model compression technique in
computer vision and natural language processing, where task-specific models like classification
ones are often overparameterized and can be pruned significantly with minimal impact on perfor-
mance (Han et al., 2016; Wen et al., 2016; Liu et al., 2017; Luo et al., 2017; Cai et al., 2019; Deng
et al., 2020; Hou et al., 2020; Wang et al., 2020; Lagunas et al., 2021; Xia et al., 2022; Kurtic et al.,
2023). Unstructured pruning (Frankle & Carbin, 2018; Li et al., 2020; Chen et al., 2020; Sanh et al.,
2020) prunes individual neurons instead of structured blocks. Though unstructured pruning usually
achieve higher compression rates, they are not practical for model speedup.

In the era of LLMs, the prevalent NLP pipeline has shifted from task-specific models to general-
purpose LMs, which leaves little room for redundancy. Both unstructured pruning, semi-structured
pruning (Frantar & Alistarh, 2023; Sun et al., 2023), and structured pruning (Ma et al., 2023) lead to
significant performance drops on LLM even at a modest sparsity. Noticeably, all previous works fix
the original models or tune them minimally. We see pruning as an initialization and consider it nec-
essary to expend substantial compute to continually pre-training the model to recover performance.

Efficient pre-training approaches. As orthogonal to our pruning approach, There is an extensive
body of work on improving efficiency of training LLMs. For example, quantization reduces the
numeric precision of model weights and activations and speeds up training and inference (Dettmers
et al., 2022; 2023; Xiao et al., 2023). Knowledge distillation (Hinton et al., 2015; Sanh et al., 2019;
Jiao et al., 2020; Sun et al., 2020), which trains a smaller model on a larger model’s prediction, is
shown to be effective for task-specific models (Xia et al., 2022). For pre-training LLMs, though
distilling from a teacher model is shown to improve the quality of student models given the same
number of training steps (Rae et al., 2021; Blakeney et al., 2022), it is less cost-effective than pruning
and continued training due to the exceeding inference cost incured by the teacher model (Jha et al.,
2023). More methods have been introduced to enhance the efficiency of training LMs, such as
dynamic architectures (Gong et al., 2019; Zhang & He, 2020) and efficient optimizers (Chen et al.,
2023; Liu et al., 2023). However, as indicated by (Kaddour et al., 2023; Bartoldson et al., 2023), the
promised gains in training efficiency may not be consistently realized.

There are also data-based approaches to enhance training efficiency. Eliminating duplicated data is
found to be effective (Lee et al., 2021). Various batch selection techniques propose to prioritize data
based on criteria such as higher losses (Jiang et al., 2019) or a greater reducible loss (Mindermann
et al., 2022). Xie et al. (2023) propose to optimize data mixtures by training a proxy model to
estimate the optimal data weight of each domain.

6 DISCUSSION

Limitation and future work. First, The method heavily depends on the availability of open-
source pre-training datasets and models. If a specific domain is not covered in the pre-training
data, the method may not recover performance well on that domain. Second, Due to computational
constraints, we only experimented with a 7B parameter model as the source model. However, our
method is highly generalizable and can be scaled up to larger models in future research.

Conclusion. This work proposes structured pruning as an efficient method for creating competi-
tive smaller-scale LLMs. Our two-stage approach combines targeted structured pruning and contin-
ued pre-training (continued pre-training), and we introduce dynamic batch loading to improve pre-
training data efficiency. We train a series of competitive Sheared-LLaMA models using a fraction
of the compute required for standard pre-training. Our results show a promising path to producing
low-cost, small LLMs when strong large-scale models are available. As more capable LLMs and
larger pre-training datasets emerge, our method can easily extend to these advances to create even
better small models.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

We express our gratitude to Sadhika Malladi, Tanya Goyal, Ofir Press, Adithya Bhaskar, and the
Princeton NLP group for reviewing the paper and providing helpful feedback. We also thank the en-
gineering team at MosaicML for their invaluable assistance with implementation specifics using the
Composer package. Mengzhou Xia is supported by a Bloomberg Data Science Ph.D. Fellowship,
and Tianyu Gao is supported by an IBM PhD Fellowship. This research is also supported by Mi-
crosoft Azure credits through the “Accelerate Foundation Models Academic Research” Initiative.

REFERENCES

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Co-
jocaru, Merouane Debbah, Etienne Goffinet, Daniel Heslow, Julien Launay, Quentin Malartic,
Badreddine Noune, Baptiste Pannier, and Guilherme Penedo. Falcon-40B: an open large lan-
guage model with state-of-the-art performance. 2023.

Anthropic. Introducing claude, 2023.

Brian R Bartoldson, Bhavya Kailkhura, and Davis Blalock. Compute-efficient deep learning: Algo-
rithmic trends and opportunities. Journal of Machine Learning Research, 24:1–77, 2023.

Jason Baumgartner, Savvas Zannettou, Brian Keegan, Megan Squire, and Jeremy Blackburn. The
pushshift reddit dataset. ArXiv, abs/2001.08435, 2020.

Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Ra-
jani, Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. Open llm leaderboard. https:
//huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard, 2023.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Cody Blakeney, Jessica Zosa Forde, Jonathan Frankle, Ziliang Zong, and Matthew L Leav-
itt. Reduce, reuse, recycle: Improving training efficiency with distillation. arXiv preprint
arXiv:2211.00683, 2022.

Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and Song Han. Once-for-all: Train one
network and specialize it for efficient deployment. In International Conference on Learning
Representations, 2019.

Tianlong Chen, Jonathan Frankle, Shiyu Chang, Sijia Liu, Yang Zhang, Zhangyang Wang, and
Michael Carbin. The lottery ticket hypothesis for pre-trained bert networks. In Advances in
Neural Information Processing Systems, 2020.

Xiangning Chen, Chen Liang, Da Huang, Esteban Real, Kaiyuan Wang, Yao Liu, Hieu Pham, Xu-
anyi Dong, Thang Luong, Cho-Jui Hsieh, et al. Symbolic discovery of optimization algorithms.
arXiv preprint arXiv:2302.06675, 2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in Neural Information Processing Systems,
35:16344–16359, 2022.

10

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

Published as a conference paper at ICLR 2024

Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. Model compression and hardware
acceleration for neural networks: A comprehensive survey. Proceedings of the IEEE, 108(4):
485–532, 2020.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm.int8 (): 8-bit matrix
multiplication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy Liang, and Tatsunori B Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. arXiv preprint arXiv:2305.14387, 2023.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In International Conference on Learning Representations, 2018.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot, 2023. arXiv preprint arXiv:2301.00774, 2023.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason
Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text
for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric
Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language
model evaluation, September 2021.

Xinyang Geng and Hao Liu. Openllama: An open reproduction of llama, May 2023.

Linyuan Gong, Di He, Zhuohan Li, Tao Qin, Liwei Wang, and Tieyan Liu. Efficient training of
bert by progressively stacking. In International conference on machine learning, pp. 2337–2346.
PMLR, 2019.

Kshitij Gupta, Benjamin Thérien, Adam Ibrahim, Mats L Richter, Quentin Anthony, Eugene
Belilovsky, Irina Rish, and Timothée Lesort. Continual pre-training of large language models:
How to (re) warm your model? arXiv preprint arXiv:2308.04014, 2023.

Felix Hamborg, Norman Meuschke, Corinna Breitinger, and Bela Gipp. news-please: A generic
news crawler and extractor. In Proceedings of the 15th International Symposium of Information
Science, pp. 218–223, 2017.

Song Han, Huizi Mao, Dally, and William Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. In International Conference on
Learning Representations, 2016.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference
on Learning Representations, 2021.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2015.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic
bert with adaptive width and depth. Advances in Neural Information Processing Systems, 33:
9782–9793, 2020.

Ananya Harsh Jha, Dirk Groeneveld, Emma Strubell, and Iz Beltagy. Large language model distil-
lation doesn’t need a teacher. arXiv preprint arXiv:2305.14864, 2023.

11

Published as a conference paper at ICLR 2024

Angela H Jiang, Daniel L-K Wong, Giulio Zhou, David G Andersen, Jeffrey Dean, Gregory R
Ganger, Gauri Joshi, Michael Kaminksy, Michael Kozuch, Zachary C Lipton, et al. Accelerating
deep learning by focusing on the biggest losers. arXiv preprint arXiv:1910.00762, 2019.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
Tinybert: Distilling bert for natural language understanding. In Findings of the Association for
Computational Linguistics: EMNLP 2020, pp. 4163–4174, 2020.

Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Minervini, and Matt J Kusner. No train no gain:
Revisiting efficient training algorithms for transformer-based language models. arXiv preprint
arXiv:2307.06440, 2023.

Eldar Kurtic, Elias Frantar, and Dan Alistarh. Ziplm: Hardware-aware structured pruning of lan-
guage models. arXiv preprint arXiv:2302.04089, 2023.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
Petrov. Natural questions: A benchmark for question answering research. Transactions of the
Association for Computational Linguistics, 7:452–466, 2019.

François Lagunas, Ella Charlaix, Victor Sanh, and Alexander M Rush. Block pruning for faster
transformers. arXiv preprint arXiv:2109.04838, 2021.

Katherine Lee, Daphne Ippolito, Andrew Nystrom, Chiyuan Zhang, Douglas Eck, Chris Callison-
Burch, and Nicholas Carlini. Deduplicating training data makes language models better. arXiv
preprint arXiv:2107.06499, 2021.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In International Conference on Learning Representations, 2016.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. Starcoder: may the source be with
you! arXiv preprint arXiv:2305.06161, 2023.

Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt Keutzer, Dan Klein, and Joey Gonzalez.
Train big, then compress: Rethinking model size for efficient training and inference of transform-
ers. In International Conference on machine learning, pp. 5958–5968. PMLR, 2020.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342, 2023.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A
challenge dataset for machine reading comprehension with logical reasoning. In Proceedings of
the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI-20, pp. 3622–
3628, 2020.

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In Proceedings of the IEEE
international conference on computer vision, pp. 2736–2744, 2017.

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural networks through
l 0 regularization. In International Conference on Learning Representations, 2018.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural
network compression. In Proceedings of the IEEE international conference on computer vision,
pp. 5058–5066, 2017.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. arXiv preprint arXiv:2305.11627, 2023.

Sören Mindermann, Jan M Brauner, Muhammed T Razzak, Mrinank Sharma, Andreas Kirsch, Win-
nie Xu, Benedikt Höltgen, Aidan N Gomez, Adrien Morisot, Sebastian Farquhar, et al. Prioritized
training on points that are learnable, worth learning, and not yet learnt. In International Confer-
ence on Machine Learning, pp. 15630–15649. PMLR, 2022.

12

Published as a conference paper at ICLR 2024

MosaicML. composer, 2021.

MosaicML. Introducing mpt-7b: A new standard for open-source, commercially usable llms, 2023.
Accessed: 2023-05-05.

OpenAI. Gpt-4 technical report. ArXiv, abs/2303.08774, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in neural information processing systems, 35, 2022.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA dataset:
Word prediction requiring a broad discourse context. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1525–1534, 2016.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb
dataset for falcon llm: outperforming curated corpora with web data, and web data only. arXiv
preprint arXiv:2306.01116, 2023.

John Platt and Alan Barr. Constrained differential optimization. In Neural Information Processing
Systems, 1987.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108, 2019.

Victor Sanh, Thomas Wolf, and Alexander Rush. Movement pruning: Adaptive sparsity by fine-
tuning. Advances in Neural Information Processing Systems, 33:20378–20389, 2020.

Noam M. Shazeer. Glu variants improve transformer. ArXiv, abs/2002.05202, 2020.

Zhiqiang Shen, Tianhua Tao, Liqun Ma, Willie Neiswanger, Joel Hestness, Natalia Vassilieva, Daria
Soboleva, and Eric Xing. Slimpajama-dc: Understanding data combinations for llm training.
arXiv preprint arXiv:2309.10818, 2023.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. arXiv preprint arXiv:2306.11695, 2023.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. Mobilebert:
a compact task-agnostic bert for resource-limited devices. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pp. 2158–2170, 2020.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model,
2023.

TogetherAI. Redpajama-incite-base-3b-v1, 2023a.

TogetherAI. Redpajama: An open source recipe to reproduce llama training dataset, 2023b.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

13

Published as a conference paper at ICLR 2024

Trieu H. Trinh and Quoc V. Le. A simple method for commonsense reasoning. ArXiv,
abs/1806.02847, 2018.

Peiyi Wang, Lei Li, Liang Chen, Dawei Zhu, Binghuai Lin, Yunbo Cao, Qi Liu, Tianyu Liu, and
Zhifang Sui. Large language models are not fair evaluators. arXiv preprint arXiv:2305.17926,
2023a.

Yunhe Wang, Hanting Chen, Yehui Tang, Tianyu Guo, Kai Han, Ying Nie, Xutao Wang, Hailin Hu,
Zheyuan Bai, Yun Wang, et al. Pangu-pi: Enhancing language model architectures via nonlinear-
ity compensation. arXiv preprint arXiv:2312.17276, 2023b.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large language models. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP), pp. 6151–6162, 2020.

Johannes Welbl, Nelson F. Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
In Proceedings of the 3rd Workshop on Noisy User-generated Text, pp. 94–106, 2017.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in
deep neural networks. Advances in neural information processing systems, 29, 2016.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and accurate
models. In Proceedings of the 60th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 1513–1528, Dublin, Ireland, May 2022. Association for
Computational Linguistics. doi: 10.18653/v1/2022.acl-long.107.

Mengzhou Xia, Mikel Artetxe, Chunting Zhou, Xi Victoria Lin, Ramakanth Pasunuru, Danqi Chen,
Luke Zettlemoyer, and Veselin Stoyanov. Training trajectories of language models across scales.
In Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pp. 13711–13738, Toronto, Canada, July 2023. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2023.acl-long.767.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy Liang,
Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up
language model pretraining. arXiv preprint arXiv:2305.10429, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. HellaSwag: Can a ma-
chine really finish your sentence? In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, pp. 4791–4800, 2019.

Minjia Zhang and Yuxiong He. Accelerating training of transformer-based language models with
progressive layer dropping. Advances in Neural Information Processing Systems, 33:14011–
14023, 2020.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright,
Hamid Shojanazeri, Myle Ott, Sam Shleifer, et al. Pytorch fsdp: experiences on scaling fully
sharded data parallel. arXiv preprint arXiv:2304.11277, 2023.

Yukun Zhu, Ryan Kiros, Richard S. Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Tor-
ralba, and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by
watching movies and reading books. 2015 IEEE International Conference on Computer Vision
(ICCV), pp. 19–27, 2015.

14

Published as a conference paper at ICLR 2024

CONTENTS

1 Introduction 1

2 LLM-Shearing 2

2.1 Targeted Structured Pruning . 2

2.2 Dynamic Batch Loading . 4

3 Experiments 5

3.1 Setup . 5

3.2 Sheared-LLaMA Outperforms LMs of Equivalent Sizes 6

4 Analysis 7

4.1 Effectiveness of Dynamic Batch Loading . 7

4.2 Comparison to Other Pruning Approaches . 7

4.3 Additional Analysis . 8

5 Related Work 9

6 Discussion 9

A A Detailed Exposition of Paramaterizing Pruning Masks 16

B Reference Loss Predicted by Scaling Laws 16

C Training Details 17

D Model Configurations 17

E Instruction Tuning 17

F Additional Experiment Results 18

F.1 Data Usage in Continued Pre-training . 18

F.2 Comparison to LLM-Pruner . 19

F.3 Coding and Math Reasoning . 20

F.4 Scaling Reference vs. Source Reference . 20

F.5 Pruning Pythia Models . 21

F.6 Pruning from LLaMA1 vs LLaMA2 . 22

F.7 Comparison to Further Continual Pre-training INCITE-Base-3B 22

F.8 Excluding Easy Domains During Pruning . 23

F.9 Inference Speed Analysis . 24

G Frequently Asked Questions 24

15

Published as a conference paper at ICLR 2024

A A DETAILED EXPOSITION OF PARAMATERIZING PRUNING MASKS

The key idea behind the pruning algorithm is to apply masks to the model parameters. After learning
a binary mask, it is equivalent to removing the corresponding parameters. The mask is parameterized
using a hard concrete distribution introduced in Louizos et al. (2018). Given a masking variable z
parameterized by α, the hard concrete distribution is defined as follows:

u = U(0, 1)

s = Sigmoid
(
1

β

(
log

u

1− u
+ logα

))
s̄ = s(ζ − γ) + γ

z = min(1,max(0, s̄))

where U is the uniform distribution, β is a temperature parameter, s is a relaxed binary mask that
conforms to the hard concrete distribution, and ζ and γ are the bounds of the hard concrete distribu-
tion. The hard concrete distribution serves as a continuous relaxation of the binary mask, allowing
the model to learn the binary mask in a continuous manner during training. The effectiveness of
this trick in learning sparse structures in neural networks has been demonstrated in previous studies
(Wang et al., 2020; Xia et al., 2022). In our experiments, we set β = 0.83, ζ = 1.1, and γ = −0.1.

To enforce the sparsity constraint, the masks are trained alongside with Lagrange multipliers λ,
as defined in Equation (1). After pruning, the parameters corresponding to the learned masks are
removed to ensure that the resulting model shape matches the target model. In practical implementa-
tions, we set a threshold to binarize the masks. Due to the adoption of the hard concrete distribution,
the masks typically converge to binary values that match the target model shape in most cases,
thereby avoiding any inconsistencies. However, in rare instances where the masks do not converge
to exactly 0 or 1, the masking variables need to be absorbed into the resulting model parameters.

As discussed in Section 2, we apply masks to heads, intermediate dimensions, layers and hidden di-
mensions. For heads, we simply multiply the head output by the mask. For intermediate dimensions,
we apply the mask to the intermediate output. For layers, we apply the mask to the layer output.
For hidden dimensions, we apply the mask to both the head and mlp output. Applying the mask to
outputs is equivalent to removing the corresponding parameters. Please refer to composer llama.py
for more details.

B REFERENCE LOSS PREDICTED BY SCALING LAWS

The scaling law of language modeling is a function of model size N and dataset size D:

L(N,D) = E +
A

Nα
+

B

Dβ

where E captures the loss for the true language distribution in an ideal generation process, and
A,α,B, β are scaling factors related to model scale or data size. Models in the same model family
are usually trained with the same amount of tokens on the same data distribution. In this case, we
need a minimum of three models to estimate the constant E+ B

Dβ , A and α. If the models are trained
with different amount of tokens, we can estimate E,A, α,B, β with a minimal of 5 models. Note
that we will estimate the scaling factors for each domain seperately.

LLAMA2 models have been trained on the same 2T tokens (Touvron et al., 2023b). We take the
LLAMA2-7B, LLAMA2-13B, and LLAMA2-70B checkpoints, evaluate them on each domain’s
validation set, and fit the scaling factors with the corresponding loss. Given the limited data points
for estimating the scaling law constant, the projected loss of a hypothetical LLaMA-2.7B model may
be biased compared to the true value. Table 6 presents the predicted loss. The evaluation process
takes less than 4 A100 GPU hours to complete.

16

https://github.com/princeton-nlp/LLM-Shearing/blob/main/llmshearing/models/composer_llama.py

Published as a conference paper at ICLR 2024

Table 6: Estimated reference loss of hypothetical LLaMA2-1.3B and LLaMA2-2.7B models.

CC GitHub Book StackExchange Wiki ArXiv C4
LLaMA2-1.3B 1.964 0.746 2.139 1.612 1.759 1.445 2.125
LLaMA2-2.7B 1.871 0.688 2.033 1.535 1.630 1.356 2.033

C TRAINING DETAILS

We present the hyperparameters used in our experiments in Appendix C. We use fully sharded data
parallel (Zhao et al., 2023) to train our models in parallel. We use FlashAttention V1 (Dao et al.,
2022) to speed up training. We use a cosine learning rate scheduler and decay the learning rate to a
minimum of 10% of the peak value. We conduct some preliminary experiment to determine the peak
learning rate for learning the masking variables and Lagrange multiplers, and we find that a learning
rate of 1.0 works well for pruning. We do not tune any other hyper-parameters. The throughput is
dependent on the implementations and we believe that our throughput can be further improved by
adopting more advanced recent optimizations such as FlashAttention V2 (Dao et al., 2022) and a
more recent version of Composer (MosaicML, 2021).

Table 7: Training hyper-parameters and throughput.

Pruning Contined Pre-training

Training budget 0.4B 50B
Learning rate of z, ϕ, λ 1.0 -
Learning Rate of θ 0.0001 0.0001
LR warmup ratio 10% 3%
Batch size (tokens) 131K 1M
Evaluation interval m (steps) 50 400
Steps 3, 200 51, 200
GPUs 8 16
Throughput (tokens/s) 15K 145K (1.3B) / 77K (2.7B)

D MODEL CONFIGURATIONS

In this section, we provide the model configurations for both our Sheared-LLaMA models and the
baseline models, as illustrated in Table 8. Our design closely adheres to the architecture of Pythia-
1.4B and INCITE-Base-3B, albeit with some nuanced distinctions. A noteworthy difference is found
in the intermediate size of Sheared-LLaMA, which is a consequence of its lineage from LLaMA2-
7B. Notably, LLaMA2-7B employs a GLU variant (Shazeer, 2020) within its feed-forward layer,
comprising a gate matrix, an upward-projection matrix, and a downward-projection matrix. In
contrast, other models employ the conventional double-matrix feed-forward layer structure. Fur-
thermore, we acknowledge that the shearing algorithm will have to inherit the head dimension of
the source model. Instead of explicitly specifying the number of heads based on existing language
models, we set the target number of heads to be the target hidden dimension divided by the head
dimension of the source model.

E INSTRUCTION TUNING

We evaluate our models on instruction tuning and fine-tune both Sheared-LLaMA and baseline mod-
els on 10,000 instruction-response pairs sampled from the ShareGPT dataset10. For evaluation, we
sample another 1,000 instructions from ShareGPT, generate responses from our fine-tuned models
and other baseline models, and use GPT-4 as an evaluator to compare the two responses (Dubois
et al., 2023). We report the win rate of our model compared to the baseline model.

During instruction tuning training, the instruction is prepended with “You are a helpful assistant.
Write a response that appropriately completes the request.”. For evaluating the instruction tuning

10https://sharegpt.com. We only use the first round in the multi-turn chat history.

17

https://sharegpt.com

Published as a conference paper at ICLR 2024

Table 8: Model configurations of our Sheared-LLaMA and baseline models.

Model #Param #Layers Hidden Intermediate #Heads Head Dim

OPT-1.3B 1.3B 24 2048 8192 32 64
Pythia-1.4B 1.4B 24 2048 8192 16 128
TinyLlama-1.1B 1.1B 22 2048 5632 32 64
Sheared-LLaMA-1.3B 1.3B 24 2048 5504 16 128

OPT-2.7B 2.7B 32 2560 10240 32 80
Pythia-2.8B 2.8B 32 2560 10240 32 80
INCITE-Base-3B 2.8B 32 2560 10240 32 80
OpenLLaMA-3B 2.7B 26 3200 8640 32 100
Sheared-LLaMA-2.7B 2.7B 32 2560 6912 20 128

LLaMA2-7B 6.7B 32 4096 11008 32 128

generations, Wang et al. (2023a) observes using GPT models as a judge could change its preference
when swapping the presentation order of the two outputs. Therefore, we compare each output pair
twice by swapping the presentation order of the two outputs and finally report the average win-rate
of the two rounds to eliminate the position bias.

We randomly select an output generated by Sheared-LLaMA-1.3B and Sheared-LLaMA-2.7B in
response to a given instruction, and present the generations in Table 10. Our findings demonstrate
that, after instruction tuning, Sheared-LLaMA-2.7B consistently produces long, coherent, and in-
formative outputs in response to the instruction.

Table 9: Training hyper-parameters for instruction tuning.

Instruction Tuning

Learning Rate of θ 5e− 5
LR warmup ratio 3%
Batch size (tokens) 128
GPUs 8

F ADDITIONAL EXPERIMENT RESULTS

F.1 DATA USAGE IN CONTINUED PRE-TRAINING

Figure 6 illustrates the evolution of domain weights throughout the training process and the final
cumulative data usage for each domain. The trajectory reveals that the domain weights stabilize after
approximately 30% of the training. In contrast to other domains, Wikipedia exhibits an anomalous
spike early in the training process. The remaining domains show a steady, monotonic change in data
loading over time, as expected.

0 10 20 30 40 50
#Tokens for Training (B)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
om

ai
n

W
ei

gh
t

0 10 20 30 40 50 60 70
Data Proportion in Training (%)

CC

GitHub

Book

SE

Wiki

Arxiv

C4

67.0%

4.5%

4.5%

2.0%

4.5%

2.5%

15.0%

36.1%

0.8%

9.1%

1.0%

3.1%

0.7%

49.2%

Original
Dynamic Batch Loading

Figure 6: Left: Data weight of each batch during the continued pre-training stage. Right: Cumulative
data usage for each domain.

18

Published as a conference paper at ICLR 2024

Table 10: An example output from Sheared-LLaMA-1.3B and Sheared-LLaMA-2.7B. It shows that
Sheared-LLaMA can generate long, coherent, and informative responses after instruction tuning.

Prompt: Act as semiconductor industry analyst

Sheared-LLaMA-1.3B: As a semiconductor industry analyst, I would be
responsible for conducting market research and analysis to help
companies in the industry understand and respond to market trends,
customer preferences, and competitive dynamics. This would include
analyzing market data such as sales, market share, and industry trends,
as well as conducting interviews with industry leaders, executives, and
customers to gain insights into customer needs and preferences. I would
also be responsible for developing and implementing marketing strategies
to promote products and services, and for identifying and pursuing new
business opportunities.

Sheared-LLaMA-2.7B: As a semiconductor industry analyst, my primary
responsibility is to provide insightful and accurate analysis on the
global semiconductor market. This includes evaluating the performance
of individual companies, industries, and trends within the market.

Here are some key areas where I would focus my analysis:

1. Market size and growth: I would track the size of the global
semiconductor market and analyze the growth prospects for each segment,
such as memory, logic, and sensors.
2. Competitive landscape: I would assess the competitive landscape,
including the top players, their market share, and strategic moves.
3. Technology trends: I would monitor the development of new
technologies, such as 5G, AI, and IoT, and their impact on the
semiconductor industry.
4. Industry trends: I would track industry trends, such as the shift
towards sustainable technologies, and evaluate their impact on the
market.
5. Market forecasts: I would provide forecasts for the semiconductor
market, including revenue and unit shipment growth, based on a range of
scenarios and assumptions.

In addition to these areas, I would also keep track of industry news and
developments, and provide insights on their impact on the market.

F.2 COMPARISON TO LLM-PRUNER

To ensure a fair comparison with the LLM-Pruner approach, we match the parameters (excluding
embeddings) to be roughly the same as our final model (1.23B), as embedding sizes do not affect
inference speed. We continue pre-training the pruned models derived from both LLM-Pruner and
our proposed targeted structured pruning. The total number of tokens for pruning and continued pre-
training is controlled to be the same, and data from the RedPajama dataset is used directly without
applying dynamic batch loading. We demonstrate that our proposed targeted structured pruning
is a better approach compared to LLM-Pruner from three aspects: the loss trajectory, the model
architecture, and the inference speed.

In terms of loss trajectory, Figure 7 shows that our proposed targeted structured pruning achieves a
lower loss than LLM-Pruner when consuming the same amount of data.

Table 11 compares the model configurations for an LLM-Pruner pruned model and our pruned
model. The LLM-Pruner model has an unconventional architecture where the intermediate size is
smaller than the hidden size, largely due to the algorithm’s inability to prune the hidden dimension
and layers, revealing a limitation of LLM-Pruner.

In terms of training throughput and inference speed, we find Sheared-LLaMA structures run more
efficiently than LLM-Pruner models. We performed an inference speed analysis comparing LLM-
pruner and Sheared-LLaMA’s model architectures using a single A100 GPU to generate up to 2048
tokens. As shown in Table 12, our pruned model architecture is significantly more efficient than

19

Published as a conference paper at ICLR 2024

LLM-Pruner at inference time. Additionally, LLM-Pruner’s model architecture introduces substan-
tial overhead during continued pretraining (Measured with 16 A100 80GB GPUs.), with a training
throughput of around 60% of Sheared-LLaMA’s. Overall, our Sheared-LLaMA architecture enables
higher throughput for both inference and continued training compared to LLM-Pruner.

In summary, we have demonstrated that at the same parameter scale, our pruning method produces
a model that has a lower perplexity (loss), a more reasonable final model architecture, and a faster
inference speed. We have effectively shown our targeted structured pruning algorithm to be more
effective for large-scale LLM pruning compared to LLM-Pruner.

1 2 3 4 5 6
#Tokens for Training (B)

1.9

2.1

2.3

2.5
Lo

ss

LLM-Pruner (Ma et al., 2023)
Ours

Figure 7: The loss of LLM-Pruner and Sheared-LLaMA during the continued pre-training stage.
Note that we exclude dynamic batch loading and use the same data distribution for training both
models for a fair comparison.

Table 11: Model structure of Pythia-1.4B, LLM-pruner (1.6B), and Ours (1.3B).

Layers Heads Head size Intermediate size Hidden size Params
Pythia-1.4B 24 16 128 8192 2048 1.4B

LLM-pruner (1.6B) 32 7 128 2201 4096 1.6B
Sheared-LLaMA (1.3B) 24 16 128 5504 2048 1.3B

Table 12: Training throughput and generation speed of LLM-pruner (1.6B) and Sheared-LLaMA
(1.3B). With a similar parameter count, our pruned model structure has a lower perplexity when
fine-tuned with the same amount of tokens (around 6B tokens). Yet our pruned model architectures
are way more efficient for both training and inference.

Generation Speed Training Throughput PPL
LLM-Pruner 43 tokens/s 83K tokens/s 7.09
Sheared-LLaMA 58 tokens/s 139K tokens/s 6.85

F.3 CODING AND MATH REASONING

We examine the math and coding abilities of our pruned models compared to other language models.
We find that the math ability of existing 3B parameter models, including Sheared-LLaMA, is still
far below that of larger models. We also find that Sheared-LLaMA’s coding ability lags behind
models known to be trained on more code data, like Pythia-1.4B and Open-LLaMA-3B-v2. Sheared-
LLaMA’s coding ability likely comes from the original LLaMA2 model, speculated to have used
more code data, and the minimal code data used in our pruning experiments.

F.4 SCALING REFERENCE VS. SOURCE REFERENCE

Figure 8 This section compares the performance of Sheared-LLaMA when trained with the scaling
reference and the source reference in dynamic batch loading. The scaling reference uses the pre-
dicted loss from the scaling law as the reference loss, while the source reference uses the loss of the

20

Published as a conference paper at ICLR 2024

Table 13: Evaluation results on GSM8K and HumanEval and training percentage and tokens in
ArXiv and GitHub.

GSM8K (8) HumanEval ArXiv Github ArXiv GitHub
Models EM Pass@1 Pass@5 Percentage Percentage Tokens Tokens
LLaMA2-7B 13.7 12.8 23.8 - - - -

OPT-2.7B 0.1 0.0 0.0 - - - -
Pythia-2.8B 1.7 5.1 14.6 9.0% 7.6% 26.9 22.8
INCITE-Base-3B 1.8 4.3 4.9 2% 4.5% 16.0 36.0
Open-LLaMA-3B-v1 2.5 0.0 1.2 2% 4.5% 20.0 45.0
Open-LLaMA-3B-v2 2.7 10.4 20.1 - - - -
Sheared-LLaMA-2.7B (Source) 2.7 3.7 5.5 0.7% 0.4% 0.3 0.2
Sheared-LLaMA-2.7B (Scaling) 2.4 4.9 9.2 1.0% 0.8% 0.5 0.4

source model as the reference loss. Although both methods efficiently train the model, the scaling
reference consistently achieves slightly better downstream performance.

10 20 30 40 50
#Tokens for Training (B)

51

52

53

54

55

56

57

Av
er

ag
e

D
ow

ns
tre

am
 A

cc
 (%

) Source reference
Scaling reference

Figure 8: Average downstream peformance of
Sheared-LLaMA-1.3B with the scaling refer-
ence and the source reference.

F.5 PRUNING PYTHIA MODELS

During the initial development of the approach, we experimented with a smaller-scale model on
Pythia (Biderman et al., 2023), a series of open-source models with open-source training data across
scales from 70M to 13B. We took the Pythia-440M model, pruned it down to 160M parameters,
and continued pre-training it using Pythia models’ training data Gao et al. (2020). Specifically,
we used 0.4B tokens for pruning and 33B tokens (32,000 steps) for continued pre-training of the
pruned model. Table 14 shows that the pruned model achieves a lower perplexity than the original
model, and continued pre-training further improves performance. Notably, with minimal compute
consumption (10B tokens), pruning a Pythia-410M model reaches roughly the same performance as
pretraining Pythia-160M from scratch. Adding more tokens further enhances the performance.

Table 14: Zero-shot performance of Pythia-160M and Sheared-Pythia.

Training Tokens Performance

Pythia-160M 300B 43.56
Sheared-Pythia (300B) + 10B 43.51
Sheared-Pythia (300B) + 33B 45.78

Additionally, we compared Sheared-Pythia-160M against keeping pre-training the Pythia-160M
model with the same amount of tokens. From Figure 9, we can see that continuing pre-training
Pythia-160M starts off performing better, however, the Sheared-Pythia-160M learns faster and even-
tually exceeds the performance of continuing pretraining on Pythia-160M. These are some very
preliminary results we see in this particular setting.

21

Published as a conference paper at ICLR 2024

10 20 30
#Tokens for Training (B)

42.5

43.0

43.5

44.0

44.5

45.0

45.5

46.0

Av
er

ag
e

D
ow

ns
tre

am
 A

cc
 (%

)

Continue pre-training Pythia-160M
Sheared-Pythia-160M

Figure 9: The downstream performance of continued pre-training Pythia-160M and Sheared-Pythia-
160M. Sheared-Pythia-160M eventually outperforms the performance of continued pre-training
Pythia-160M.

We think that the benefit of pruning a larger model will be even more significant, based on the
conclusions from a previous work (Li et al., 2020) showing that pruning larger than compress leads
to better performance as the larger models are easier to optimize. However, we’d like to defer more
detailed analysis to future work.

F.6 PRUNING FROM LLAMA1 VS LLAMA2

This section compares the performance of pruning from LLaMA1 and LLaMA2. Both models
demonstrate strong downstream task performance, although pruning from LLaMA2 unsurprisingly
yields a consistent advantage. However, it is worth noting that the performance difference between
the two is not very large.

10 20 30
#Tokens for Training (B)

47

48

49

50

Av
er

ag
e

D
ow

ns
tre

am
 A

cc
 (%

) Pruned from LLaMA 1
Pruned from LLaMA 2

Figure 10: A comparison between pruning from
LLaMA1 and LLaMA2 with dynamic loading
for 1.3B.

F.7 COMPARISON TO FURTHER CONTINUAL PRE-TRAINING INCITE-BASE-3B

We examine if pruning produces a better initialization for continued pre-training than an existing
LLM of equivalent size by comparing the performance of a continually pre-trained INCITE-Base-
3B model and Sheared-LLaMA-2.7B. We present the loss curves in Figure 11 and the downstream
performance in Figure 12. INCITE-Base-3B model starts with higher task accuracy but plateaus
after training, while Sheared-LLaMA rapidly improves and surpasses the INCITE-Base-3B model,
suggesting that pruned models from a strong base model serve as a better initialization.11

11In cases where the existing small model is competitive compared to the pruning source model, the small
model may offer a better starting point than a pruned model. Intuitively, the larger the discrepancy in perfor-
mance between the source model and the small model, the more advantages the pruned model has.

22

Published as a conference paper at ICLR 2024

10 20 30
#Tokens for Training (B)

1.7

1.8

1.9

2.0

2.1

2.2

Lo
ss

Cont' pre-training INCITE
Cont' pre-training our pruned model

Figure 11: The loss of continued pre-training
INCITE-3B and our pruned LLaMA model.
Both models have around 2.7B parameters.

10 20 30
#Tokens for Training (B)

51

52

53

54

55

56

Av
er

ag
e

D
ow

ns
tre

am
 A

cc
 (%

)

Cont' pre-training INCITE
Cont' pre-training our pruned model

Figure 12: Average downstream performance
of continuing pre-training Sheared-LLaMA vs
INCITE-Base-3B.

We used a learning rate 1e− 5 for continued pre-training INCITE-Base-3B, along with a scheduler
to warm up the learning rate to 1e − 5 in the first 3% of the training steps, and follows a cosine
decay schedule. In hindsight, how we continued pre-training the INCITE-Base-3B model may not
be optimal according to recent research (Gupta et al., 2023).

F.8 EXCLUDING EASY DOMAINS DURING PRUNING

During the development of this project, we explored an easy and intuitive idea to address the im-
balanced loss decreasing rate during pruning and continued pre-training. Specifically, we excluded
GitHub, StackExchange, and ArXiv data during pruning since these three domains’ losses decrease
the fastest. We pruned LLaMA1-13B down to 7B using a composite dataset of C4, CC, Wiki, and
Books, with a heuristically constructed proportion of 40%, 40%, 10%, 10%, respectively. We then
continued pre-training the pruned model on the RedPajama dataset, which includes the excluded
domains during pruning.

The results showed that the perplexity difference was more even across domains when pruning
without using data from these three domains. However, after continued pre-training with all data
from the seven domains in the RedPajama dataset, the loss disparity grew, with the GitHub difference
being much smaller than domains like C4. These results demonstrate that simply excluding the
domains that are easy to recover during the pruning stage does not inherently resolve the imbalance
of loss difference across domains.

This set of experiments motivated us to develop dynamic batch loading as a more effective and
principled approach to address the domain-specific loss disparities that arise during pruning and
continued pre-training.

Table 15: Pruning LLaMA1-13B with a composite of 40% of CC, 40% of C4, 10% of Books and
10% of Wikipedia to a 7B model. We present the domain loss of the source model (LLaMA1-13B),
the loss of the pruned model and the loss after continued pre-training of the pruned model. The loss
differentce from the target model (LLaMA1-7B) is more balanced after pruning, but more disparate
after continued pre-training with all the domains.

CC GitHub Book StackExchange Wikipedia ArXiv C4
LLaMA1-13B 1.7585 0.6673 1.9499 1.4207 1.4331 1.3855 1.8619

LLaMA1-7B 1.8366 0.7108 2.0322 1.5112 1.5291 1.4340 1.9331

Pruned model (w/o three domains) 2.1849 1.0971 2.3726 1.9080 2.1151 1.7542 2.3187
diff from LLaMA1-7B 0.3483 0.3863 0.3404 0.3968 0.5860 0.3202 0.3857

Continued Pretraining (w RP) 1.8344 0.6325 2.0984 1.4542 1.4549 1.4460 2.0395
diff from LLaMA1-7B -0.0022 -0.0783 0.0661 -0.0570 -0.0743 0.0120 0.1064

23

Published as a conference paper at ICLR 2024

F.9 INFERENCE SPEED ANALYSIS

In this section, we analyze the inference speed of different pruning approaches, including the fol-
lowing models:

• The source model, i.e., LLaMA2-7B.

• Sheared-LLaMA-1.3B and Sheared-LLaMA-2.7B.

• Wanda pruning (Sun et al., 2023) to prune LLMs into a semi-structured 2:4 and 4:8 sparsity
pattern in one-shot.

• LLM-Pruner (Ma et al., 2023), which produces a model with the same number of non-
embedding parameters as Sheared-LLaMA.

We use an A100 GPU to test the generation speed (tokens/second) of all these pruned models. We
generate up to 2048 tokens with a batch size of 1. We present the results in Table 16. Sheared-
LLaMA’s speed is better than that of LLM-Pruner, largely due to the more optimized resulting
architecture. As shown in Table 11, LLM-pruner produces a model structure with a smaller interme-
diate size than the hidden size, which goes against the transformer designs where the intermediate
size is at least 3-4 times the hidden size.

Wanda-type semi-structured pruning also achieves inference speedup compared to the source model.
However, it is not as fast as small dense models and is less flexible because inference speedup is only
feasible when the sparsity is at 50%.

Table 16: Inference speed (tokens/s) of different pruning approaches.

Model Throughput
7B

LLaMA-7B 37

1.3B 2.7B
LLM Pruner 41 40
Sheared-LLaMA 62 47

50% sparsity
Wanda (2:4) - 42
Wanda (4:8) - 42

G FREQUENTLY ASKED QUESTIONS

In this section, we provide answers to frequently asked questions about our work.

▷ Is it fair to say that Sheared-LLaMA models can be produced using only 50B tokens, even
though the source model (LLaMA2) was trained on 2T tokens?

At the time of our paper submission, there were no models sufficiently trained for 2T tokens at the
1.3B and 2.7B scale to allow for a fair comparison. However, the recently released TinyLlama-1.1B
models, trained on 3T tokens, provide a suitable point of reference. We observe that the performance
of TinyLlama-1.1B is comparable to Sheared-LLaMA-1.3B on downstream benchmarks when used
as base models, and a similar observation can be found in Wang et al. (2023b). Considering that
TinyLlama-1.1B is trained with 3T tokens, which exceeds the total amount of pre-training and prun-
ing used by Sheared-LLaMA-1.3B (2T for pre-training the source model, and 50.4B for pruning and
continued training), we regard this as strong evidence suggesting that pruning might be an intrinsi-
cally more efficient and effective approach to training moderate-sized LMs.

▷ How is dynamic batch loading different from Doremi (Xie et al., 2023)?

Dynamic batch loading and Doremi share the same principle, which adjusts the data distribution
of each domain based on the model’s loss using an exponential ascent algorithm. However, dy-

24

Published as a conference paper at ICLR 2024

namic batch loading offers a more flexible and less complex approach that can be applied to various
scenarios.

Doremi follows a multi-step process: (1) Train a reference model. (2) Train a proxy model to
estimate the proportion of data from each domain by adjusting the proportion based on the proxy
model’s loss. (3) Train the final model using the estimated data distribution. In contrast, dynamic
batch loading can be directly applied to any model without the need for a reference or a proxy
model. Dynamic batch loading begins by deriving a reference loss based on a fixed evaluation
set. This reference loss can be estimated using scaling laws or simply by using the source model’s
evaluation loss. During training, the data proportion is adjusted in real-time based on the periodically
measured evaluation loss. The dynamic batch loading process can be seamlessly integrated into
the standard pre-training pipeline, as evaluating the loss is computationally efficient and does not
introduce significant overhead. Although dynamic batch loading relies on a fixed evaluation set,
which may not fully represent the model’s performance on the entire dataset, this issue can be
mitigated by periodically updating the evaluation set during training.

▷ When multiple source model sizes are available, how do you choose the source model size for
pruning?

Determining the optimal source model size for pruning is challenging. However, we can perform
a thought experiment by considering each parameter as a uniform ”unit of information.” For in-
stance, if a source model with 7B parameters is trained using 2T tokens, we can assume that each
parameter carries approximately 285 tokens of information, assuming a uniform distribution of in-
formation across the parameters. When randomly pruning this model down to 1.3B parameters, the
total amount of information is reduced to 1.3B × 285 = 0.37T tokens. In contrast, if we prune a
13B model (also trained with 2T tokens) down to 1.3B parameters, the total amount of information
is reduced to 1.3B × (2T / 13B) = 0.2T tokens. Although this estimation is rough, it suggests that
pruning from a larger model may be less effective, especially when the source models are trained
with the same number of tokens. It is important to note that this is a simplified estimate, and the
assumption of uniform information distribution across parameters may not hold in practice. More-
over, the structured pruning process itself clearly breaks this assumption. Nonetheless, this thought
experiment provides a general sense of how the source model size can impact the effectiveness of
pruning.

25

	Introduction
	LLM-Shearing
	Targeted Structured Pruning
	Dynamic Batch Loading

	Experiments
	Setup
	Sheared-LLaMA Outperforms LMs of Equivalent Sizes

	Analysis
	Effectiveness of Dynamic Batch Loading
	Comparison to Other Pruning Approaches
	Additional Analysis

	Related Work
	Discussion
	A Detailed Exposition of Paramaterizing Pruning Masks
	Reference Loss Predicted by Scaling Laws
	Training Details
	Model Configurations
	Instruction Tuning
	Additional Experiment Results
	Data Usage in Continued Pre-training
	Comparison to LLM-Pruner
	Coding and Math Reasoning
	Scaling Reference vs. Source Reference
	Pruning Pythia Models
	Pruning from LLaMA1 vs LLaMA2
	Comparison to Further Continual Pre-training INCITE-Base-3B
	Excluding Easy Domains During Pruning
	Inference Speed Analysis

	Frequently Asked Questions

