
Task Arithmetic in the Tangent Space:
Improved Editing of Pre-Trained Models

Guillermo Ortiz-Jimenez∗
EPFL, Lausanne, Switzerland

guillermo.ortizjimenez@epfl.ch

Alessandro Favero∗
EPFL, Lausanne, Switzerland

alessandro.favero@epfl.ch

Pascal Frossard
EPFL, Lausanne, Switzerland
pascal.frossard@epfl.ch

Abstract

Task arithmetic has recently emerged as a cost-effective and scalable approach to
edit pre-trained models directly in weight space: By adding the fine-tuned weights
of different tasks, the model’s performance can be improved on these tasks, while
negating them leads to task forgetting. Yet, our understanding of the effectiveness
of task arithmetic and its underlying principles remains limited. We present a com-
prehensive study of task arithmetic in vision-language models and show that weight
disentanglement is the crucial factor that makes it effective. This property arises dur-
ing pre-training and manifests when distinct directions in weight space govern sepa-
rate, localized regions in function space associated with the tasks. Notably, we show
that fine-tuning models in their tangent space by linearizing them amplifies weight
disentanglement. This leads to substantial performance improvements across multi-
ple task arithmetic benchmarks and diverse models. Building on these findings, we
provide theoretical and empirical analyses of the neural tangent kernel (NTK) of
these models and establish a compelling link between task arithmetic and the spatial
localization of the NTK eigenfunctions. Overall, our work uncovers novel insights
into the fundamental mechanisms of task arithmetic and offers a more reliable and
effective approach to edit pre-trained models through the NTK linearization.

1 Introduction

Pre-trained models play a pivotal role in contemporary machine learning systems. However, to
enhance performance on downstream tasks [38, 39, 92], align them with human preferences [31, 50,
64, 74], and increase robustness [63, 76, 87], they often necessitate further editing. Traditional model
editing methods rely on costly joint fine-tuning across multiple tasks [92] and human-feedback [64],
which constrain scalability and democratization. Furthermore, enhancing downstream task perfor-
mance typically degrades the model’s pre-training performance or zero-shot accuracy [28, 58, 87].

Recent research has introduced cost-effective and scalable model editing techniques that try to
preserve the pre-trained model behavior by acting on the model weights through task arithmetic or
weight interpolation techniques [3, 23, 27, 38–40, 46, 57, 71, 72, 79, 86, 87, 89], thus circumventing
expensive joint fine-tuning over multiple tasks. These methods hinge on the observation that arith-
metic operations between fine-tuned weights often produce analogous functional behaviors [39]. For
example, summing the relative weight components of a model between pre-training and fine-tuning

∗Equal contribution.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Figure 1:Illustration of weight disentanglement, where distinct directions in the weight space,
� t , are associated with localized areas of the input space,Dt . This allows a model,f , to manipulate
these areas independently by adding linear combinations of� t 's to a pre-trained checkpoint� 0.

on two separate tasks results in a new multi-task model with improved performance on both tasks.
Similarly, subtracting a task's relative component can lead to the model forgetting that task.

Despite these advancements, the understanding of task arithmetic's underlying principles and its
general effectiveness remains limited. Speci�cally, a comprehensive understanding of how these tech-
niques affect a model's internal representations and the necessary conditions to make it reliable is lack-
ing. This knowledge gap can undermine the adoption of these techniques, as it erodes their trustworthi-
ness in real-world applications. In addition, reducing this gap could help us improve them even further.

To address these challenges, we present a systematic study of task arithmetic in contrastively pre-
trained vision-language models (i.e., CLIP [69]), offering novel insights into its underlying mecha-
nisms and introducing new approaches which enhance the performance of pre-trained models edited
through task arithmetic. Speci�cally, we probe the hypothesis presented in Wortsman et al.[87] that
task arithmetic is possible thanks to the fact that models inherently operate in a linear regime, where
their behavior is dictated by the �nite-width neural tangent kernel (NTK) [16, 41].

Our study reveals that linearized CLIP models exhibit signi�cantly improved task arithmetic perfor-
mance with respect to their nonlinear counterparts (see Tables 1 and 2), but also that the NTK cannot
fully account for the task arithmetic abilities of pre-trained non-linear models. Indeed, we show that
the sole requirement for task arithmetic is actuallyweight disentanglement, where distinct directions in
weight space correspond to changes of the network in disjoint regions of the input space (see Figure 1).
This allows a model to perform task arithmetic by independently manipulating these weight directions.

Notably, we show that �ne-tuning models in their tangent space by linearizing them ampli�es weight
disentanglement, leading to substantial performance improvements across multiple task arithmetic
benchmarks and models. However, although weight disentanglement is stronger in the tangent space,
it is also present in non-linear models. We demonstrate that weight disentanglement of semantically
meaningful tasks is an emergent property of pre-training, as it is absent at random initialization.

In particular, our main contributions are as follows:

• We formalize the notion of task arithmetic introduced in Ilharco et al.[39] as Property 1,
allowing us to reason quantitatively about it.

• We show that task arithmetic in non-linear models cannot be explained by their NTK, and
introduce the concept of weight disentanglement as the necessary condition to enable it.

• We propose to linearize models as a way to enhance weight disentanglement and improve
task arithmetic. Doing so, we achieve up to5:8 points more and13:1 points less in accuracy
on task addition and task negation, respectively, on several vision-language benchmarks.

• We link weight disentanglement in linearized models to spatial localization of the kernel
eigenfunctions and validate this prediction numerically in pre-trained transformer models.

• Finally, we show that weight disentanglement is an emergent property of pre-training.

Overall, our work delivers new insights into the fundamental mechanisms of task arithmetic, facil-
itating more reliable and scalable model editing. Our �ndings suggest that linearized �ne-tuning of
pre-trained models warrants further investigation, with the potential for substantial impact on effective
model editing. These insights can foster the development of more ef�cient and precise model editing
techniques, empowering practitioners to adapt pre-trained models to a broader range of tasks.

2

2 Notation and problem statement

Let f : X � � ! Y be a neural network taking inputsx 2 X and parameterized by a set of weights
� 2 � . We will assumeX � Rd, � � Rm andY � Rc. ConsiderT tasks, with every taskt
consisting of a triplet(Dt ; � t ; f ?

t) whereDt � X is a data support (e.g., ImageNet [21] images),� t
an input distribution such thatsupp(� t) = Dt , andf ?

t : Dt ! Y a target function (e.g., labels). In
practice, each task is identi�ed with a training setf (x � ; f ?

t (x �))g� 2 [n t] with x � � t , that is used to
�ne-tune the models starting from the pre-trained weights� 0 and obtain the �ne-tuned weights� ?

t .

Task arithmetic. Let thetask vectorof taskt be the difference between the �ne-tuned and the pre-
trained weights,i.e., � t = � ?

t � � 0. The following property formalizes the notion of task arithmetic
introduced in Ilharco et al.[39], where the authors observed that the accuracies of pre-trained models
on different datasets can be modi�ed independently through the addition or removal of task vectors.
Property 1 (Task arithmetic). Consider a set of task vectorsT = f � t gt 2 [T] with associated non-
intersecting task supportsD = fD t � X g t 2 [T], i.e.,8t; t 0, if t 6= t0 thenDt \ D t 0 = ? . We say a
networkf satis�es the task arithmetic property around� 0 with respect toT andD if

f

x ; � 0 +
TX

t =1

� t � t

!

=

(
f (x ; � 0 + � t � t) x 2 D t

f (x ; � 0) x =2
S T

t =1 Dt
(1)

with (� 1; : : : ; � T) 2 A � RT .

In short, a model satis�es Property 1 if adding� t does not modify the output of the model outsideDt .

Neural tangent kernel. Around the initialization weights� 0, a neural network can be approximated
with a �rst-order Taylor expansion:

f (x ; �) � f (x ; � 0) + (� � � 0)> r � f (x ; � 0): (2)
This approximation is equivalent to a kernel predictor with a kernel known as theneural tangent
kernel(NTK) [41], kNTK (x ; x 0) = r � f (x ; � 0)> r � f (x 0; � 0), and de�nes a neural tangent space
in which the relationship between weights and functions is linear. Remarkably, as the network width
approaches in�nity, Eq. (2) becomes exact and remains valid throughout training [4, 41, 45].

However, this linear approximation is often invalid at �nite widths, as the evolution of parameters dur-
ing training is inadequately captured by Eq. (2). In such cases, training occurs in anon-linear regime.
Conversely, often during �ne-tuning, parameter evolution in many pre-trained models is frequently
minimal, meaning that training does not exit the tangent space and Eq. (2) closely approximates
the network behavior [22, 53, 62, 90, 91]. In such cases, training occurs in alinear regime.

3 Task arithmetic is not a consequence of linear �ne-tuning

The objective of this work is to understand the conditions that enable task arithmetic in deep
neural networks. Previous studies hypothesized that task arithmetic results from �ne-tuning in
the linear regime [39, 86, 87], as linear weight combinations correspond to similar output function
combinations. However, we will now demonstrate that CLIP models do not �ne-tune in the linear
regime and we therefore need other ways to explain task arithmetic.

In general, if a pre-trained networkf (� ; � 0) demonstrateskernel behaviorduring �ne-tuning –
i.e., �ne-tuning occurs in the linear regime – the following property must be satis�ed [53]:
Property 2 (Post-hoc linearization). The change in the network output after training can be approxi-
mated by its �rst-order Taylor expansion, i.e.,f (x ; � ?) � f (x ; � 0) � (� ? � � 0)> r � f (x ; � 0).

In simple terms, the approximation of the network in the tangent space around initialization must hold
after �ne-tuning. To test this, we evaluate the performance of thepost-hoclinearized version off , f lin .
That is, we apply the �ne-tuned task vectors� = � ? � � 0 to the linear approximation off at � 0, i.e.,

f lin(x ; � 0 + �) = f (x ; � 0) + � > r � f (x ; � 0); (3)
and we check whetherf lin(� ; � ?) performs similarly tof (� ; � ?)2.

2The code to reproduce our experiments can be found athttps://github.com/gortizji/tangent_
task_arithmetic .

3

Table 1:Task addition. Average absolute (%) and normalized accuracies (%) of different CLIP
ViTs edited by adding the sum of the task vectors of8 tasks. We report results for the non-linear
and linearized models of Sections 3 and 5 normalizing performance by their single-task accuracies.

Method ViT-B/32 ViT-B/16 ViT-L/14
Abs. (") Norm. (") Abs. (") Norm. (") Abs. (") Norm. (")

Pre-trained f (� ; � 0) 48.4 – 55.2 – 64.4 –

Non-lin. FT f (� ; � 0 + �) 71.4 76.5 75.5 80.0 85.1 88.8
Post-hoc lin.f lin (� ; � 0 + �) 57.1 81.9 65.0 85.2 75.2 90.0

Linear. FT f lin (� ; � 0 + � lin) 76.5 85.4 81.3 86.0 88.5 93.5

Table 2:Task negation.Minimum accuracy (%) of different CLIP ViTs edited by negating a task vec-
tor from a target task while retaining95%of their performance on the control task. We report average
performances over eight tasks on non-linear and linearized models as introduced in Sections 3 and 5.

Method ViT-B/32 ViT-B/16 ViT-L/14
Targ. (#) Cont. (") Targ. (#) Cont. (") Targ. (#) Cont. (")

Pre-trained f (� ; � 0) 48.4 63.4 55.2 68.3 64.4 75.5

Non-lin. FT f (� ; � 0 � �) 24.0 60.7 19.2 64.6 18.0 72.5
Post-hoc lin.f lin (� ; � 0 � �) 14.8 60.3 10.8 64.8 12.1 71.8

Linear. FT f lin (� ; � 0 � � lin) 10.9 60.8 11.3 64.8 7.9 72.5

Figure 2: Non-linear advantage. Single-task
accuracies of non-linearly �ne-tuned mod-
els f (� ; � ?) and their post-hoc linearization
f lin (� ; � ?). Markers represent different ViTs.

The results in Figure 2 indicate that CLIP mod-
els do not exhibit a kernel behavior. Speci�cally,
we �ne-tune (FT) several CLIP pre-trained
Vision Transformers (ViTs) [24] of different
sizes following the same setup as Ilharco
et al. [39] on 8 tasks: Cars [43], DTD [20],
SUN397 [88], EuroSAT [33], GTSRB [80],
MNIST [44], SVHN [60] and RESISC45 [15].
We observe that the single-task performance
of f lin(� ; � ?) is signi�cantly lower than that of
f (� ; � ?) for ViTs of all sizes. Thisnon-linear
advantage[26] is a clear sign that �ne-tuning
has not happened in a linear regime as expected
by Wortsman et al. [87].

Yet, this observation is not enough to rule
out that task arithmetic can be explained by
linearizing the network function. Indeed, even
if the non-linear components are important for
single-task performance, they might not be used during task arithmetic, which is the objective of
this study. That is, the projection off onto the tangent space could be the only useful component.

We now show this is also not the case, as doing task arithmetic with the non-linearly �ne-tuned
task vectors overf lin signi�cantly decreases performance. To show this, we employ the benchmark
proposed in Ilharco et al.[39] to evaluate the task arithmetic ability of a pre-trained model, which
consists of the8 tasks described before and two sub-benchmarks:

1. Task addition: The sum of the task vectors� =
P

t � t is added to a pre-trained checkpoint
to produce a multi-task model. The success of this benchmark is measured in terms of the
maximum average accuracy over the different tasks. Results are shown in Table 1.

2. Task negation: A task vector is subtracted from the pre-trained checkpoint to forget a task
while retaining performance on a control task (ImageNet). The success of this benchmark
is measured in terms of the maximum drop in accuracy on the forgetting task that retains
the performance on the control task. Results are averaged over tasks and shown in Table 2.

4

To obtain the task vectors, we use the �ne-tuned weights of the different ViTs from before, and use a
single mixing coef�cient� = � 1 = � � � = � T optimized separately for the non-linear and post-hoc lin-
earized models to ensure a fair comparison. We provide all details of this experiment in Appendix A.

The results in Table 1 con�rm that task arithmetic in CLIP models does not stem from the
combination of their linear components only. Speci�cally, we observe a signi�cant drop in absolute
task addition accuracy in thepost-hoclinearized models compared to the non-linear ones. This
decrease in performance is consistent across tasks (see Appendix D.2) and highlights that task
arithmetic in non-linear models leverages the non-linear components off , as well.

Although these results reject the linear hypothesis, it is still remarkable that the post-hoc linearized
models do better at task negation than the non-linear ones (see Table 2). Furthermore, even in task ad-
dition (see Table 1) they achieve higher normalized accuracies (see de�nition in Appendix A). Indeed,
as we formalize in Section 4, this observation suggests that linearized models are more consistent
with Property 1. In Section 5, we will use this fact to devise a new way to enhance task arithmetic.

4 Weight disentanglement

If the linear regime is not necessary to explain task arithmetic, what are the necessary conditions that
allow it? In this section, we argue that the only necessary condition to perform task arithmetic with a
modelf is that the model isweight disentangledwith respect to the set of �ne-tuning tasks.

Property 3 (Weight disentanglement). A parametric functionf : X � � ! Y is weight disentangled
with respect to a set of task vectorsT = f � t gt 2 [T] and the corresponding supportsD = fD t gt 2 [T] if

f

x ; � 0 +
TX

t =1

� t � t

!

=
TX

t =1

gt (x ; � t � t) + g0(x); (4)

wheregt (x ; � t � t) = 0 for x =2 D t andt = 1 ; : : : ; T , andg0(x) = 0 for x 2
S

t 2 [T] Dt .

In essence, this de�nition captures the idea that the functionf can be decomposed as a sum of spatially-
localized components,i.e., vanishing outside a spatial region, whose functional variation is entirely
captured by each� t (see Figure 1). Moreover, it is trivial to see that satisfying weight disentanglement
is equivalent to satisfying Property 1 on task arithmetic as one can always write Eq. (1) as

f

x ; � 0 +
TX

t =1

� t � t

!

=
TX

t =1

f (x ; � 0 + � t � t)1(x 2 D t) + f (x ; � 0)1

0

@x =2
[

t 2 [T]

Dt

1

A ; (5)

and identifygt (x ; � t � t) = f (x ; � 0 + � t � t)1(x 2 D t) andg0(x) = f (x ; � 0)1(x =2 D t). It is
important to highlight, however, that this additive decomposition does not imply linearity, as the
local functionsf gt gt 2 [T] are not required to be linear with respect to the parameters.

Furthermore, note that weight disentanglement is a property of the predictors and not related to the
performance on different tasks. That is, a model could be weight disentangled with respect to a set of
task vectors and still perform poorly on a task,e.g., if f (� ; � 0 + � �) does not generalize for some� .
More generally, we can visualize the level of weight disentanglement of a model by measuring its dis-
crepancy with Eq. (4). To do so, given two tasks, one can check thedisentanglement errorof a model,

� (� 1; � 2) =
2X

t =1

Ex � � t [dist (f (x ; � 0 + � t � t); f (x ; � 0 + � 1� 1 + � 2� 2))] ; (6)

wheredist denotes any distance metric between output vectors. As we are dealing with classi�cation
tasks, in what follows we use the prediction errordist(y1; y2) = 1(y1 6= y2) as the distance metric.
In general, the smaller the value of� (� 1; � 2) the more weight disentangled a model is at(� 1; � 2).

Figure 3 displays the disentanglement error of a CLIP ViT-B/32 model concerning several task vector
pairs. We observe that the CLIP model exhibits a minimal disentanglement error within a small
region surrounding� 0, which enables task arithmetic. However, for� 1; � 2 > 1, the error increases,
indicating a high degree of interaction between tasks. This explains why task arithmetic performs
better in a small neighborhood of� 0 – task arithmetic is more effective when �ne-tuning with small
learning rates and few training steps [39] – with the optimal value of� typically being less than1.

5

Figure 3:Visualization of weight disentanglement.The heatmaps show the disentanglement error
� (� 1; � 2) of a non-linear CLIP ViT-B/32 (top) and its post-hoc linearization (bottom) on different
example task pairs. The light regions denote areas of the weight space where weight disentanglement
is stronger. The red box delimits the search space used to compute the best� in all our experiments.

Comparing the disentanglement error of the non-linear models and their post-hoc linearization
reveals an interesting �nding: linearized models exhibit greater disentanglement than their non-linear
counterparts. This is evident from the more extensive regions with low disentanglement errors in
Figure 3 (bottom). This explains why the post-hoc linearized models achieve higher normalized
accuracies via task addition (cf. Table 1) and manage to forget more through task negation (cf.
Table 2). Paradoxically, however, although the greater disentanglement of linearized models allows
them to retain more of their relative performance when edited with task arithmetic, they still perform
worse in absolute terms due to the great advantage of the non-linear models in single-task accuracy
(cf. Figure 2). This suggests that closing the single-task performance gap between linearized and
non-linear models could be a way to enhance task arithmetic. We leverage this idea in the next section.

5 Enhancing task arithmetic via linearization

Figure 4: Conceptual illustration of the differ-
ent approaches we use to edit a pretrained model
f (� ; � 0). HereN represents the space of neural
network functionsf , non-linearly parameterized
by � 2 � ; andK its tangent space, given by the
space of linearized functionsf lin .

We have seen that linearized models are more
weight-disentangled than non-linear ones. How-
ever, post-hoc linearization degrades single-task
performance. We now demonstrate that enforc-
ing models to �ne-tune in the tangent space to
their pre-trained initialization signi�cantly im-
proves task arithmetic by reducing the single-
task accuracy gap.

Speci�cally, rather than applying the non-
linearly �ne-tuned task vectors� = � ? � � 0 to
f lin , as in Section 3, we propose to directly ob-
tain the task vectors through explicit �ne-tuning
in the tangent space as illustrated in Figure 4.
That is, given a modelf , we directly �ne-tune
its linear approximationf lin around� 0 [26].
The �ne-tuning process can follow the same
protocols used before but with the network
parameterization dictated by Eq. (3). Due to the

6

	Introduction
	Notation and problem statement
	Task arithmetic is not a consequence of linear fine-tuning
	Weight disentanglement
	Enhancing task arithmetic via linearization
	Towards understanding task arithmetic
	Eigenfunction localization
	Weight disentanglement emerges during pre-training

	Related work
	Conclusion
	Experimental details
	Implementation aspects of linearized models
	Spectral analysis of linearized models
	Further experimental results
	Fine-tuning accuracies
	Detailed results on task addition
	Weight disentanglement and model scale
	Weight disentanglement of linearized and random models
	Task arithmetic with a convolutional architecture
	Task arithmetic with closed vocabulary models
	Weight disentanglement in other architectures and modalities
	Localization of eigenfunctions of CLIP's NTK
	Further experiments with randomly-initialized networks

