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Abstract

We present a principled, per-instance approach to
quantifying the difficulty of unlearning via fine-
tuning. We begin by sharpening an analysis of
noisy gradient descent for unlearning (Chien et al.,
2024), obtaining a better utility—unlearning trade-
off by replacing worst-case privacy loss bounds
with per-instance privacy losses (Thudi et al.,
2024), each of which bounds the (Rényi) diver-
gence to retraining without an individual data
point. To demonstrate the practical applicability
of our theory, we present empirical results show-
ing that our theoretical predictions are born out
both for Stochastic Gradient Langevin Dynamics
(SGLD) as well as for standard fine-tuning with-
out explicit noise. We further demonstrate that
per-instance privacy losses correlate well with
several existing data difficulty metrics, while also
identifying harder groups of data points, and in-
troduce novel evaluation methods based on loss
barriers. All together, our findings provide a foun-
dation for more efficient and adaptive unlearning
strategies tailored to the unique properties of indi-
vidual data points.

1. Introduction

Machine unlearning aims to efficiently remove the influence
of specific subsets of training data, called forget sets. The
need for unlearning arises in many scenarios, such as han-
dling requests for data deletion (Mantelero, 2013; Cooper
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et al., 2024), mitigating the impact of poisoning attacks (Liu
et al., 2024b), or updating out-of-date information.

In modern large-scale Al training regimes, exact unlearn-
ing (i.e., anything equivalent to retraining the model from
scratch, without the forget set) is prohibitively expensive.
To meet this challenge, a range of approximate unlearning
methods have been developed.

Approaches based on ideas from differential privacy (DP)
offer meaningful worst-case guarantees (Guo et al., 2020;
Sekhari et al., 2021). These will be our focus. Unfortunately,
for non-convex models, like neural networks, DP-based un-
learning guarantees have so far come with higher error than
their counterparts not designed to support unlearning, limit-
ing their practical applicability. One of the key problems is
the mismatch between the worst-case, data-agnostic nature
of DP and the data-dependent nature of unlearning. Our
work attempts to bridge this gap.

Alongside work on theoretical guarantees, research into
heuristics has flourished. The aesthetics of such research
is to combine strong utility with empirical evaluations on
metrics inspired by DP-based notions of approximate un-
learning. It is not uncommon, however, for state of the art
heuristics to be caught out by new attacks, revealing that
they do not meet stringent theoretical criteria (Hayes et al.,
2024; Pawelczyk et al., 2024). These challenges highlight
the need for methods that can balance strong theoretical
guarantees with strong practical performance.

Towards understanding failure modes of unlearning, recent
empirical work has shown that the behavior of unlearning
varies considerably across individual data points (Zhao et al.,
2024; Baluta et al., 2024). While prior work has attempted to
incorporate these insights into methodology and evaluation,
we lack a theoretical basis to 1) explain how individual data
influence unlearning and 2) exploit this effect optimally.

In this work, we introduce a principled approach to esti-
mating the unlearning difficulty of individual data points.
Our approach applies to learning with noisy gradient de-
scent. Using recent results in differential privacy with Rényi
divergences (Thudi et al., 2024), our proposed measures—
per-instance privacy losses—bound the Rényi divergence
between a model trained with and without an individual
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data point. Critically, per-instance privacy losses can be
efficiently estimated during training, based on the norms of
gradient associated to individual data points.

Armed with per-instance privacy losses, we revisit Chien
et al.’s 2024 theoretical analysis of noisy gradient descent as
an unlearning scheme (coined “Langevin unlearning” a.k.a
“noisy fine-tuning”), based on training without the forget
set. Our analysis provides a theoretical foundation for un-
derstanding how the number of iterations needed to ap-
proximately unlearn scales with per-instance privacy losses.
Empirical validation demonstrates that our estimates of per-
instance privacy losses serve as reliable predictors of un-
learning difficulty under noisy fine-tuning.

While noisy fine-tuning is not widely used, standard (noise-
less) fine-tuning is a surprisingly effective and simple ap-
proximate unlearning approach, and serves as a building
block for SOTA methods, such as L1-Sparse fine-tuning
(Hayes et al., 2024; Liu et al., 2024a). We demonstrate
the applicability of our theoretical insights, showing they
extend empirically to standard fine-tuning-based unlearning,
even in the absence of explicit noise injection. Empiri-
cally, we find that per-instance privacy losses continue to
predict unlearning difficulty for fine-tuning across multiple
approximate unlearning metrics, datasets, and architectures.
Beyond fine-tuning, results with the L1-Sparse method (Liu
et al., 2024a; Hayes et al., 2024) show privacy losses once
again predict the number of steps to unlearn.

Privacy losses may also offer a more refined measure of data
difficulty for unlearning. We show that privacy losses are
strongly correlated with some (cheaper-to-compute) proxy
measures of data difficulty studied in prior work. On the
other hand, we show that privacy losses identify more “diffi-
cult” data, which may be useful for evaluation more broadly.

Besides standard empirical unlearning metrics, we evaluate
privacy losses on a novel loss-landscape-based metric, based
on linear connectivity and loss barriers (Frankle et al., 2020;
Fort et al., 2020). While past unlearning metrics look at
the output (e.g., loss) of an individual model, loss barriers
capture some of the geometry of the loss landscape. Under
this stringent test, fine-tuning is able to successfully unlearn.
Interestingly, loss barriers also give insight into the differ-
ences between difficult and easy data points: points with
higher privacy losses start off with larger loss barriers which
need to be overcome to unlearn.

Our contributions can be summarized as follows:

e Per-Instance Theoretical Analysis of Unlearning.
We revise Chien et al.’s analysis of noisy gradient de-
scent for unlearning-via-fine-tuning, replacing a worst-
case Rényi-DP bound with recent per-instance privacy
losses (Thudi et al., 2024). By exploiting that typical

data points may have far less influence on the learned
model, our per-instance analysis uncovers an improved
trade-off between unlearning and utility compared to
prior worst-case analyses.

e Empirical Validation of Unlearning Difficulty. We
demonstrate the practical applicability of our theoreti-
cal insights, showing that per-instance privacy losses re-
liably predict unlearning difficulty in experiments, both
for noisy gradient descent and standard fine-tuning.

 Efficient Proxies for Privacy Losses. We demon-
strate that cheap proxy measures of data difficulty are
strongly correlated with per-instance privacy losses.
This identifies practical and scalable alternatives for
assessing unlearning quality and forget set difficulty,
particularly in resource-constrained settings where full
privacy loss computation might be prohibitive.

e Improved Identification of Difficult Data. Unlike
existing heuristics for capturing aspects of unlearning
difficulty, we show that privacy losses identify harder
groups of data points, offering a versatile and theoreti-
cally justified measure of unlearning difficulty.

* Loss Barrier Analysis of Unlearning. We introduce
loss barriers (modulo permutation) as a way to evaluate
unlearning. We find that the loss barrier is significantly
reduced after unlearning, reaching levels comparable
to baseline levels.

* Broader Implications for Unlearning Methodology.
Our empirical findings suggest that per-instance pri-
vacy losses may be useful in adapting other fine-tuning-
based algorithms, such as L1-sparse.

2. Related Work

Unlearning Unlearning (Cao & Yang, 2015) aims to re-
move the influence of training data. In the context of neural
networks and non-convex learning problems, even highly
optimized exact approaches (Bourtoule et al., 2021) are
computationally intensive. Going beyond exact unlearn-
ing, Ginart et al. (2019) introduced a notion of approxi-
mate unlearning, inspired by differential privacy (Dwork
et al., 2014). This approach relies on approximate statistical
indistinguishability between retraining and unlearning, in
exchange for better efficiency or utility compared to exact
unlearning. Guo et al. (2020); Neel et al. (2021) studied
approximate unlearning algorithms for convex models based
on gradient descent using all the training data except those
data to be forgotten (a.k.a., fine-tuning), followed by the ad-
dition of noise (often via the Gaussian mechanism, Dwork
et al. 2006) to obtain statistical indistinguishability. Neel
et al. (2021) proved that, under various assumptions, their
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approach achieves approximate unlearning in a sequential
framework with fixed per-deletion runtime.

For non-convex models, a plethora of approximate unlearn-
ing methods have been proposed with empirical validation,
rather than theoretical guarantees (Graves et al., 2021; Goel
et al., 2022; Thudi et al., 2022; Kurmanji et al., 2024; Liu
et al., 2024a; Fan et al., 2023). While these approaches are
shown to work on some metrics, recent work shows that
several unlearning methods fail against more sophisticated
attacks for either privacy or poisoning (Hayes et al., 2024;
Pawelczyk et al., 2024).

Given the heuristic nature of many unlearning methods, a
line of work has attempted to obtain a better understand-
ing of their failure modes. Zhao et al. (2024); Baluta et al.
(2024); Fan et al. (2025); Barbulescu & Triantafillou (2024)
identified properties of forget sets that influence the be-
haviors of approximate unlearning algorithms. Zhao et al.
(2024); Barbulescu & Triantafillou (2024) also derived im-
proved unlearning methods based on these insights, for
vision classifiers and LLMs, respectively. However, we lack
a theoretical understanding of the underlying relationship
between the identified factors and unlearning difficulty.

Recently, Chien et al. (2024) studied Langevin dynamics
for unlearning and introduced an approximate method with
privacy guarantees for non-convex models that we build
upon in this work, replacing a worst-case bound by a recent
per-instance privacy bound. Their method leverages noisy
gradient descent, for both the training algorithm, as well as
during (noisy) fine-tuning at unlearning time. While our the-
oretical analysis considers that same setup, we empirically
also investigate standard training without noise addition.

Per-Instance Differential Privacy Differential privacy
(DP) is a standard approach to privacy-preserving data analy-
sis (Dwork et al., 2006; 2014) and machine learning (Chaud-
huri et al., 2011; Abadi et al., 2016). DP methodology
provides an upper bound on the divergence between output
distributions under neighbouring datasets, i.e., when only
one individual data point is altered. Since this upper bound
needs to hold for every dataset and all of its neighbors, DP
is a worst-case privacy notion with a single privacy param-
eter, shared among all individual data points. However, in
practice, different individual points have different effects
when training a machine learning model (Thudi et al., 2024;
Yu et al., 2023). For instance, some data points have a
much smaller gradient norm than others, making the worst-
case privacy analysis for these points over-conservative, and
leads to unnecessary degradations in privacy-utility trade-
offs. To mitigate such degradations, Ghosh & Roth (2011)
and Cummings & Durfee (2020) have analyzed individual
sensitivity rather than worst-case sensitivity, which led to an
alternative but weaker notion of privacy, called per-instance
(or individual, or personalized) DP. Per-instance DP as-

signs a different privacy loss for different data points in a
dataset, i.e., it is not worst-case, and it is less pessimistic
than standard DP for points that do not affect the output
distribution as much as the worst-case points. Building on
per-instance DP, Ebadi et al. (2015) and Feldman & Zrnic
(2021) have introduced algorithms that filter out data points
once their per-instance DP loss exceeds a budget in database
query problems and neural network training, respectively.
For iterative algorithms like SGD, per-instance DP requires
new composition theorems as the privacy loss is adaptive
to the individual data points and is different at each itera-
tion (Wang, 2019). Feldman & Zrnic (2021); Thudi et al.
(2024) have filled this gap by providing new privacy compo-
sition analyses using the associated divergences computed
at an individual level.

Motivated by the empirical observation that per-instance pri-
vacy loss provides much more promising guarantees than the
worst-case DP analysis, we propose to port this per-instance
approach to unlearning. We will see that this approach
will allow us to provide unlearning guarantees and uncover
properties of data that makes a forget set easy to unlearn.

3. Preliminaries and Problem Setup

Given a dataset D = {x;}" ; of n points, we are interested
in estimating the difficulty of unlearning as a function of the
particular forget set Dy C D we are aiming to unlearn.

We are interested in settings where retraining the model
from scratch on the retain set D' = D \ D is too costly,
and so we consider approximate unlearning. In this work,
we adopt a notion of approximate unlearning based on Rényi
divergences. For o > 0 and « # 1, recall that the a-Rényi
divergence of p relative to v > p, is defined to be

Da(pllv) = —1

(e ] o

(Here, one can interpret = gi; as a Radon—Nikodym deriva-

tive more generally.)

For a fixed training set and forget set, the following defini-
tion captures the goal of unlearning in Rényi divergence:

Definition 3.1. Fix a dataset D and forget set Dp C D.
Let v be the distribution of the output of A(D’), i.e., the
learning algorithm on the retain set D’ = D \ D, and let
1 be the distribution of the output of U (A(D), D’), i.e., the
unlearning algorithm on the learned model A(D) and D'.
For o > 1, we say U («, £)-Rényi unlearns Dg from A(D)
when D, (u||lv) < e.

This leads to a uniform notion of Rényi unlearning, which
offers the same guarantee for all datasets and all forget sets,
which is analogous to standard notions.
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Definition 3.2 (Rényi Unlearning). For a > 1, an unlearn-
ing algorithm ¢/ is an («, £)-Rényi unlearner (for .A) when,
for all dataset D and forget sets D C D, U («, €)-Rényi
unlearns D from A(D) in the sense of Definition 3.1.

Note that when this definition holds, one can immediately
derive (standard) approximate DP-based unlearning guaran-
tees (Ginart et al., 2019; Guo et al., 2020; Neel et al., 2021;
Sekhari et al., 2021), using standard reductions (Proposition
10, Mironov, 2017).!

3.1. Learning-Unlearning with Noisy Gradient Descent

We consider a learning—unlearning setup based on using
projected noisy gradient descent during both learning and
unlearning, as studied recently by Chien et al. (2024). In
this section, we present theoretical results that rely on noise.
In Section 6, we present empirical evidence from multi-
ple benchmarks that the overall trends extend to standard
variants of gradient descent.

Formally, our learning algorithm A = Ar is T steps of
noisy gradient descent on D, starting from a random ini-
tialization. Let v p denote the distribution on weights
obtained after 7' steps of training on D, and let vp = v p
denote the stationary distribution, to which the output distri-
bution converges as 7" — oo.

Let D' = D \ Dr denote the retain set of an unlearning
request. Assuming we trained for 7" iterations, exact unlearn-
ing would produce weights whose (marginal) distribution
was vr pr, 1.e., the distribution as if we had trained on D’
from scratch for 7' iterations.

Our unlearning algorithm U = U}, runs k steps of noisy
gradient descent on D’. We denote by p%, (vr p) the output
distribution of unlearning, i.e., of running % steps of pro-
jected noisy gradient descent on D, initialized at a sample
from vr p, i.e., first training on D.

4. Per-Instance Unlearning Difficulty Analysis

Our goal is to bound the number of steps, k, of unlearning by
noisy fine-tuning needed to achieve unlearning in a way that
adapts to the influence each data point has on the learned
model. We do so by building on two pieces of work: a
convergence analysis of Langevin dynamics by Chien et al.
(2024) and a per-instance Rényi-differential privacy analysis
by Thudi et al. (2024).

'A symmetrized variation of this definition was proposed by
Chien et al. (2024). Our asymmetric version is more consistent
with the unlearning literature, where we care about making events
under unlearning distribution not much more likely than under the
retraining distribution.

4.1. Convergence Analysis

Fix a dataset D and retain set D’ C D. We begin with the
following corollary of (Thm. 3.2, Chien et al., 2024), which
highlights the role of an initial bound on D, (vr p||vr,p7).
In the following, we assume the loss is Lipschitz continuous
and smooth, and that the step sizes used by .4 and I/ have
been set according to (Thm. 3.2, Chien et al., 2024).
Corollary 4.1. Fix D, D'. Let {cq,c,}a>1 sat-
isfy max{D,(vp/||lvr.p'), Da(vrp|lvp)} < eo and
D, (vrpllvrp) < €, for all . Then, there exists a con-
stant C' > 0 such that, for all & > 1, Uy, (o, €*)-Rényi
unlearns D\ D' from A(D) in k steps, where €* is

(2@—1/2 , +2a—1 ) ( C’k)+
E Edoy— ex _ Ery—1-
2 — 2 da T gy —gttel )P LT o0 2a-1

The proof is in Appendix A.1, and follows from (Thm. 3.2,
Chien et al., 2024) and the weak triangle inequality for
Rényi divergences.

The key observation is that the first term decays exponen-
tially fast in the number of steps k, with the initial value
determined by the per-instance guarantee and distance to
stationarity and the rate determined by the desired value of «
and problem parameters (like the Lipschitz and smoothness
constants, behind C'). The second term, £5,_1, however,
does not vanish.

The irreducible term captures the distance to stationarity
after T steps of training, measured in a higher order (2ac —
1)-divergence. This term exists as a consequence of our
unlearning algorithm not attempting to correct for the k-
steps of extra training.

4.2. Unlearning Individual Data Points

The following definition is adapted from a differential pri-
vacy result by Thudi et al. (2024) to our unlearning setting:

Definition 4.2 (Per-Instance Privacy Loss). Recall that vr p
is the distribution of the model weights after 7 iterations of
noisy gradient descent on D. Let g(z*,w) = V,{(w,z*)
be the contribution to the weight-gradient at w, coming from
one data point z*. The per-instance privacy loss for x* is:

P(m,a) = Zthl Ct,a IHEWNVt,th,a(||g(x*7w)H2)7
where C} o = L(’);}%i“ and In f; o (g) is

0;’((1) t 2,2
In Op(a)>]pz* 1)E P, (1)o@ ke ),
pin (3 () ED
with o, (a) = JF5a — % and o}, is 0, composed ¢ times,
P,+(1) = 1 —P,«(1) is the sampling probability of the data
point (batch size over dataset size), and p is a free parameter
we set to 37, following (Fact 3.4, Thudi et al., 2024).
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This quantity, which we show how to estimate efficiently in
Section 5.1, yields a bound on a data point’s sensitivity.

Theorem 4.3. Fix D, let x € D, and put D' = D\ {z}.
Then DQ(VT’D||Z/T7D/) S P(x, Oé).

Proof. This follows by applying the per-instance moment-
based composition theorem (Thm. 3.3, Thudi et al., 2024)
with the per-step divergence bound for single data points
(Thm. 3.2, Thudi et al., 2024), using the post-processing
inequality to conclude that the divergence after projections
is bounded by that before projections. O

As a consequence of Theorem 4.3 applied to Corollary 4.1,
we have unlearning individual data points by noisy gradient
descent depends logarithmically on the privacy loss. The
following corollary is a direct substitution of Theorem 4.3
into Corollary 4.1.

Corollary 4.4. Under the assumptions of Corollary 4.1 and
Theorem 4.3, for all D and D' = D\ {z} for x € D, for all
a > 1, there exist constants A, By, Co, > 0 such that, for
all 6 > €941, running noisy gradient descent for

k> A, ln (BQP(QZ, 40() + Ca54a—l)

0 — €201

steps (a, 0)-unlearns {x} from A(D).

4.3. Limitations of Existing Group Unlearning Analyses

The above analysis focuses on forgetting one data point.
How about bounding the work to unlearn multiple data
points simultaneously? The group unlearning bound of
(Chien et al., 2024, Cor. 3.4) requires that the order of
o grows with each data point to unlearn. This is prob-
lematic, as the Rényi divergence between, e.g., Gaussians,
grows linearly with « (Prop. 7, Mironov, 2017). In con-
trast, (Thms. 3.3 and 3.6, Thudi et al., 2024) imply that the
Rényi divergence D, (vr,p||vr,p\p,. ), and hence steps to
unlearn, does not necessarily grow with D ; instead, Thudi
et al. bound the divergence by comparing the distribution of
gradients under D and under D \ Dy. Implementing their
group privacy accounting (described in Appendix B), how-
ever, we found evidence the bounds were likely too loose,
as they did not differentiate forget sets that we empirically
knew to require different numbers of steps to unlearn (see
Figure 4 in appendix). In contrast, we found the rankings
provided by privacy losses meaningfully differentiate the
number of steps needed to unlearn, as we will describe in
Section 6.

We conclude that the current state of analysis for group
unlearning is not tight enough to capture the behavior we
observe in practice. The problem of obtaining a tight analy-
sis remains an open problem.

5. Methodology

Our empirical methodology is structured around two key ob-
jectives driven by the theoretical role of per-instance privacy
losses in unlearning. First, we aim to validate that privacy
losses effectively predict the relative difficulty of unlearning
data points. Second, we seek to understand the factors con-
tributing to this difficulty by investigating the relationship
between privacy losses, the loss landscape, and existing met-
rics of data difficulty. In the following sections, we present
our experimental design to address these questions.

5.1. Empirically Validating Unlearning Difficulty

Unlearning Algorithms Our investigation primarily fo-
cuses on unlearning via fine-tuning on the retain set. We
also run unlearning experiments with L1-Sparse (Liu et al.,
2024a), a regularized version of fine-tuning that is widely
recognized as one of the most effective unlearning methods.
Hayes et al. (2024) has demonstrated that L1-Sparse out-
performs a number of other methods in defending against a
basic Membership Inference Attack (MIA), as well as other
attacks of varying strengths.

Per-instance Privacy loss We compute the terms in the
privacy loss P(z,«) stated in Definition 4.2 by taking a
Monte-Carlo estimate from a single training run with check-
points wo, W, , Wy, -+ * , Wey» 1.6,

ﬁ)ﬁ (‘7"’ Oé) = Csmﬂt hl fbua(”g(]‘*v wSi)HQ)v
where Cs, o, fs, o, g are defined in Definition 4.2.

We then approximate the area under the per-step privacy
curve (i.e., sumover t = 0,1,--- , sy) by using the right
hand rule: keeping Ps,i constant between the checkpointing
intervals (s;_1, s;]. This gives our approximate privacy loss:

P(z,0) = Y1 Py (2)(si — sic1)-

Throughout the paper we take N = 35 and have the check-
points s; evenly spaced throughout training. In the case of
SGD, without explicit noise, we approximate these scores
by assuming a negligible amount of noise is present. In
particular we take o < 0.1, which matches the trends we ob-
serve with SGLD. We also found the privacy losses rankings
for SGD to be stable to the implicit o used for privacy losses
computation (see Appendix F). We note that past work has
looked into quantifying the noise inherent in training, due
to hardware and software nondeterminism (Jia et al., 2021;
Zhuang et al., 2022). It is an open problem to exploit soft-
ware and hardware nondeterminism to offer a theoretical
justification to our approach here.

Forget Set Difficulty We rank examples by privacy losses
and form 5 forget sets of varying difficulty by taking evenly
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spaced sequences of 1000 data points. The size of the forget
set was chosen to be in a similar range as prior work (e.g.,
(Zhao et al., 2024)). Our theory suggests that higher privacy
losses should lead to longer, thus more difficult, unlearning.
We thus call a forget set more difficult than another forget
set if its average privacy loss is higher. In our analysis, each
forget set is represented by the average privacy loss of all
samples within that set. Further methodological details are
provided in Appendix D.

Unlearning Evaluation We evaluate unlearning efficacy
using three metrics: (1) accuracy, measured separately on
the retain set (RA), test set (utility), and on the forget set
(FA). We report UA = 1 — FA, indicating how “accurate”
unlearning is, as done in (Fan et al., 2023); (2) membership
inference attack (MIA): we train a logistic regression clas-
sifier to identify training samples and report the fraction of
forget set samples incorrectly classified as test samples, thus
indicating successful forgetting; and (3) Gaussian Unlearn-
ing Score (GUS) (Pawelczyk et al., 2024), which employs
Gaussian input poisoning attacks to reveal if the unlearned
model still encodes noise patterns associated with the poi-
soned forget set data. See Appendix E for more details.

These metrics are monitored during unlearning and com-
pared with the oracle model to evaluate the effectiveness
of the unlearning methods. Recall that the oracle model
is obtained by training from scratch using the retain set
only. We choose these metrics due to their common use in
machine unlearning research (Fan et al., 2025; Zhao et al.,
2024; Jia et al., 2023; Deeb & Roger, 2024; Fan et al., 2024;
Pawelczyk et al., 2024) and their computational simplicity,
enabling us to compute them at every step during unlearn-
ing. Additional details on their computation and associated
parameter choices can be found in Appendix E.

Datasets and models Our experiments are performed on
the SVHN (Netzer et al., 2011) and CIFAR-10 (Alex, 2009)
datasets, with a ResNet-18 architecture (He et al., 2016). Ap-
pendix F presents results for ViT-small (Dosovitskiy, 2020).
Appendix D describes other details for reproducibility.

Each experimental configuration (oracle training, or training
on all data and unlearning) is run 10 times, and the average
performance across these runs is reported.

5.2. Loss Landscape Analysis

While per-instance privacy losses provide a quantitative
measure of unlearning difficulty based on training dynam-
ics, they do not directly reveal the underlying geometric
properties of the loss landscape that contribute to this diffi-
culty. To gain a deeper understanding of why certain data
points are harder to unlearn, we complement our privacy
loss analysis with an investigation of the loss landscape.

Specifically, we employ the concepts of (linear) loss barri-
ers (Frankle et al., 2020; Nagarajan & Kolter, 2019). Loss
barriers characterize the “flatness” or “curvature” of the loss
surface between different model parameter configurations.

The loss barrier err(w, w’; D) is the deviation in cross en-
tropy £ on the data D along the linear path in weight space
connecting w to w’. Let & = 1 — a. Then err(w, w'; S) is

m[%yi] [L(aw + aw'; S) — al(w; S) —aLl(w’;S)]. (2)
ac|0,

To account for the permutation invariance of neural net-
works, we compute these loss barriers modulo permutation,
as detailed in (Entezari et al., 2022; Sharma et al., 2024).

Loss barriers provide insight into the geometric properties of
high-dimensional loss surfaces. In our experiments, we com-
pute loss barriers between oracle models (trained without
the forget set) and models before and after unlearning forget
sets with various average privacy losses. This allows us to
examine if forget sets with higher privacy losses (higher pre-
dicted unlearning difficulty) exhibit distinct loss landscape
characteristics, particularly in terms of loss barriers.

5.3. Comparison to Alternative Data Difficulty Metrics

While the per-instance privacy losses provide valuable in-
sights into the unlearning process, their computation re-
quires storing gradients throughout training, leading to con-
siderable computational overhead. Therefore, we explore al-
ternative metrics that could serve as proxies for these scores,
offering a more efficient way to estimate forget set diffi-
culty. Furthermore, we investigate the relationship between
these proxies and fine-tuning-based unlearning difficulty,
shedding light on their underlying mechanisms.

We evaluate five proxies: (1) the gradient norm of individual
data points at a single mid-training iteration; (2) the gradient
norm at the end of training; (3) the average gradient norm
across all training iterations; (4) C-Proxy used by Zhao et al.
(2024) to approximate memorization scores from (Feldman
et al., 2018); adapted from Jiang et al. (2020). This proxy
computes prediction confidence: the entry in the softmax
vector corresponding to the ground truth class, averaged
throughout the training trajectory; and (5) a single-trajectory
variant of the EL2N score (Paul et al., 2021). Normally,
EL2N score is computed by averaging error signals over
multiple training trajectories at a fixed time point. However,
for computational efficiency and direct comparability with
our gradient-based proxies, we compute a single-trajectory
EL2N score at a mid-training checkpoint. See Appendix C
for a discussion on connections among the scores.
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Figure 1. CIFAR-10 dataset results. Left: SGLD unlearning with varying levels of noise (¢). Forget set difficulty (x-axis), as measured
by the privacy loss, against time to unlearn (y-axis). Time to unlearn is measured in terms of epochs needed to get within 5% of the
unlearning metric (e.g., UA or MIA) measured on the oracle model. Middle: SGD unlearning. Time to unlearn measured across three
evaluation metrics. Right: Error barrier between the oracle and the unlearned model before and after unlearning for forget sets with
different privacy losses. Baseline corresponds to the loss barrier between two oracles.

6. Experimental Results

We empirically validate the predictive capabilities of per-
instance privacy losses in forecasting unlearning difficulty.
Our primary finding is that privacy losses accurately rank
datapoints according to the number of steps needed to un-
learn. This is tested for two settings of interest: (1) SGLD,
which aligns directly with the assumptions of our theoret-
ical upper bounds; and (2) SGD. For SGD, while lacking
explicit noise, we adapt privacy losses by assuming a small,
implicit noise component.

To probe the geometric origins of unlearning difficulty as
captured by privacy losses, we analyze the loss landscape.
Our investigation reveals a consistent trend: data points with
higher privacy losses exhibit larger loss barriers on a linear
path (in the weight space) to the oracle model.

We also assess the practical utility of privacy losses by com-
paring them to computationally efficient proxy metrics. Our
results demonstrate a strong correlation between privacy
losses and existing proxy metrics, including those employed
in previous studies to estimate forget set difficulty (C-Proxy
in (Zhao et al., 2024)). However, a key advantage emerges:
privacy losses provide superior precision in identifying truly
difficult-to-unlearn data points within the context of fine-
tuning-based unlearning. The forget sets ranked as most
difficult by privacy losses consistently take longer to unlearn
than those identified by these established proxies.

6.1. Time to Unlearn Depends on Per-Instance Privacy

We find that across a variety of unlearning metrics, privacy
losses accurately separate data points by the number of steps
needed to unlearn in both SGLD and SGD. Appendix F.2
shows the same trends for L1-sparse unlearning.

SGLD Training To evaluate the predictions outlined in
Section 4, we examine the relationship between the number
of steps needed to unlearn using noisy fine-tuning (SGLD),
and the average privacy loss within the forget set. Figure 1
(left) shows that as forget set privacy losses increase, a
higher number of fine-tuning steps is needed to reach a 5%
error margin relative to the oracle, validating our prediction.

SGD Training While SGLD offers theoretical advantages
for privacy analysis and bounding Rényi unlearning, SGD
remains the dominant training paradigm in practice. There-
fore, we investigate whether our theoretical framework, de-
veloped in the context of Langevin dynamics, can also pre-
dict unlearning time for models trained with SGD.

As shown in Figure 1 (middle), we observe a similar trend
as in the SGLD experiments across all evaluation metrics:
unlearning more difficult forget sets, characterized by higher
average privacy losses, requires more fine-tuning steps.

This suggests that even without explicit noise injection dur-
ing training, the concept of per-instance privacy losses de-
rived from our theoretical analysis can provide valuable
insights into the unlearning process for SGD-trained mod-
els. That is, SGD seems to be well-approximated by low
noise SGLD. These results are replicated across additional
datasets, architectures, and forget set sizes, with full details
and qualitative examples in Appendix F.

6.2. More Difficult Forget Sets, Larger Loss Barriers

We characterize difficult to unlearn data points by their loss
landscape, in particular, loss barriers (see Section 5).

Figure 1 (right) depicts the loss barrier between oracle mod-
els and unlearned models, while varying the difficulty of the
forget set, as measured by the average privacy loss.
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We observe two key takeaways from this analysis: (1) Com-
paring our results to the baseline loss barriers between in-
dependently trained oracle models, we find that fine-tuning
achieves comparable levels after unlearning. This can be
seen as a measure of unlearning efficacy based on loss barri-
ers: if the (distribution of the) loss barrier is different from
that of the baseline between oracles, unlearning was unsuc-
cessful; (2) Higher privacy loss values correspond to larger
initial barriers, providing a geometric interpretation for pri-
vacy losses; data points that require more steps to unlearn
have to overcome larger loss barriers to the oracle.

Overall, our findings provide additional evidence for the
utility of privacy losses in predicting unlearning difficulty,
and point to the effectiveness of loss barriers as both a
diagnostic and an evaluation tool for machine unlearning.

6.3. Existing Metrics Correlate with Privacy Losses

We now investigate how privacy losses compare to other data
difficulty metrics, as described in Section 5. Our results in
Figure 2 reveal that all these proxies exhibit high correlation
with the actual privacy loss. As expected, the best proxy is
the average gradient norm throughout training, but it is also
the most expensive proxy as it requires computing gradient
norms for each data point at every iteration, versus once.
Other proxies (with the exception of C-Proxy) only require
a gradient/error computation at a single checkpoint, yet
still provide a reasonable approximation for categorizing
examples into broad difficulty groups.

These findings suggest that, in scenarios where computa-
tional resources are limited, utilizing these proxies can offer
a practical alternative for estimating forget set difficulty
and predicting unlearning time. We refer to recent work by
Kwok et al. (2024) for an in-depth comparison of different
data difficulty metrics that may serve as good proxies.

Recall that C-Proxy has been used in prior work by Zhao
et al. (2024) to identify difficult to unlearn forget sets for
certain unlearning algorithms. Figure 2 shows that privacy
losses are highly correlated with this heuristic. Our work
thus offers theoretical grounding to previously proposed
heuristics for identifying difficult to unlearn forget sets.

Finally, note that among metrics relying on averaging over
training, our method is more efficient, requiring only 35
evenly spaced checkpoints (approximately 20% of training
time), compared to C-Proxy and average gradient norm,
which store values at every epoch (150 in total). As shown
in Section 6.4, it is also more effective at identifying hard-to-
unlearn samples than all other metrics, regardless of whether
they rely on averaging.
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Figure 2. Correlation between privacy losses (x-axis) and various
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Figure 3. Comparison of the time needed to unlearn (y-axis) the
most difficult forget sets as identified by privacy losses (ours),
C-Proxy, average gradient norm and EL2N, across different forget
set sizes (X-axis).

6.4. Privacy Losses Identify Harder Data

In the previous subsection, we provided evidence that exist-
ing data difficulty metrics correlate with per-instance privacy
losses. In this section, we provide evidence that, in fact, pri-
vacy losses are able to identify harder data. In Figure 3, we
compare our per-instance privacy losses to several data diffi-
culty metrics, including C-Proxy (described in Section 5),
average gradient norm, and EL2N scores.

For forget sets of size s € {600, 1000,2000}, we look at
the top s data points as ranked by C-Proxy, average gradient
norm, EL2N scores, and privacy losses. What we see is that,
across the board, the data picked out by privacy losses are
harder to unlearn, as measured both by the number of itera-
tions to reach 5% unlearning accuracy or reach 5% excess
membership inference attack error. By identifying more
difficult examples, privacy losses open up new empirical
approaches to evaluating unlearning performance.

7. Conclusion

In this work, we have introduced a principled approach
to quantifying machine unlearning difficulty at the level of
individual data points in terms of per-instance privacy losses,
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which bound the Rényi divergence between training with
and without a datapoint. Our theoretical analysis provides a
foundation for understanding how unlearning scales with the
properties of specific data points, particularly in the context
of Langevin dynamics.

We have shown that per-instance privacy losses, estimated
from training statistics, reliably predict unlearning difficulty
in fine-tuning-based unlearning algorithms, across differ-
ent architectures and datasets, even in the absence of ex-
plicit noise injection during training. Our empirical results
demonstrate that these privacy losses offer a precise and
actionable measure of unlearning difficulty. Our work also
offers a theoretical grounding for previous work suggesting
that certain forget sets are harder to unlearn, with privacy
losses capturing similar aspects of difficulty for fine-tuning-
based unlearning as previously proposed heuristics (Zhao &
Triantafillou, 2024; Baluta et al., 2024; Zhao et al., 2024).
Moreover, we show privacy losses identify harder forget
sets than previous methods.

Our findings have broader implications for unlearning
methodology, suggesting that per-instance divergence anal-
ysis can guide the development of new, more efficient un-
learning algorithms tailored to specific data characteristics.
Extending our theoretical framework to other unlearning
methods beyond fine-tuning and exploring the use of pri-
vacy losses in designing adaptive unlearning strategies is a
promising direction for future work.

Impact Statement

This paper presents work whose goal is to advance the field
of machine unlearning, which is specifically oriented to im-
prove the trustworthiness of machine learning, by supporting
requests to remove the influence of training data. There are
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Figure 4. We compared our estimates of the group privacy guarantees (y-axis) across forget sets determined by rankings of privacy losses
(x-axis), and found the group privacy guarantees did not change. This was despite these forget sets leading to consistent differences in the
number of steps to unlearn. We report the mean over 20 estimates of the group privacy values, and one standard deviation. We conclude
the theory for group unlearning is currently not sharp enough to capture trends seen in practice.

A. Proofs
A.1. Corollary 4.1

Proof. By (Theorem 3.2, Chien et al., 2024), for all & > 1, there exists a constant C' > 0 such that

ok
Doo (% (vr,p)||vpr) < €7 22 Doy (vrpllvp), 3)

where Do, (vr,p||vp/) is the initial 2a-Rényi divergence to stationarity on D, after training on D. By the weak triangle
inequality (Proposition 11, Mironov, 2017), this is bounded by

20— 1/2

20— 1/2 ,
200 — 1

Duo(vrpllvr,p') + Daa—1(vrp|lvpr) < T + E4a-1, @

where the second inequality follows from our hypotheses.
Finally, applying the weak triangle inequality once more, D, (p%, (vr p)||vr,p/) is bounded by

a—1/2

o Dao (P (vr,p)|[vpr) + D2a—1(vor|lvr,p1),

which yields the claimed bound from our hypotheses, after substituting Equations (3) and (4). O

B. Group Privacy Analysis and Methodology

The following theorem comes from the results of Thudi et al. (2024).
Theorem B.1. Suppose we train with noisy gradient descent for T steps. Then for an arbitrary D, D’ = D \ D, we have:

T
Da(VT,D ||VT,’D’) S Z Ct,a ln Ewwut_p Gt,a(Da Dlv ’LU)
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12



Leveraging Per-Instance Privacy for Machine Unlearning

— levell level2 —— level3 —— level4 level5

FineTune/UA FineTune/Utility FineTune/RA
80 a0 110§

60 g LUCECEL ELEPLEEER EPPERY EECEE PEEREES B L)

70 \9\7?@"#—“»——«-—«- ol \ Wff,h_,

40 T
65 801
20 w 60
701

55

Accuracy

60
50
0 5 10 15 20 25 30 0 5 10 15 20 25 30 0 5 10 15 20 25 30
Epoch Epoch Epoch

FineTune/MIA

0
o

@
S

B
[S

N
o

o

% Forget Samples Labelled as Test

0 15 20 25 30
Epoch

o
v

Figure 5. Unlearning results for accuracy metrics (top) and MIA success rate (bottom). The x-axis represents the number of epochs. In
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where D = {D}, - , D%} is a random sample of o minibatches from D, D'y is a single random minibatch, o,(ca) =
p’%la — % and o; is o, composed t times, and p is a free parameter we set to 3T following (Fact 3.4, Thudi et al., 2024),
and letting U(Dp,w) = V,l(w, Dg) be the mini-batch gradient:

Ao(Dp®, D, w) = Z 10D, w)ll3 ~ (a = D|U (D, w)|l3 ~ || ZU(DBi,w) — (&= 1)U(D,w)]f5.

Proof. A direct consequence of applying (Theorem 3.3, Thudi et al., 2024) with the general update per-step divergence
bound of (Theorem 3.6, Thudi et al., 2024), and noting the divergence after applying the projections is bounded by the
divergence before applying the projections by the post-processing inequality. O

B.1. Methodology for privacy losses computation

To estimate the guarantees we take a Monte-Carlo sample of checkpoints from a single training run at steps Sg, S1,* - , SN,
and estimate the In G (D, D', w) term at each step by sampling a single random mini-batch from D’ and o, () mini-
batches from D to estimate the expectations. We then compute the sum using the right hand rule, analogous to our estimate
of privacy losses described in Section 5.

In Figure 4 we took checkpoints from an SGD training run on CIFAR10 with ResNet18, and used ¢ = 0.1, and took o = 8
to compute the group privacy scores. We report the mean over 20 estimates (given the stochasticity in our estimates for the
per-step terms In Gy (D, D', w)) and shaded in one standard deviation.

C. Example Difficulty Related Work

Paul et al. (2021) propose EL2N score to capture how much an example contributes to learning a high accuracy predictor,
high score meaning high importance during training to achieve high accuracy. At the same time, the authors find that high

13



Leveraging Per-Instance Privacy for Machine Unlearning

301

N
w
L

N
o

T to Unlearn (5% UA)
= =
o [§,]

[9)]

o

102 102 10!
Privacy Loss

Figure 6. Unlearning time for forget sets with different privacy loss values using the L1-sparse method. Time is measured by the number
of steps required for the unlearning method to reach a 5% margin of error, where error is defined as the difference between the unlearned
model’s UA and the oracle’s UA for the given forget set.

scoring examples tend to be difficult to learn, are often memorized at the end of training and are outliers. This score has
been shown to correlate with a number of other example difficulty and memorization metrics proposed in the literature
(Kwok et al., 2024; Paul et al., 2021), some of which have been shown to also capture unlearning difficulty for a number of
unlearning algorithms (Zhao et al., 2024; Baluta et al., 2024; Zhao & Triantafillou, 2024).

D. Additional Experimental Details

Constructing Difficulty-Based Forget Sets To create forget sets with varying difficulty levels, the training dataset is
partitioned into five subsets based on privacy scores. First, the samples are sorted in ascending order by their scores.
Recursive splits are then performed to identify key thresholds: the lower quartile (Q1), the median (Q2), and the upper
quartile (Q3). Using these thresholds, five subsets are constructed: (1) the first 1000 samples, (2) intervals centered around
Q1 (Q1 £ 500 samples), (3) intervals centered around Q2 (Q2 + 500 samples), (4) intervals centered around Q3 (Q3 + 500
samples), and (5) the last 1000 samples. This approach provides a systematic stratification of the dataset, enabling the
evaluation of unlearning performance across varying levels of difficulty as determined by privacy scores.

Learning rates and training times for SGD The original model, which serves as the starting point for all unlearning
techniques (not for SGLD), is trained for 150 epochs using an initial learning rate of 0.01, a weight decay of 0.0005, and
a learning rate schedule that reduces the learning rate by an order of magnitude at epochs 80 and 120. Each unlearning
method is subsequently fine-tuned for 25 epochs.

Additional details for SGLD At every step we added N (0, 02) Gaussian noise to the minibatch gradient, where we vary
o for ablations. All other hyperparameters were kept the same as SGD. In particular we do not do any additional gradient

clipping.

Additional details for L1-sparse LI1-sparse is an unlearning method inspired by the observation that pruning aids
unlearning (Liu et al., 2024a). Its objective function closely resembles that of fine-tuning but includes an additional L
regularization term, weighted by a hyperparameter «, which encourages sparsity in model parameters to facilitate unlearning.

Hyperparameter tuning We perform hyperparameter tuning (HPT) for the unlearning methods using the Bayesian
optimization method on a random forget set. While fine-tuning involves a single hyperparameter—the learning rate— L1-
Sparse additionally optimizes «.. To determine the best hyperparameters for each method, we employ Bayesian optimization
to find configurations that achieve an optimal balance between privacy and utility. Additionally, to ensure that the selected
hyperparameters are also optimized with respect to the number of steps required for unlearning, we identify hyperparameter
sets that fall within a 5% margin of error for this trade-off. Among these, we select the configuration that converges the
fastest.
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Figure 7. SGD unlearning. Unlearning time vs. privacy score for ResNet-18 on SVHN (left) and ViT-small on CIFAR-10 (right).
Unlearning time is measured in steps required to reach a 5% UA error margin.

Compute resources Experiments were conducted using L40 and RTX8000 GPUs, and AMD EPYC 7452 CPUs.

E. Evaluation metrics

Membership Inference Attack Membership inference attacks (MIA) aim to determine whether a given sample was
part of a model’s training data by analyzing differences in the model’s responses. In our approach, we train a logistic
regression classifier using the model’s confidence values on training and test samples as inputs. The attacker then attempts
to classify the forget samples, with success measured by the percentage of forget samples labeled as test, indicating effective
unlearning.

Gaussian Unlearning Score We use the Gaussian Unlearning Score (GUS), introduced by Pawelczyk et al. (2024), to
quantify the impact of poisoned samples on the model. To compute GUS, each sample in the forget set is perturbed with
zero-mean Gaussian noise with a standard deviation of o. GUS is then computed by averaging (over the forget set) the
per-example inner product between the gradient of the loss with respect to the clean (non-poisoned) sample and the stored
Gaussian noise used for poisoning, normalized by the L2 norm of the gradient. The effectiveness of an unlearning method is
then assessed by how well it mitigates the influence of these poisoned samples. Specifically, the change in GUS before and
after unlearning serves as a measure of unlearning success.

For the CIFAR-10 and ResNet-18 setup, the original work recommends a variance value of 0.32. However, in our
experiments, we explored different values and found that smaller variances were better suited for our setup. Based on these
empirical findings, we set 02 = 0.062.

F. Additional Experimental Results
F.1. Unlearning trends during fine-tuning

In this experiment, we apply the fine-tuning method to unlearn a ResNet-18 model trained on the full CIFAR-10 dataset.
The forget set varies in difficulty, with five different levels determined by the proxy losses of the samples. The UA, utility
and RA values during unlearning is depicted in Figure 5 (top), while the MIA results are depicted in Figure 5 (bottom). For
UA and MIA, we see the most difficult forget sets do indeed take longer to unlearn. We see utility and RA are similar across
difficulty levels.

F.2. L1-sparse fine-tuning

The unlearning results for the L1-sparse method are presented in Figure 6. Similar to our observations for unlearning with
SGD or SGLD fine-tuning, unlearning with L1-sparse takes longer to forget samples with higher privacy scores. In fact, the
more challenging the forget sets, the longer the unlearning.
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Figure 8. Unlearning time for forget sets of size 100 (left), 5,000 (middle), and 10,000 (right), evaluated on CIFAR-10. Unlearning time is
reported as the number of training steps required to achieve a UA error within 5%.

F.3. Additional datasets/architectures

In addition to ResNet-18 on CIFAR-10, we conduct experiments with additional dataset-architecture pairs. Specifically,
we evaluate ResNet-18 on SVHN and ViT-small on CIFAR-10. ViT-small is a Vision Transformer model that applies
self-attention mechanisms to sequences of image patches, enabling effective global feature extraction. Figure 7 presents the
unlearning results for ResNet-18 on SVHN (left) and ViT-small on CIFAR-10 (right). The results suggest that, consistent
with our previous findings, unlearning takes longer for forget sets with a higher average privacy loss.

Rankings across noise levels We ran experiments to test sensitivity of the ranking for SGD to the noise values used in
estimating privacy losses. For SVHN with ResNet-18 we found: (1) Spearman correlation between rankings at o = 0.01
and o = 0.001 was 0.70(p = 0.0). (2) Between o = 0.001 and o = 0.0005 was 0.99(p = 0.0). (3) Between o = 0.0005
and ¢ = 0.0001 was 0.99(p = 0.0). These results suggest that rankings are largely noise-invariant, as long as some
noise is present. Past work has shown evidence of observable noise during training due to software and hardware non-
determinism (Jia et al., 2021).

=

Figure 9. Qualitative examples of forgetting difficulty on CIFAR-10. We show 4 examples each from the easy-to-forget (top row) and
hard-to-forget (bottom row) subsets, identified from a forget set of 1,000 samples.
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F.4. Varying Forget Set Sizes

We conducted additional experiments varying the size of the forget set (100, 5,000, and 10,000 samples). The results are
presented in Figure 8. Our findings indicate that privacy loss consistently distinguishes between easy and hard-to-forget
subsets, even when the forget set is small. Interestingly, for very large forget sets (e.g., 10,000 samples), the separation
begins to diminish. This observation is intuitive, as the variance in average privacy loss decreases with increasing subset
size.

F.5. Qualitative Results

Qualitative examples of easy and hard to forget CIFAR-10 samples are provided in Figure 9.
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