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Abstract

Reinforcement learning (RL) has exceeded human performance in many synthetic
settings such as video games and Go. However, real-world deployment of end-
to-end RL models is less common, as RL models can be very sensitive to slight
perturbation of the environment. The robust Markov decision process (MDP)
framework—in which the transition probabilities belong to an uncertainty set
around a nominal model—provides one way to develop robust models. While
previous analysis shows RL algorithms are effective assuming access to a generative
model, it remains unclear whether RL can be efficient under a more realistic online
setting, which requires a careful balance between exploration and exploitation.
In this work, we consider online robust MDP by interacting with an unknown
nominal system. We propose a robust optimistic policy optimization algorithm that
is provably efficient. To address the additional uncertainty caused by an adversarial
environment, our model features a new optimistic update rule derived via Fenchel
conjugates. Our analysis establishes the first regret bound for online robust MDPs.

1 Introduction

The rapid progress of reinforcement learning (RL) algorithms enables trained agents to navigate
around complicated environments and solve complex tasks. The standard reinforcement learning
methods, however, may fail catastrophically in another environment, even if the two environments
only differ slightly in dynamics [11, 22, 7, 31, 25]. In practical applications, such mismatch of
environment dynamics are common and can be caused by a number of reasons, e.g., model deviation
due to incomplete data, unexpected perturbation and possible adversarial attacks. To model the
potential mismatch between system dynamics, the framework of robust MDP is introduced to account
for the uncertainty of the parameters of the MDP [27, 35, 21, 12]. Under this framework, the dynamic
of an MDP is no longer fixed but can come from some uncertainty set, such as the rectangular
uncertainty set, centered around a nominal transition kernel. The agent sequentially interacts with the
nominal transition kernel to learn a policy, which is then evaluated on the worst possible transition
from the uncertainty set. Therefore, the objective is to find the worst-case best-performing policy.

If a generative model (also known as a simulator) of the environment or a suitable offline dataset
is available, one could obtain a ϵ-optimal robust policy with Õ(ϵ−2) samples under a rectangular
uncertainty set [24, 23, 34, 18]. Yet the presence of a generative model is stringent to fulfill for real

∗Author names are listed in alphabetical order.
†Jingzhao Zhang is also affiliated with Shanghai Qi Zhi Institute and Shanghai Artificial Intelligence

Laboratory.

Workshop on Robustness in Sequence Modeling, 36th Conference on Neural Information Processing Systems
(NeurIPS 2022).



applications. In a more practical online setting, the agent sequentially interacts with the environment
and tackles the exploration-exploitation challenge as it balances between exploring the state space
and exploiting the high-reward actions. in the online setting, which is captured by the regret, is more
challenging to achieve than algorithm convergence. In the robust MDP setting, previous sample
complexity results cannot directly imply a sublinear regret in general Dann et al. [8] and so far
no asymptotic result is available. A more detailed review of the related works are deferred to the
Appendix.

In this paper, we propose the first policy optimization algorithm for robust MDP under a rectangular
uncertainty set. One of the challenges for deriving a regret guarantee for robust MDP stems from its
adversarial nature. As the transition dynamic can be picked adversarially from a predefined set, the
optimal policy is in general randomized [36]. This is in contrast with conventional MDPs, where
there always exists a deterministic optimal policy, which can be found with value-based methods and
a greedy policy (e.g. UCB-VI algorithms). Bearing this observation, we resort to policy optimization
(PO)-based methods, which directly optimize a stochastic policy in an incremental way.

With a stochastic policy, our algorithm explores robust MDPs in an optimistic manner. To achieve
this robustly, we propose a carefully designed bonus function via the dual conjugate of the robust
bellman equation. This quantifies both the uncertainty stemming from the limited historical data
and the uncertainty of the MDP dynamic. In the episodic setting of robust MDPs, we show that our
algorithm attains sublinear regret O(

√
K) for both (s, a) and s-rectangular uncertainty set, where K

is the number of episodes. In the case where the uncertainty set contains only the nominal transition
model, our results recover the previous regret upper bound of non-robust policy optimization [30].
Our result achieves the first provably efficient regret bound in the online robust MDP problem. We
further validated our algorithm with experiments.

2 Problem formulation

In this section, we describe the formal setup of robust MDP. We start with defining some notations.

Robust Markov decision process We consider an episodic finite horizon robust MDP, which can
denoted by a tuple M = ⟨S,A, H, {P}Hh=1, {r}Hh=1⟩. Here S is the state space, A is the action
space, {r}Hh=1 is the time-dependent reward function, and H is the length of each episode. Instead
of a fixed step of time-dependent uncertainty kernels, the transitions of the robust MDP is governed
by kernels that are within a time-dependent uncertainty set {P}Hh=1, i .e., time-dependent transition
Ph ∈ Ph ⊆ ∆S at time h. We consider the case where the rewards are stochastic. This is, on
state-action (s, a) at time h, the immediate reward is Rh(s, a) ∈ [0, 1], which is drawn i.i.d from a
distribution with expectation rh(s, a). With the described setup of robust MDPs, we now define the
policy and its associated value.

Policy and robust value function A time-dependent policy π is defined as π = {πh}Hh=1, where
each πh is a function from S to the probability simplex over actions, ∆(A). If the transition kernel
is fixed to be P , the performance of a policy π starting from state s at time h can be measured by
its value function, which is defined as V π,P

h (s) = Eπ,P

[∑H
h′=h rh′(sh′ , ah′) | sh = s

]
. In robust

MDP, the robust value function instead measures the performance of π under the worst possible
choice of transition P within the uncertainty set. Specifically, the value and the Q-value function of a
policy given the state action pair (s, a) at step h are defined as

V π
h (s) = min

{Ph}∈{Ph}
V

π,{P}
h (s) ,

Qπ
h(s, a) = min

{Ph}∈{Ph}
Eπ,{P}

[
H∑

h′=h

rh(sh′ , ah′) | (sh, ah) = (s, a)

]
.

The optimal value function is defined to be the best possible value attained by a policy V ∗
h (s) =

maxπ V
π
h (s) = maxπ min{Ph}∈{Ph} V

π,{P}
h (s). The optimal policy is then defined to be the policy

that attains the optimal value.

Robust Bellman equation Similar to non-robust MDP, robust MDP has the following robust
bellman equation, which characterizes a relation to the robust value function. Qπ

h(s, a) =

2



r(s, a)+σPh
(V π

h+1)(s, a) , V π
h (s) = ⟨Qπ

h(s, ·), πh(·, s)⟩, where σPh
(V π

h+1)(s, a) = min
Ph∈Ph

Ph(· |
s, a)V π

h+1 , Ph(· | s, a)V =
∑
s′∈S

Ph(s
′ | s, a)V (s′) .

Without additional assumptions on the uncertainty set, the optimal policy and value of the robust
MDP are in general NP-hard to solve [36]. Thus, to limit the level of perturbations, we assume that
the transition kernels is close to the nominal transition measured via ℓ1 distance. We consider two
cases.

Definition 2.1 ((s, a)-rectangular uncertainty set Iyengar [12], Wiesemann et al. [36]). For all time
step h and with a given state-action pair (s, a), the (s, a)-rectangular uncertainty set Ph(s, a) is
defined as Ph(s, a) =

{
∥Ph(· | s, a)− P o

h(· | s, a)∥1 ≤ ρ, Ph(· | s, a) ∈ ∆(S)
}

, where P o
h is the

nominal transition kernel at h, P o
h(· | s, a) > 0,∀(s, a) ∈ S ×A, ρ is the level of uncertainty.

One way to relax the (s, a)-rectangular assumption is to instead let the uncertain transition kernels
within the set take value independent for each s only. This characterization is then more general and
its solution gives a stronger robustness guarantee.

Definition 2.2 (s-rectangular uncertainty set Wiesemann et al. [36]). For all time step h
and with a given state s, the s-rectangular uncertainty set Ph(s) is defined as Ph(s) ={∑

a∈A ∥Ph(· | s, a)− P o
h(· | s, a)∥1 ≤ Aρ, Ph(· | s, ·) ∈ ∆(S)A

}
, where P o

h is the nominal tran-
sition kernel at h, P o

h(· | s, a) > 0,∀(s, a) ∈ S ×A, ρ is the level of uncertainty.

Different from the (s, a)-rectangular assumption, which guarantees the existence of a deterministic
optimal policy, the optimal policy under s-rectangular set may need to be randomized [36]. We also
remark that the requirement of P o

h(· | s, a) > 0 is mostly for technical convenience.

Equipped with the characterization of the uncertainty set, we now describe the definition of regret
under the robust MDP.

Learning protocols and regret We consider a learning agent repeatedly interacts with the en-
vironment defined by the nominal transition model in an episodic manner, over K episodes. We
remark that if the agent is asked to interact with a potentially adversarially chosen transition, the
learning problem is NP-hard [10]. We assume the agents always start from a fixed initial state s. The
performance of the learning agent is measured by the cumulative regret incurred over the K episodes,
which is defined to be the cumulative difference between the robust value of πk and the robust value
of the optimal policy. That is,

∑K
k=1 V

∗
1 (s0)− V πk

1 (s0), where sk0 is the initial state.

3 Algorithm

Our algorithm performs policy optimization with empirical estimates and encourages exploration by
adding a bonus to less explored states. However, we need to propose a new efficiently computable
bonus that is robust to adversarial transitions. We achieve this via solving a sub-optimization problem
derived from Fenchel conjugate. We present Robust Optimistic Policy Optimization (ROPO) and
elaborate on its design components.

To start, as our algorithm has no access to the actual reward and transition function, we use the
following empirical estimator of the transition and reward:

r̂kh(s, a) =

∑k−1
k′=1 R

k′

h (s, a)I
{
sk

′

h = s, ak
′

h = a
}

Nk
h (s, a)

,

P̂ o,k
h (s, a) =

∑k−1
k′=1 I

{
sk

′

h = s, ak
′

h = a, sk
′

h+1 = s′
}

Nk
h (s, a)

, (1)

where Nk
h (s, a) = max

{∑k−1
k′=1 I

{
sk

′

h = s, ak
′

h = a
}
, 1
}

.

Robust Policy Evaluation step In each episode, the algorithm estimates Q-values with an opti-
mistic variant of the bellman equation. Specifically, to encourage exploration in the robust MDP, we
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add a bonus term bkh(s, a), which compensates for the lack of knowledge of the actual reward and

transition model as well as the uncertainly set, with order bkh(s, a) = O

(
1/
√
Nk

h (s, a)

)
.

Q̂k
h(s, a) = min

{
r̂(s, a) + σP̂h

(V̂ π
h+1)(s) + bkh(s, a), H

}
.

Intuitively, the bonus term bkh desires to characterize the optimism required for efficient exploration
for both the estimation errors of P and the robustness of P . It is hard to control the two quantities
in their primal form because of the coupling between them. We propose the following procedure to
address the problem.

Note that the key difference between our algorithm and standard policy optimization is that
σP̂h

(V̂ π
h+1)(s) requires solving an inner minimization. Through relaxing the constraints with La-

grangian multiplier and Fenchel conjugates, under (s, a)-rectangular set, the inner minimization
problem can be reduced to a one-dimensional unconstrained convex optimization problem on R
(Lemma 4).

sup
η

η −
(η −min

s
V̂ πk

h+1(s))+

2
ρ−

∑
s′

P̂ o
h(s

′ | s, a)
(
η − V̂ πk

h+1(s
′)
)
+
. (2)

The optimum of Equation (2) is then computed efficiently with bisection or sub-gradient methods.
Similarly, in the case of s-rectangular set, the inner minimization problem is equivalent to a A-
dimensional convex optimization problem, which can be computed efficiently in Õ(A) iterations
by methods like gradient descent. In addition to reducing computational complexity, the dual form
decouples the uncertainty in estimation error and in robustness, as ρ and P̂ o

h are not in different
terms. The exact form of bkh is presented in the Equation (4) and (5). In the case of s-rectangular
set, the inner minimization problem is similarly equivalent to the following A-dimensional convex
optimization problem.

sup
η

∑
a′

ηa′ −
∑
s′,a′

P̂ o
h(s

′ | s, a′)
(
ηa′ − I{a′ = a}V πk

h+1(s
′)
)
+
−min

s′,a′

Aρ(ηa′ − I{a′ = a}V πk

h+1(s
′))+

2
.

(3)

Policy Improvement Step Using the optimistic Q-value obtained from policy evaluation, the
algorithm improves the policy with a KL regularized online mirror descent step,

πk+1
h ∈ argmax

π
β⟨∇V̂ πk

h , π⟩ − πk
h +DKL(π||πk

h) ,

where β is the learning rate. In the non-robust case, this improvement step is also shown to be
theoretically efficient [30, 37]. Many empirically successful policy optimization algorithms, such as
PPO [29] and TRPO [28], also take a similar approach to KL regularization for non-robust policy
improvement.

4 Main results

We are now ready to analyze the theoretical results of our algorithm under the uncertainly set.

Theorem 1 (Regret under (s, a)-rectangular uncertainty set). With learning rate β =
√

2 logA
H2K and

bonus term bkh as (4), with probability at least 1 − δ, the regret incurred by Algorithm 1 over K

episodes is bounded by O
(
H2S

√
AK log

(
SAH2K3/2(1 + ρ)/δ

))
.

Remark 4.1. When ρ = 0, the problem reduces to non-robust reinforcement learning. In such
case our regret upper bound is Õ

(
H2S

√
AK

)
, which is in the same order of policy optimization

algorithms for the non-robust case Shani et al. [30].

Beyond the (s, a)-rectangular uncertainty set, we also extends to s-rectangular uncertainty set
(Definition 2.2).
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Algorithm 1 Robust Optimistic Policy Optimization (ROPO)

Input: learning rate β, bonus function bkh.
for k = 1, . . . ,K do

Collect a trajectory of samples by executing πk.
# Robust Policy Evaluation
for h = H, . . . , 1 do

for ∀(s, a) ∈ S ×A do
Solve σP̂h

(V̂ π
h+1)(s, a) according to Equation (2) for (s, a)-rectangular set

or Equation (3) for s-rectangular set.
Q̂k

h(s, a) = min
{
r̂(s, a) + σP̂h

(V̂ π
h+1)(s, a) + bkh(s, a), H

}
.

end for
for ∀s ∈ S do
V̂ k
h (s) =

〈
Q̂k

h(s, ·), πk
h(· | s)

〉
.

end for
end for
# Policy Improvement
for ∀h, s, a ∈ [H]× S ×A do

πk+1
h (a | s) = πk

h exp(βQ̂π
h(s,a))∑

a′ exp(βQ̂π
h(s,a

′))
.

end for
Update empirical estimate r̂, P̂ with Equation (1).

end for

Theorem 2 (Regret under s-rectangular uncertainty set). With learning rate β =
√

2 logA
H2K and

bonus term bkh as (5), with probability at least 1 − δ, the regret of Algorithm 1 is bounded by

O
(
SA2H2

√
K log(SA2H2K3/2(1 + ρ)/δ)

)
.

Remark 4.2. When ρ = 0, the problem reduces to non-robust reinforcement learning. In such case
our regret upper bound is Õ

(
SA2H2

√
K
)

. Our result is the first theoretical result for learning a
robust policy under s-rectangular uncertainty set, as previous results only learn the robust value
function [38].

We defer the proof of these theorems, along with the experiments results of the proposed algorithm to
the Appendix.

5 Conclusion

In this paper, we studied the problem of regret minimization in robust MDP with a rectangular uncer-
tainty set. We proposed a robust variant of optimistic policy optimization, which achieves sublinear
regret in all uncertainty sets considered. Our algorithm delicately balances the exploration-exploitation
trade-off through a carefully designed bonus term, which quantifies not only the uncertainty due to
the limited observations but also the uncertainty of robust MDPs. Our results are the first regret upper
bounds in robust MDPs as well as the first non-asymptotic results in robust MDPs without access to a
generative model.
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A Importance of robustness

With the robust MDP, one of the most naive methods is to directly train a policy with the nominal
transition model. However, the following proposition shows an optimal policy under the nominal
policy can be arbitrarily bad in the worst-case transition (even worse than a random policy).
Claim A.1 (Suboptimality of non-robust optimal policy). There exists a robust MDP M =
⟨S,A,P, r,H⟩ with uncertainty set P of uncertainty radius ρ, such that the non-robust optimal
policy is Ω(1)-suboptimal to the uniformly random policy.

The proof of Proposition A.1 is deferred to Appendix G. With the above-stated result, it implies
the policy obtained with non-robust RL algorithms, can have arbitrarily bad performance when the
dynamic mismatch from the nominal transition. This thus motivate our robust optimistic policy
optimization 1 to avoid this undesired result.

B Related works

RL with robust MDP Different from conventional MDPs, robust MDPs allow the transition kernel
to take values from an uncertainty set. The objective in robust MDPs is to learn an optimal robust
policy that maximizes the worst-case value function. When the exact uncertainty set is known, this
can be solved through dynamic programming methods [12, 21, 19]. Yet knowing the exact uncertainty
set is a rather stringent requirement for most real applications. If one has access to a generative model,
several model-based reinforcement learning methods are proven to be statistically efficient. With the
different characterization of the uncertainty set, these methods can enjoy a sample complexity of
O(1/ϵ2) for an ϵ-optimal robust value function [23, 38]. Similar results can also be achieved if an
offline dataset is present, for which previous works Qi and Liao [24], Zhou et al. [40], Kallus et al.
[15], Ma et al. [18] show the O(1/ϵ2) sample complexity for an ϵ-optimal policy. In addition, Liu
et al. [16] proposed distributionally robust policy Q-learning, which solves for the asymptotically
optimal Q-function.

In the case of online RL, the only results available are asymptotic. In the case of discounted MDPs,
Wang and Zou [33], Badrinath and Kalathil [2] study the policy gradient method and show an O(ϵ−3)
convergence rate for an alternative learning objective (a smoothed variant), which could be equivalent
to the original policy gradient objective in an asymptotic regime. These results in sample complexity
and asymptotic regimes in general cannot imply sublinear regret in robust MDPs [8].

RL with adversarial MDP Another line of works characterizes the uncertainty of the environment
through the adversarial MDP formulation, where the environmental parameters can be adversarially
chosen without restrictions. This problem is proved to be NP-hard to obtain a low regret [10]. Several
works study the variant where the adversarial could only modify the reward function, while the
transition dynamics of the MDP remain unchanged. In this case, it is possible to obtain policy-
based algorithms that are efficient with a sublinear regret [26, 14, 13, 30, 4]. On a separate vein, it
investigates the setting where the transition is only allowed to be adversarially chosen for C out of
the K total episodes. A regret of O(C2 +

√
K) are established thereafter [17, 6, 39].

Non-robust policy optimization The problem of policy optimization has been extensively inves-
tigated under non-robust MDPs [20, 4, 30, 37, 5]. The proposed methods are proved to achieve
sublinear regret. The methods are also closely related to empirically successful policy optimization
algorithms in RL, such as PPO Schulman et al. [29] and TRPO Schulman et al. [28].
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C Experiments

To validate our theoretical findings, we conduct a preliminary empirical analysis of our purposed
robust policy optimization algorithm.

Environment We conduct the experiments with the Gridworld environment, which is an early
example of reinforcement learning from [32]. The environment is two-dimensional and is in a
cell-like environment. Specifically, the environment is a 5 × 5 grid, where the agent starts from
the upper left cell. The cells consist of three types, road (labeled with o), wall (labeled with x), or
reward state (labeled with +). The agent can safely walk through the road cell but not the wall cell.
Once the agent steps on the reward cell, it will receive a reward of 1, and it will receive no rewards
otherwise. The goal of the agents is to collect as many rewards as possible within the allowed time.

Figure 1: Example of
the Gridworld environ-
ment.

The agent has four types of actions at each step, up, down, left, and right. After
taking the action, the agent has a success probability of p to move according
to the desired direction, and with the remaining probability of moving to other
directions.

Experiment configurations To simulate the robust MDP, we create a nom-
inal transition dynamic with success probability p = 0.9. The learning agent
will interact with this nominal transition during training time and interact with
a perturbed transition dynamic during evaluation.Under (s, a)-rectangular set,
the transitions are perturbed against the direction is agent is directing with a
constraint of ρ. Under s-rectangular set, the transitions are perturbed against

the direction of the goal state. Figure 1 shows an example of our environment, where the perturba-
tion caused some of the optimal policies under nominal transition to be sub-optimal under robust
transitions. We denote the perturbed transition as robust transitions in our results. We implement
our proposed robust policy optimization algorithm along with the non-robust variant of it [30]. The
inner minimization of our Algorithm 1 is computed through its dual formulation for efficiency. Our
algorithm is implemented with the rLberry framework [9].

Results We present results with ρ = 0.1, 0.2, 0.3 under (s, a)-rectangular set here in Figure 4. The
results with s-rectangular sets are included in the appendix. We present the averaged cumulative
rewards during evaluation. Regardless of the level of uncertainty, we observe that the robust variant
of the policy optimization algorithm is more robust to dynamic changes as it is able to obtain a higher
level of rewards than its non-robust variant.

(a) ρ = 0.1 (b) ρ = 0.2 (c) ρ = 0.3

Figure 2: Cumulative rewards obtained by robust and non-robust policy optimization on robust transition with
different level of uncertainty ρ = 0.1, 0.2, 0.3 under ℓ1 distance, (s, a)-rectangular set.

9



D Proofs of Theorem 1

D.1 Good events

We first define the following good events, in which case we estimate the reward function and the
nominal transition functions fairly accurately.

Gr
k =

{
∀s, a, h :

∣∣rh(s, a)− r̂kh(s, a)
∣∣ ≤√2 ln(2SAH2K/δ′)

Nk
h (s, a)

}
,

Gp
k =

{
∀s, a, h : σPh(s,a)(V̂

πk

h+1)(s, a)− σP̂h(s,a)
(V̂ πk

h+1)(s, a) ≤ Ck
h(s, a)

}
,

where Ck
h(s, a) = H

√
4S log(3SAH2K3/2(4+ρ)/δ′)

Nk
h (s,a)

+ 1√
K

.

When the two good events happens at the same time, we say the algorithm in inside the good event
G =

(⋂K
k=1 Gr

k

)⋂(⋂K
k=1 G

p
k

)
. The following lemma shows that G happens with high probability

by setting δ′ properly.
Lemma 1 (Good event). Let δ = 2δ′, then the good event happens with high probability, i.e.
P [G] ≥ 1− δ.

Proof. By Hoeffding’s inequality and an union bound on all s, a, all possible values of Nk(s, a) and
k, we have P

[⋂K
k=1 Gr

k

]
≥ 1− δ′. By Lemma 4, we have P

[⋂K
k=1 G

p
k

]
≥ 1− δ′ Then set δ = 2δ′

and we have the desired result.

D.2 Design of the bonus function

In the case of (s, a)-rectangular uncertainty set, we use the following bonus function bkh(s, a) to
encourage exploration.

bkh(s, a) =

√
2 log(3SAH2K/δ)

Nk
h (s, a)

+H

√
4S log(3SAH2K3/2(4 + ρ)/δ)

Nk
h (s, a)

+
1√
K

. (4)

D.3 Regret Analysis

Armed with the defined good event, we are now ready to present the anlysis of Theorem 1, which
establishes the regret of the Algorithm under (s, a)-uncertainty set.

Theorem 1 (Regret under (s, a)-rectangular uncertainty set). With learning rate β =
√

2 logA
H2K and

bonus term bkh as (4), with probability at least 1 − δ, the regret incurred by Algorithm 1 over K

episodes is bounded by O
(
H2S

√
AK log

(
SAH2K3/2(1 + ρ)/δ

))
.

Proof. We start with decomposing the regret as follows,

Regret(K) =

K∑
k=1

V ∗
1 (s)− V πk

1 (s)

=

K∑
k=1

(
V ∗
1 (s)− V̂ πk

1 (s)
)
+
(
V̂ πk
1 (s)− V πk

1 (s)
)
.

By Lemma 2 and Lemma 3, with probability at least 1− δ, we have

Regret(K) = O
(
H2
√
K logA

)
+O

(
H2S

√
AK log

(
SAH2K3/2(1 + ρ)/δ

))
= O

(
H2S

√
AK log

(
SAH2K3/2(1 + ρ)/δ

))
.
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Lemma 2. With probability at least 1− δ, we have
K∑

k=1

V ∗
1 (s)− V̂ πk

1 (s) = O
(
H2
√

K logA
)
.

Proof. For any h ∈ [1, H], we have

V ∗
h (s)− V̂ πk

h (s)

= ⟨Q∗
h(s, ·), π∗(· | s)⟩ − ⟨Q̂πk

h (s, ·), πk(· | s)⟩
= ⟨Q∗

h(s, ·)− Q̂πk

h (s, ·), π∗(· | s)⟩+ ⟨Q̂πk

h (s, ·), π∗(· | s)− πk(· | s)⟩

= Eπ∗

[
(rh(s, a)− r̂kh(s, a)) + (σPh(s,a)(V

∗
h+1)(s, a)− σP̂h(s,a)

(V̂ πk

h+1)(s, a))− bkh(s, a)
]

+ ⟨Q̂πk

h (s, ·), π∗(· | s)− πk(· | s)⟩

= Eπ∗

[
(rh(s, a)− r̂kh(s, a)) + (σPh(s,a)(V̂

πk

h+1)(s, a)− σP̂h(s,a)
(V̂ πk

h+1)(s, a))− bkh(s, a)
]

+ Eπ∗

[
σPh(s,a)(V

∗
h+1)(s, a)− σPh(s,a)(V̂

πk

h+1)(s, a)
]
+ ⟨Q̂πk

h (s, ·), π∗(· | s)− πk(· | s)⟩ ,

where the third equality is by the update rule of our algorithm and the robust bellman equation.

By the design of our bonus function, conditioned on the good event, we have

(rh(s, a)− r̂kh(s, a)) + (σPh(s,a)(V
∗
h+1)(s, a)− σP̂h(s,a)

(V̂ πk

h+1)(s, a))− bkh(s, a) ≤ 0 .

Let qh(· | s, a) = argmin
Ph∈Ph

Ph(· | s, a)V̂ πk

h+1, then we have

σPh(s,a)(V
∗
h+1)(s, a)− σPh(s,a)(V̂

πk

h+1)(s, a)

= min
Ph∈Ph

Ph(· | s, a)V ∗
h+1 − min

Ph∈Ph

Ph(· | s, a)V̂ πk

h+1

= min
Ph∈Ph

Ph(· | s, a)V ∗
h+1 − qh(· | s, a)V̂ πk

h+1

≤ qh(· | s, a)(V ∗
h+1 − V̂ πk

h+1)

≤ max
Ph∈Ph

Ph(· | s, a)(V ∗
h+1 − V̂ πk

h+1) .

Let ph(· | s, a) = argmax
Ph∈Ph

Ph(· | s, a)(V ∗
h+1)(s, a), Then we have the following relation hold

conditioned on the good event:

V ∗
h (s)− V̂ πk

h (s)

≤ Eπ∗

[
sup

Ph∈Ph

Ph(· | s, a)(V ∗
h+1 − V̂ πk

h+1)

]
+ ⟨Q̂πk

h (s, ·), π∗(· | s)− πk(· | s)⟩

= Eπ∗,ph

[
V ∗
h+1(s)− V̂ πk

h+1(s)
]
+ ⟨Q̂πk

h (s, ·), π∗(· | s)− πk(· | s)⟩ .

Then, by applying above relation recursively and with the fact that for any policy π and state s,
V ∗
H+1(s) = V̂ πk

H+1(s) = 0, we have

V ∗
1 (s)− V̂ πk

1 (s) ≤
H∑

h=1

Eπ∗,{qt}h−1
t=1

[
⟨Q̂πk

h (s, ·), π∗(· | s)− πk(· | s)⟩
]
.

Summing over k, we get

K∑
k=1

V ∗
1 (s)− V̂ πk

1 (s) ≤
K∑

k=1

H∑
h=1

Eπ∗,{qt}h−1
t=1

[
⟨Q̂πk

h (s, ·), π∗(· | s)− πk(· | s)⟩
]
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=

H∑
h=1

Eπ∗,{qt}h−1
t=1

[
K∑

k=1

⟨Q̂πk

h (s, ·), π∗(· | s)− πk(· | s)⟩

]
.

By standard results for online mirror descent (Lemma 13), we have

K∑
k=1

⟨Q̂πk

h (s, ·), π∗(· | s)− πk(· | s)⟩ ≤
log(A)

β
+

β

2

K∑
k=1

∑
a∈A

π∗
h(a | s)(Q̂πk

h (s, a))2 .

By the update rule of Algorithm 1, we have 0 ≤ Q̂πk

h (s, a) ≤ H , for all h, k. Then take β =
√

2 logA
H2K ,

K∑
k=1

⟨Q̂πk

h (s, ·), π∗(· | s)− πk(· | s)⟩ ≤
√
2H2K logA .

Finally, we have

K∑
k=1

V ∗
1 (s)− V̂ πk

1 (s) ≤ H
√
2H2K logA = O

(
H2
√

K logA
)
.

Lemma 3. With probability at least 1− δ, we have

K∑
k=1

(V̂ πk
1 − V πk

1 )(s) = O

(
H2S

√
AK log

(
SAH2K3/2(1 + ρ)/δ

))
.

Proof. By the algorithm’s update rule and the robust bellman equation, we have

(V̂ πk

h − V πk

h )(s) = ⟨Q̂πk

h (s, ·)−Qπk

h (s, ·), πk(· | s)⟩

=
〈
r̂kh(s, ·)− rkh(s, ·) + (σP̂(s,·)

(V̂ πk

h+1)(s, ·)− σP(s,·)(V
πk

h+1)(s, ·)) + bkh(s, ·), πk(· | s)
〉

= Eπk

[
r̂kh(s, a)− rkh(s, a) + (σP̂h(s,a)

(V̂ πk

h+1)(s, a)− σPh(s,a)(V
πk

h+1)(s, a)) + bkh(s, a)
]
.

By adding and subtracting a term σPh(s,a)(V̂
πk

h+1)(s, a), we have

σP̂h(s,a)
(V̂ πk

h+1)(s, a)− σPh(s,a)(V
πk

h+1)(s, a)

= σP̂h(s,a)
(V̂ πk

h+1)(s, a)− σPh(s,a)(V̂
πk

h+1)(s, a) + σPh(s,a)(V̂
πk

h+1)(s, a)− σPh(s,a)(V
πk

h+1)(s, a)

≤ σP̂h(s,a)
(V̂ πk

h+1)(s, a)− σPh(s,a)(V̂
πk

h+1)(s, a) + max
Ph∈Ph

Ph(· | s, a)(V̂ πk

h+1 − V πk

h+1) .

Let ph(· | s, a) = argmax
Ph∈Ph

Ph(· | s, a)(V̂ πk

h+1 − V πk

h+1), we have

(V̂ πk

h − V πk

h )(s)

≤ Eπk

[
r̂kh(s, a)− rkh(s, a) + σP̂h(s,a)

(V̂ πk

h+1)(s, a)− σPh(s,a)(V̂
πk

h+1)(s, a) + ph(· | s, a)(V̂ πk

h+1 − V πk

h+1) + bkh(s, a)
]

= Eπk,ph

[
r̂kh(s, a)− rkh(s, a) + σP̂h(s,a)

(V̂ πk

h+1)(s, a)− σPh(s,a)(V̂
πk

h+1)(s, a) + V̂ πk

h+1(s)− V πk

h+1(s) + bkh(s, a)
]

By applying the above relation recursively and with the fact that for any policy π and state s,
V πk

H+1(s) = V̂ πk

H+1(s) = 0, we have

(V̂ πk
1 − V πk

1 )(s) ≤
H∑

h=1

Eπk,{pt}h
t=1

[
r̂kh(s, a)− rkh(s, a) + σP̂h(s,a)

(V̂ πk

h+1)(s, a)− σPh(s,a)(V̂
πk

h+1)(s, a) + bkh(s, a)
]
.
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Conditioned on the good even and by the design of our bonus function, we have

r̂kh(s, a)− rkh(s, a) + σP̂h(s,a)
(V̂ πk

h+1)(s, a)− σPh(s,a)(V̂
πk

h+1)(s, a) ≤ bkh(s, a) .

Then, with probability at least 1− δ, we have

K∑
k=1

(V̂ πk
1 − V πk

1 )(s) ≤
K∑

k=1

H∑
h=1

Eπk,{pt}h
t=1

[
2bkh(s, a)

]
≤ H

√
K +O

(
H
√

S log(SAH2K3/2(4 + ρ)/δ)

) K∑
k=1

H∑
h=1

Eπk,{pt}h
t=1

[√
1

Nk
h (s, a)

]
.

By Lemma 12, we have the bound of the visitation counts:

K∑
k=1

H∑
h=1

√
1

Nk
h (s, a)

≤ 2H
√
SAK .

Combining everything, with probability at least 1− δ

K∑
k=1

(V̂ πk
1 − V πk

1 )(s) = O

(
H2S

√
AK log

(
SAH2K3/2(1 + ρ)/δ

))
.

Lemma 4. For any h, k, s, a, the following inequality holds with probability at least 1− δ′,

σPh(s,a)(V̂
πk

h+1)(s, a)− σP̂h(s,a)
(V̂ πk

h+1)(s, a) ≤ H

√
4S log(3SAH3K3/2(4 + ρ)/δ′)

Nk
h (s, a)

+
1

H
√
K

.

Proof. By the definition of σPh(s,a)(V̂
πk

h+1)(s, a) = min
Ph∈Ph

∑
s′ Ph(s

′ | s, a)V̂ πk

h+1(s
′), we have the

following optimization problem:

min
Ph

∑
s′

Ph(s
′ | s, a)V̂ πk

h+1(s
′)

s.t.

{ ∑
s′ |Ph(s

′ | s, a)− P o
h(s

′ | s, a)| ≤ ρ ,∑
s′ Ph(s

′ | s, a) = 1 ,
P o
h(· | s, a) > 0, Ph(· | s, a) ≥ 0 .

Define P̃h(s
′ | s, a) = Ph(s

′|s,a)
P o

h (s′|s,a) , we can rewrite the above optimization problem as

min
P̃h

∑
s′

P̃h(s
′ | s, a)P o

h(s
′ | s, a)V̂ πk

h+1(s
′)

s.t.


∑

s′ |P̃h(s
′ | s, a)− 1|P o

h(s
′ | s, a) ≤ ρ ,∑

s′ P̃h(s
′ | s, a)P o

h(s
′ | s, a) = 1 ,

P̃h(s
′ | s, a) ≥ 0 ∀s′ ∈ S .

Using the Lagrangian multiplier method, we have the following Lagrangian L(P̃h, η, λ) with La-
grangian multiplier η ∈ R, λ ≥ 0,

L(P̃h, η, λ)(s, a) =
∑
s′

P̃h(s
′ | s, a)P o

h(s
′ | s, a)V̂ πk

h+1(s
′) + λ

(∑
s′

|P̃h(s
′ | s, a)− 1|P o

h(s
′ | s, a)− ρ

)

− η

(∑
s′

P̃h(s
′ | s, a)P o

h(s
′ | s, a)− 1

)
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= η − λρ− λ
∑
s′

P o
h(s

′ | s, a)

(
η

λ
P̃h(s

′ | s, a)− |P̃h(s
′ | s, a)− 1| −

P̃h(s
′ | s, a)V̂ πk

h+1(s
′)

λ

)

= η − λρ− λ
∑
s′

P o
h(s

′ | s, a)

(
η − V̂ πk

h+1(s
′)

λ
P̃h(s

′ | s, a)− |P̃h(s
′ | s, a)− 1|

)
.

We define f(x) = |x− 1| and the convex conjugate is f∗(y) = max
x

⟨x, y⟩ − f(x). Let x be P̃h and

by using f∗, we can optimize over P̃h and rewrite the Lagrangian as

L(η, λ)(s, a) = min
P̃h

L(P̃h, η, λ)(s, a) = η − λρ− λ
∑
s′

P o
h(s

′ | s, a)f∗

(
η − V̂ πk

h+1(s
′)

λ

)
.

Notice that conditioned on x ≥ 0, f(x) = |x− 1|’s convex conjugate has the following closed form:

f∗(y) = max
x

⟨x, y⟩ − f(x) =


−1 y ≤ −1 ,

y y ∈ [−1, 1] ,

+∞ y > 1 .

Let η̃ = η + λ, then using the closed form of f∗(y), the equality max {a, b} = (a − b)+ + b and

condition on
η−V̂

πk
h+1(s

′)

λ ≤ 1, we can rewrite the optimization problem as

L(η̃, λ)(s, a) = η − λρ− λ
∑
s′

P o
h(s

′ | s, a)f∗

(
η − V̂ πk

h+1(s
′)

λ

)

= η̃ − λ− λρ− λ
∑
s′

P o
h(s

′ | s, a)max

{
η − V̂ πk

h+1(s
′)

λ
,−1

}

= η̃ − λ− λρ− λ
∑
s′

P o
h(s

′ | s, a)

((
η − V̂ πk

h+1(s
′)

λ
− (−1)

)
+

+ (−1)

)
= η̃ − λ− λρ−

∑
s′

P o
h(s

′ | s, a)(η̃ − V̂ πk

h+1(s
′))+ + λ

= η̃ − λρ−
∑
s′

P o
h(s

′ | s, a)(η̃ − V̂ πk

h+1(s
′))+ .

with the constraint of λ being

λ ≥ 0, η̃ −min
s

V̂ πk

h+1(s) ≤ 2λ.

Then we discuss the constraint of η̃ = η + λ and show that η̃ ∈ R. We discuss this by cases.

For any x ≤ min
s

V̂ πk

h+1(s), taking η = x, λ = 0, then we have η̃ = x.

For any x > min
s

V̂ πk

h+1(s), taking η =
x+min

s
V̂

πk
h+1(s)

2 , λ =
x−min

s
V̂

πk
h+1(s)

2 , then we have η̃ = x.

Then we have η̃ ∈ R. Fixing any η̃, from the definition of L, we need to choose λ =
(η̃−min

s
V̂

πk
h+1(s))+

2
to achieve the maximum of L. Then by directly optimizing it over λ, we can reduce the problem to

L(η̃)(s, a) = η̃ −
(η̃ −min

s
V̂ πk

h+1(s))+

2
ρ−

∑
s′

P o
h(s

′ | s, a)(η̃ − V̂ πk

h+1(s
′))+ .

with the constraint η̃ ∈ R.

Define the function g as

g(η̃, P o
h) = −L(η̃)(s, a) =

∑
s′

P o
h(s

′ | s, a)
(
η̃ − V̂ πk

h+1(s
′)
)
+
− η̃ +

(η̃ −min
s

V̂ πk

h+1(s))+

2
ρ .
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Then we investigate the optimum of g. First notice that g(0) = 0, when η̃ ≤ 0, g(η̃, P o
h) = −η̃ ≥ 0.

On the other hand, when η̃ ≥ H ,

g(η̃, P o
h) =

∑
s′

P o
h(s

′ | s, a)(η̃ − V̂ πk

h+1(s
′))− η̃ +

(η̃ −min
s

V̂ πk

h+1(s))

2
ρ

= −
∑
s′

P o
h(s

′ | s, a)V̂ πk

h+1(s
′) +

(η̃ −min
s

V̂ πk

h+1(s))

2
ρ .

Note that now g is directly proportional to η̃, therefore g achieves the minimum within the range
of η̃ ∈ [0, H]. We remark that the same form is also used for analyzing robust policy evaluation
(Lemma B.1 [38]).

With this, we can rewrite

σP̂h(s,a)
(V̂ πk

h+1)(s, a)− σPh(s,a)(V̂
πk

h+1)(s, a) = − min
η1∈[0,H]

g(η1, P̂
o,k
h ) + min

η2∈[0,H]
g (η2, P

o
h)

≤ max
η∈[0,H]

|g
(
η, P̂ o,k

h

)
− g (η, P o

h) | .

To upper bound σP̂h(s,a)
(V̂ πk

h+1)(s, a)− σPh(s,a)(V̂
πk

h+1)(s, a), we first upper bound |g
(
η, P̂ o,k

h

)
−

g (η, P o
h) |.

|g
(
η, P̂ o,k

h

)
− g (η, P o

h) | =

∣∣∣∣∣∑
s′

P̂ o,k
h (s′ | s, a)

(
η − V̂ πk

h+1(s
′)
)
+
−
∑
s′

P o
h(s

′ | s, a)
(
η − V̂ πk

h+1(s
′)
)
+

∣∣∣∣∣
≤
∥∥∥P̂ o,k

h (· | s, a)− P o
h(· | s, a)

∥∥∥
1
max
s∈S

|η − V̂ πk

h+1(s)|∞

≤ H
∥∥∥P̂ o,k

h (· | s, a)− P o
h(· | s, a)

∥∥∥
1
,

where the first inequality is by Cauchy-Schwarz inequality, the second inequality follows from
η ∈ [0, H].

By Hoeffding’s inequality and an union bound over all s, a, the following inequality holds with
probability at least 1− δ′:∥∥∥P̂ o,k

h (· | s, a)− P o
h(· | s, a)

∥∥∥
1
≤

√
4S log(3SAH2K/δ′)

Nk
h (s, a)

.

To upper bound the error with maximum over η, we first create an ϵ-net Nϵ(η) with g over η ∈ [0, H]
such that

max
η∈[0,H]

|g
(
η, P̂ o,k

h

)
− g (η, P o

h) | ≤ max
η∈Nϵ(η)

|g
(
η, P̂ o,k

h

)
− g (η, P o

h) |+ 2ϵ .

By taking an union bound over Nϵ(η), we have

max
η∈[0,H]

|g
(
η, P̂ o,k

h

)
− g (η, P o

h) | ≤ H

√
4S log(3SAH2K|Nϵ(η)|/δ′)

Nk
h (s, a)

+ 2ϵ ,

where |Nϵ(η)| is the size of the ϵ-net.

It now remains to bound the size of |Nϵ(η)|, which can be obtained easily if g is Lischitz. Notice that

|g(η̃1, P o
h)− g(η̃2, P

o
h)| ≤

∑
s′

P o
h(s

′ | s, a)|η̃1 − η̃2|+ |η̃1 − η̃2|+
|η̃1 − η̃2|

2
ρ

=
4 + ρ

2
|η̃1 − η̃2| ,
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where the first inequality is by the absolute inequality and |(a)+ − (b)+| ≤ |a− b|.

Then g is a 4+ρ
2 -Lipschitz function over η ∈ [0, H], thus combined with Lemma 11, we have

|Nϵ(η)| = O
(
4+ρ
2ϵ

)
. Hence, we have the following inequality happens with at least 1−δ′ probability:

max
η∈[0,H]

|g
(
η, P̂ o,k

h

)
− g (η, P o

h) | ≤ H

√
4S log(3SAH2K(4 + ρ)/2ϵδ′)

Nk
h (s, a)

+ 2ϵ .

Take ϵ = 1
2
√
K

, we have the following inequality happens with at least 1− δ′ probability:

σPh(s,a)(V̂
πk

h+1)(s, a)− σP̂h(s,a)
(V̂ πk

h+1)(s, a) ≤ max
η∈[0,H]

|g
(
η, P̂ o,k

h

)
− g (η, P o

h) |

≤ H

√
4S log(3SAH2K3/2(4 + ρ)/δ′)

Nk
h (s, a)

+
1√
K

.
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E Proof of Theorem 2

E.1 Good events

We first define the following good events, in which case we estimate the reward function and the
nominal transition functions fairly accurately.

Gr
k =

{
∀s, a, h :

∣∣rh(s, a)− r̂kh(s, a)
∣∣ ≤√2 ln(2SAH2K/δ′)

Nk
h (s, a)

}
,

Gp
k =

{
∀s, a, h : σPh(s)(V̂

πk

h+1)(s, a)− σP̂h(s)
(V̂ πk

h+1)(s, a) ≤ Ck
h(s, a)

}
,

where

Ck
h(s, a) = AH

√
4SA log(3SA2H3K3/2(4 + ρ)/δ′)

Nk
h (s, a)

+
1

H
√
K

.

When the two good events happens at the same time, we say the algorithm in inside the good event
G =

(⋂K
k=1 Gr

k

)⋂(⋂K
k=1 G

p
k

)
. The following lemma shows that G happens with high probability.

Lemma 5 (Good event). Let δ = 2δ′, then the good event happens with high probability, i.e.
P [G] ≥ 1− δ.

Proof. By Hoeffding’s inequality and an union bound on all s, a, all possible values of Nk(s, a) and
k, we have P

[⋂K
k=1 Gr

k

]
≥ 1− δ′. By Lemma 7, we have P

[⋂K
k=1 G

p
k

]
≥ 1− δ′ Then set δ = 2δ′

and we have the desired result.

E.2 Design of the bonus function

In the case of s-rectangular uncertainty set, we use the following bonus function bkh(s, a) to encourage
exploration.

bkh(s, a) = AH

√
4SA log(3SA2H2K3/2(4 + ρ)/δ)

Nk
h (s, a)

+
1√
K

+

√
2 log(3SAH2K/δ′)

Nk
h (s, a)

. (5)

E.3 Regret analysis

Theorem 2 (Regret under s-rectangular uncertainty set). With learning rate β =
√

2 logA
H2K and

bonus term bkh as (5), with probability at least 1 − δ, the regret of Algorithm 1 is bounded by

O
(
SA2H2

√
K log(SA2H2K3/2(1 + ρ)/δ)

)
.

Proof. Similar to the case of (s, a)-rectangular set, we start with decomposing the regret as follows,

Regret(K) =

K∑
k=1

V ∗
1 (s)− V πk

1 (s)

=

K∑
k=1

(
V ∗
1 (s)− V̂ πk

1 (s)
)
+
(
V̂ πk
1 (s)− V πk

1 (s)
)
.

By Lemma 2 and Lemma 6, with probability at least 1− δ, we have

Regret(K) = O
(
H2
√
K logA

)
+O

(
SA2H2

√
K log(SA2H2K3/2(1 + ρ)/δ)

)
= O

(
SA2H2

√
K log(SA2H2K3/2(1 + ρ)/δ)

)
.
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Lemma 6. With Algorithm 1, we have
K∑

k=1

(V̂ πk
1 − V πk

1 )(s) = O

(
SA2H2

√
K log(SA2H2K3/2(1 + ρ)/δ)

)
.

Proof. Similar to the case with (s, a)-rectangular uncertainty set, for any k, we can decompose
(V̂ πk

1 − V̂ πk
1 )(s) as,

(V̂ πk
1 − V̂ πk

1 )(s)

≤
H∑

h=1

Eπk,{pt}h
t=1

[
(rkh(s, a)− r̂kh(s, a)) +

(
σP̂h(s)

(
V̂ πk

h+1

)
(s, a)− σPh(s)

(
V̂ πk

h+1

)
(s, a)

)
+ bkh(s, a)

]
.

Thus by the design of our bonus function and with probability at least 1− δ, we have
K∑

k=1

(V̂ πk
1 − V πk

1 )(s)

≤ 2

K∑
k=1

H∑
h=1

Eπk,{pt}h
t=1

[
bkh(s, a)

]
= H

√
K +O

(
HA

√
SA log(SA2H2K3/2(1 + ρ)/δ)

) K∑
k=1

H∑
h=1

Eπk,{pt}h
t=1

[√
1

Nk
h (s, a)

]
.

By Lemma 12, we have the bound of visitation counts:
K∑

k=1

H∑
h=1

√
1

Nk
h (s, a)

≤ 2H
√
SAK .

Combining everything, conditioned on the good event we have
K∑

k=1

(V̂ πk
1 − V πk

1 )(s) = O

(
SA2H2

√
K log(SA2H2K3/2(1 + ρ)/δ)

)
.

Lemma 7. For any h, k, s, a, the following inequality holds with probability at least 1− δ,

σP̂h(s)
(V̂ πk

h+1)(s, a)− σPh(s)(V̂
πk

h+1)(s, a) ≤ AH

√
4SA log(3SA2H2K3/2(4 + ρ)/δ)

Nk
h (s, a)

+
1√
K

.

Proof. By the definition of σPh(s)(V̂
πk

h+1)(s, a) = inf
Ph∈Ph

∑
s′ Ph(s

′ | s, a)V̂ πk

h+1(s
′), we consider the

following optimization problem:

min
Ph

∑
s′

Ph(s
′ | s, a)V̂ πk

h+1(s
′)

s.t.


∑

s′,a′ |Ph(s
′ | s, a′)− P o

h(s
′ | s, a′)| ≤ Aρ ,∑

s′ Ph(s
′ | s, a′) = 1 ,∀a′ ∈ A ,

P o
h(· | s, a′) > 0, Ph(· | s, a′) ≥ 0 ,∀a′ ∈ A .

Let P̃h(s
′ | s, a) = Ph(s

′|s,a)
P o

h (s′|s,a) , we can rewrite the above optimization problem as

min
P̃h

∑
s′

P̃h(s
′ | s, a)P o

h(s
′ | s, a)V̂ πk

h+1(s
′)

s.t.


∑

s′,a′ |(P̃h(s
′ | s, a′)− 1|P o

h(s
′ | s, a′) ≤ Aρ ,∑

s′ P̃h(s
′ | s, a′)P o

h(s
′ | s, a′) = 1 , ∀a′ ∈ A

P̃h(· | s, a′) ≥ 0 , ∀a′ ∈ A .
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Use the Lagrangian multiplier method and f(x) = |x− 1|, we have the Lagrangian L(P̃h, η, λ) with
multiplier η = {ηa}a∈A, ηa ∈ R, λ ≥ 0,

L
(
P̃h, η, λ

)
(s, a)

=
∑
s′

P̃h(s
′ | s, a)P o

h(s
′ | s, a)V̂ πk

h+1(s
′) + λ

∑
s′,a′

∣∣∣(P̃h(s
′ | s, a′)− 1

∣∣∣P o
h(s

′ | s, a′)−Aρ


−
∑
a′

ηa′

(∑
s′

P̃h(s
′ | s, a′)P o

h(s
′ | s, a′)− 1

)

= − λAρ+
∑
a′

ηa′ + λ
∑
s′,a′

P o
h(s

′ | s, a′)
(
f
(
P̃h(s

′ | s, a′)
)
− P̃h(s

′ | s, a′)
(
ηa′ − I{a′ = a}V πk

h+1(s
′)

λ

))
.

The convex conjugate of f is f∗(y) = max
x

⟨x, y⟩ − f(x). Using f∗, we can thus optimize over P̃h

and rewrite the Lagrangian over as

L(η, λ)(s, a) = min
P̃h

L
(
P̃h, η, λ

)
(s, a)

= − λAρ+
∑
a′

ηa′ − λ
∑
s′,a′

P o
h(s

′ | s, a′)f∗
(
ηa′ − I{a′ = a}V πk

h+1(s
′)

λ

)
.

Conditioned on x ≥ 0, f(x) = |x − 1|, notice that the conjugate f∗(y) has the following closed
form,

f∗(y) = max
x

⟨x, y⟩ − f(x) =


−1 y ≤ −1 ,

y y ∈ [−1, 1] ,

+∞ y > 1 .

Let η̃a = ηa + λ, using the closed form of f∗(y), the equality max {a, b} = (a − b)+ + b and

conditioned on
ηa′−I{a′=a}V πk

h+1(s
′)

λ ≤ 1, we can rewrite the optimization problem as

L(η̃, λ)(s, a) = −λAρ+
∑
a′

ηa′ − λ
∑
s′,a′

P o
h(s

′ | s, a′)f∗
(
ηa′ − I{a′ = a}V πk

h+1(s
′)

λ

)

= −λAρ− λA+
∑
a′

η̃a′ − λ
∑
s′,a′

P o
h(s

′ | s, a′)max

{
ηa′ − I{a′ = a}V πk

h+1(s
′)

λ
,−1

}
= −λAρ+

∑
a′

η̃a′ −
∑
s′,a′

P o
h(s

′ | s, a′)
(
η̃a′ − I{a′ = a}V πk

h+1(s
′)
)
+
.

where constraint of λ is

λ ≥ 0, η̃a′ − I{a′ = a}V πk

h+1(s
′) ≤ 2λ, ∀a′, s′ .

Note that the above Lagrangian is inversely proportional to λ and it achieves the maximum when

λ = max
s′,a′

(η̃a′−I{a′=a}V πk
h+1(s

′))+

2 . Directly optimize over λ, we can reduce the problem to

L(η̃)(s, a) =
∑
a′

η̃a′ −
∑
s′,a′

P o
h(s

′ | s, a′)
(
η̃a′ − I{a′ = a}V πk

h+1(s
′)
)
+
−max

s′,a′

Aρ(η̃a′ − I{a′ = a}V πk

h+1(s
′))+

2
.

Define g (η̃, P o
h) = −L(η̃)(s, a) as

g(η̃, P o
h) = −

∑
a′

η̃a′ +
∑
s′,a′

P o
h(s

′ | s, a′)
(
η̃a′ − I{a′ = a}V πk

h+1(s
′)
)
+
+max

s′,a′

Aρ(η̃a′ − I{a′ = a}V πk

h+1(s
′))+

2
.
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Assume g achieves its minimum when η̃ = {η̃1, · · · , η̃A}. Suppose η̃ has a component η̃a < 0.
Consider η′ = {η̃1, · · · , 0, · · · , η̃a}, where we change the zero element η̃a to 0 and keep other
components unchanged. Then we have

g(η̃, P o
h)− g(η′, P o

h) = −η̃A > 0 ,

which contradict with the hypothesis that g achieves its minimum in η̃.

On the other hand, suppose η̃ has a component η̃a > H . Then consider η′ = {η̃1, · · · , H, · · · , η̃a},
where we change corresponding η̃a to 0 and keep other components unchanged. Denote f(η̃) =

max
s′,a′

Aρ(η̃a′−I{a′=a}V πk
h+1(s

′))+

2 , and we have

g (η̃, P o
h)− g (η′, P o

h) = − η̃A +H +
∑
s′

P o
h(s

′ | s, a)(η̃a −H) + f(η̃)− f(η′)

≥ − η̃A +H +
∑
s′

P o
h(s

′ | s, a)(η̃a −H)

= 0 .

Therefore, g achieves its minimum with η̃, with 0 ≤ ηa ≤ H,∀a ∈ A. We remark that a similar form
and technique are also used for analyzing robust policy evaluation (Lemma C.1 [38]).

We can now rewrite

σP̂h(s)

(
V̂ πk

h+1

)
(s, a)− σPh(s)

(
V̂ πk

h+1

)
(s, a) = min

η1∈[0,H]|A|
g(η1, P̂

o,k
h )− min

η2∈[0,H]|A|
g(η2, P

o
h)

≤ max
η∈[0,H]|A|

∣∣∣g (η, P̂ o,k
h

)
− g (η, P o

h)
∣∣∣ .

To upper bound σP̂h(s)

(
V̂ πk

h+1

)
(s, a) − σPh(s)

(
V̂ πk

h+1

)
(s, a), we first consider the bound of∣∣∣g (η, P̂ o,k

h

)
− g (η, P o

h)
∣∣∣,∣∣∣g (η, P̂ o,k

h

)
− g (η, P o

h)
∣∣∣

=

∣∣∣∣∣∣
∑
s′,a′

P̂ o,k
h (s′ | s, a′)

(
ηa′ − I{a′ = a}V πk

h+1(s
′)
)
+
−
∑
s′,a′

P o
h(s

′ | s, a′)
(
ηa′ − I{a′ = a}V πk

h+1(s
′)
)
+

∣∣∣∣∣∣
=

∣∣∣∣∣∑
a′

∑
s′

(
P̂ o,k
h (s′ | s, a′)− P o

h(s
′ | s, a′)

) (
ηa′ − I{a′ = a}V πk

h+1(s
′)
)
+

∣∣∣∣∣
≤
∑
a′

∥∥∥P̂ o,k
h (· | s, a′)− P o

h(· | s, a′)
∥∥∥
1
max
s∈S

∣∣ηa′ − I{a′ = a}V πk

h+1(s)
∣∣

≤ H
∑
a′

∥∥∥P̂ o,k
h (· | s, a′)− P o

h(· | s, a′)
∥∥∥
1
,

where the first inequality is by Cauchy-Schwarz inequality, the second inequality follows from
ηa ∈ [0, H], ∀a ∈ A.

By Hoeffding’s inequality and an union bound over all s, a′, Nk
h (s, a), the following inequality holds

with probability at least 1− δ,∥∥∥P̂ o,k
h (· | s, a′)− P o

h(· | s, a′)
∥∥∥
1
≤

√
4S log(SAH2K/δ)

Nk
h (s, a)

.

To upper bound maxη∈[0,H]|A|

∣∣∣g (η, P̂ o,k
h

)
− g (η, P o

h)
∣∣∣, we first create an ϵ-net Nϵ(η) with g over

η ∈ [0, H] such that

max
η∈[0,H]

∣∣∣g (η, P̂ o,k
h

)
− g (η, P o

h)
∣∣∣ ≤ max

η∈Nϵ(η)

∣∣∣g (η, P̂ o,k
h

)
− g (η, P o

h)
∣∣∣+ 2ϵ .
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Taking an union bound over Nϵ(η), we have

max
η∈[0,H]

∣∣∣g (η, P̂ o,k
h

)
− g (η, P o

h)
∣∣∣ ≤ HA

√
4S log(3SAH2K|Nϵ(η)|/δ)

Nk
h (s, a)

+ 2ϵ ,

where |Nϵ(η)| is the size of the ϵ-net.

It now remains to find the size of the ϵ-net, which can be easily obtained if g is Lipschitz. Notice that

|g(η̃1, P o
h)− g(η̃2, P

o
h)|

≤
∑
s′,a′

P o
h(s

′ | s, a)|η̃1,a′ − η̃2,a′ |+
∑
a′

|η̃1,a′ − η̃2,a′ |+
max
a′

|η̃1,a′ − η̃2,a′ |

2
Aρ

≤ A(4 + ρ)

2
∥η̃1 − η̃2∥∞ ,

where the first inequality is by the absolute inequality, the property of maximum function and
|(a)+ − (b)+| ≤ |a− b|, the second inequality follows from the definition of infinity norm.

Therefore g is a A(4+ρ)
2 -Lipschitz function over η ∈ [0, H]. Thus combining with Lemma 11, we

have |Nϵ(η)| ≤
(

A(4+ρ)
2ϵ

)A
. Hence, we have the following inequality happens with at least 1− δ′

probability:

σP̂h(s)
(V̂ πk

h+1)(s, a)− σPh(s)(V̂
πk

h+1)(s, a) ≤ max
ηa∈[0,H]|A|

∣∣∣g (η, P̂ o,k
h

)
− g (η, P o

h)
∣∣∣

≤ AH

√
4SA log(3SA2H2K(4 + ρ)/2ϵδ′)

Nk
h (s, a)

+ 2ϵ .

Take ϵ = 1
2
√
K

, then

σP̂h(s)
(V̂ πk

h+1)(s, a)− σPh(s)(V̂
πk

h+1)(s, a) ≤ AH

√
4SA log(3SA2H2K3/2(4 + ρ)/δ′)

Nk
h (s, a)

+
1√
K

.
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F Extension to uncertainty set with KL divergence

In this section, we extend our algorithm and analysis to uncertainty sets with KL divergence as a
distance metric. We first formally define the uncertainty set considered, which is similar to the one in
Definition 2.1.
Definition F.1 ((s, a)-rectangular uncertainty set Iyengar [12], Wiesemann et al. [36]). For all time
step h and with a given state-action pair (s, a), the (s, a)-rectangular uncertainty set Ph(s, a) is
defined as

Ph(s, a) = {DKL (Ph(· | s, a), P o
h(· | s, a)) ≤ ρ , Ph(· | s, a) ∈ ∆(S)} ,

where P o
h is the nominal transition kernel at h, P o

h(· | s, a) > 0,∀(s, a) ∈ S × A, ρ is the level of

uncertainty and DKL (p(· | s, a), q(· | s, a)) =
∑

s′∈S p(s′ | s, a) log
(

p(s′|s,a)
q(s′|s,a)

)
.

With the above described uncertainty set, our algorithm solves σP̂h
(V̂ π

h+1)(s, a) by solving the
following sub-problem,

min
λ

λρ+ λ log

(∑
s′

P̂ o
h(s

′ | s, a) exp

(
−V̂ πk

h+1(s
′)

λ

))
.

Our algorithm also uses the following bonus function in the robust policy evaluation step,

bkh(s, a) = Ck
h(s, a) +

√
2 log(3SAH2K/δ′)

Nk
h (s, a)

.

With these modifications to algorithm 1, the following theorem states the formal regret guarantee.
Theorem 3 (Regret under KL divergence (s, a)-rectangular uncertainty set). Setting the learning

rate β =
√

2 logA
H2K , then with probability at least 1 − δ, the regret incurred by Algorithm over K

episodes is bounded by

Regret(K) = O

(
SH

ρc

√
AK log(SAH4K3/2/δ)

)
,

where 0 < c ≤ 1 the minimal element of P o
h , over all h ∈ [H].

In the following, we present the detailed analysis of Theorem 3

F.1 Good events

We first define the following good events, in which case we estimate the reward function and the
nominal transition functions fairly accurately.

Gr
k =

{
∀s, a, h :

∣∣rh(s, a)− r̂kh(s, a)
∣∣ ≤√2 ln(2SAH2K/δ′)

Nk
h (s, a)

}
,

Gp
k =

{
∀s, a, h : σPh(s)(V̂

πk

h+1)(s, a)− σP̂h(s)
(V̂ πk

h+1)(s, a) ≤ Ck
h(s, a)

}
,

where

Ck
h(s, a) =

2H

ρc

√
4S log(8SAH4K2/δ′ρ)

Nk
h (s, a)

+
1√
K

,

and c is the minimal element of P o
h , over all h ∈ [H]. When the two good events happens at the same

time, we say the algorithm in inside the good event G =
(⋂K

k=1 Gr
k

)⋂(⋂K
k=1 G

p
k

)
. The following

lemma shows that G happens with high probability.
Lemma 8 (Good event). Let δ = 2δ′, then the good event happens with high probability, i.e.
P [G] ≥ 1− δ.

Proof. By Hoeffding’s inequality and an union bound on all s, a, all possible values of Nk(s, a) and
k, we have P

[⋂K
k=1 Gr

k

]
≥ 1− δ′. By Lemma 10, we have P

[⋂K
k=1 G

p
k

]
≥ 1− δ′ Then set δ = 2δ′

and we have the desired result.
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F.2 Regret analysis

Proof. Similar to the case of (s, a)-rectangular set, we start with decomposing the regret as follows,

Regret(K) =

K∑
k=1

V ∗
1 (s)− V πk

1 (s)

=

K∑
k=1

(
V ∗
1 (s)− V̂ πk

1 (s)
)
+
(
V̂ πk
1 (s)− V πk

1 (s)
)
.

By Lemma 2 and Lemma 9, with probability at least 1− δ, we have

Regret(K) = O
(
H2
√
K logA

)
+O

(
SH

ρc

√
AK log(SAH4K3/2/δ)

)
= O

(
SH

ρc

√
AK log(SAH4K3/2/δ)

)
,

where c is the minimal element of P o
h , over all h ∈ [H].

Lemma 9. With Algorithm 1, we have
K∑

k=1

(V̂ πk
1 − V πk

1 )(s) = O

(
1

ρc
SH

√
AK log(SAH4K3/2/δ)

)
.

Proof. Similar to the case with (s, a)-rectangular uncertainty set, for any k, we can decompose
(V̂ πk

1 − V̂ πk
1 )(s) as,

(V̂ πk
1 − V̂ πk

1 )(s) ≤
H∑

h=1

Eπk,{pt}h
t=1

[
(rkh(s, a)− r̂kh(s, a)) +

(
σP̂h(s)

(
V̂ πk

h+1

)
(s, a)− σPh(s)

(
V̂ πk

h+1

)
(s, a)

)
+ bkh(s, a)

]
.

Thus by the design of our bonus function and with probability at least 1− δ, we have
K∑

k=1

(V̂ πk
1 − V πk

1 )(s)

≤ 2

K∑
k=1

H∑
h=1

Eπk,{pt}h
t=1

[
bkh(s, a)

]
= H

√
K +O

(
1

ρc

√
S log(SAH4K3/2/δ)

) K∑
k=1

H∑
h=1

Eπk,{pt}h
t=1

[√
1

Nk
h (s, a)

]
,

where c is a problem dependent constant.

By Lemma 12, we have the bound of visitation counts:
K∑

k=1

H∑
h=1

√
1

Nk
h (s, a)

≤ 2H
√
SAK .

Combining everything, conditioned on the good event we have
K∑

k=1

(V̂ πk
1 − V πk

1 )(s) = O

(
SH

ρc

√
AK log(SAH4K3/2/δ)

)
.

Lemma 10. For any h, k, s, a, the following inequality holds with probability at least 1− δ,

σP̂h(s)
(V̂ πk

h+1)(s, a)− σPh(s)(V̂
πk

h+1)(s, a) ≤
2H

ρc

√
4S log(8SAH4K2/δ′ρ)

Nk
h (s, a)

+
1√
K

.

where c is the minimal element of P o
h .
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Proof. By the definition of σPh(s)

(
V̂ πk

h+1

)
(s, a) = inf

Ph∈Ph

∑
s′ Ph(s

′ | s, a)V̂ πk

h+1(s
′), we consider

the following optimization problem:

min
Ph

∑
s′

Ph(s
′ | s, a)V̂ πk

h+1(s
′)

s.t.


∑

s′ Ph(s
′ | s, a) log

(
Ph(s

′|s,a)
P o

h (s′|s,a)

)
≤ ρ ,∑

s′ Ph(s
′ | s, a) = 1 ,

P o
h(· | s, a) > 0, Ph(· | s, a) ≥ 0 .

Let P̃h(s
′ | s, a) = Ph(s

′|s,a)
P o

h (s′|s,a) , we can rewrite the above optimization problem as

min
P̃h

∑
s′

P̃h(s
′ | s, a)P o

h(s
′ | s, a)V̂ πk

h+1(s
′)

s.t.


∑

s′ P̃h(s
′ | s, a′)P o

h(s
′ | s, a′) log

(
P̃h(s

′ | s, a)
)
≤ ρ ,∑

s′ P̃h(s
′ | s, a′)P o

h(s
′ | s, a) = 1 ,

P̃h(· | s, a) ≥ 0 .

Use the Lagrangian multiplier method and f(x) = x log x, we have the Lagrangian L(P̃h, η, λ) with
multiplier η ∈ R, λ ≥ 0,

L(P̃h, η, λ)(s, a)

=
∑
s′

P̃h(s
′ | s, a)P o

h(s
′ | s, a)V̂ πk

h+1(s
′) + λ

(∑
s′

P̃h(s
′ | s, a′)P o

h(s
′ | s, a′) log(P̃h(s

′ | s, a))− ρ

)

− η

(∑
s′

P̃h(s
′ | s, a)P o

h(s
′ | s, a)− 1

)

= − λρ+ η + λ
∑
s′

P o
h(s

′ | s, a)
(
f
(
P̃h(s

′ | s, a′)
)
− P̃h(s

′ | s, a′)
(
η − V πk

h+1(s
′)

λ

))
.

The convex conjugate of f is f∗(y) = max
x

⟨x, y⟩ − f(x). Using f∗, we can thus optimize over P̃h

and rewrite the Lagrangian over as

L(η, λ)(s, a) = min
P̃h

L(P̃h, η, λ)(s, a) = −λρ+ η − λ
∑
s′

P o
h(s

′ | s, a)f∗
(
η − V πk

h+1(s
′)

λ

)
.

Conditioned on x ≥ 0, f(x) = x log x, notice that the conjugate f∗(y) has the following closed
form,

f∗(y) = max
x

⟨x, y⟩ − f(x) = exp(y − 1) .

Using the closed form of f∗(y), we can rewrite the optimization problem as

L(η, λ)(s, a) = −λρ+ η − λ
∑
s′

P o
h(s

′ | s, a)f∗
(
η − V πk

h+1(s
′)

λ

)
= −λρ+ η − λ

∑
s′

P o
h(s

′ | s, a) exp
(
η − V πk

h+1(s
′)− λ

λ

)
.

Taking the derivative of η,

∂L

∂η
= 1−

∑
s′

P o
h(s

′ | s, a) exp
(
η − V πk

h+1(s
′)− λ

λ

)
= 0 ,
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η = λ− λ log

(∑
s′

P o
h(s

′ | s, a) exp
(−V πk

h+1(s
′)

λ

))
.

Directly optimize over η, we can reduce the problem to

L(λ)(s, a) = λ(1− ρ)− λ log

(∑
s′

P o
h(s

′ | s, a) exp
(−V πk

h+1(s
′)

λ

))
− λ ,

= −λρ− λ log

(∑
s′

P o
h(s

′ | s, a) exp
(−V πk

h+1(s
′)

λ

))
.

Define g(λ, P o
h) = −L(λ)(s, a) as

g(λ, P o
h) = λρ+ λ log

(∑
s′

P o
h(s

′ | s, a) exp
(−V πk

h+1(s
′)

λ

))
.

Note that the Lagrangian multiplier λ ≥ 0. Then we prove g is bounded within [−H,H] over
[0, H/ρ].

g(λ, P o
h) = λρ+ λ log

(∑
s′

P o
h(s

′ | s, a) exp
(−V πk

h+1(s
′)

λ

))
,

≤ λρ+ λ log

(∑
s′

P o
h(s

′ | s, a) exp
(
−0

λ

))
,

= λρ ≤ H ,

where the first inequality follows from V πk

h+1(s
′) ≥ 0 and the second inequality is by λ ≤ H/ρ.

g(λ, P o
h) = λρ+ λ log

(∑
s′

P o
h(s

′ | s, a) exp
(−V πk

h+1(s
′)

λ

))
,

≥ λρ+ λ log

(∑
s′

P o
h(s

′ | s, a) exp
(
−H

λ

))
,

= λρ−H ≥ −H ,

where the first inequality follows from V πk

h+1(s
′) ≤ H and the second inequality is by λ ≥ 0.

Moreover, from the induction above we know that for any P , g(0, P ) ≤ 0 and for λ > H/ρ,

g (λ, P ) ≥ λρ+ λ log(exp(−H/λ)) > 0 .

Therefore, g achieves its minimum over λ ∈ [0, H/ρ]. We remark that the same form is also used for
sample complexity results ( [2, 38]).

We can now rewrite

σP̂h(s)

(
V̂ πk

h+1

)
(s, a)− σPh(s)

(
V̂ πk

h+1

)
(s, a) = min

0≤λ1≤H/ρ
g
(
λ1, P̂

o,k
h

)
− min

0≤λ2≤H/ρ
g (λ2, P

o
h)

≤ max
0≤λ≤H/ρ

∣∣∣g (λ, P̂ o,k
h

)
− g (λ, P o

h)
∣∣∣ .

By [21] (Appendix C), when λ = 0, g
(
λ, P̂ o,k

h

)
= g (λ, P o

h) = mins∈S V πk

h+1(s). Therefore, it

suffice to bound over maxc≤λ≤H/ρ

∣∣∣g (λ, P̂ o,k
h

)
− g (λ, P o

h)
∣∣∣, where c > 0. We now have∣∣∣g (λ, P̂ o,k

h

)
− g (λ, P o

h)
∣∣∣
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=

∣∣∣∣∣λ log

(∑
s′

P̂ o,k
h (s′ | s, a) exp

(−V πk

h+1(s
′)

λ

))
− λ log

(∑
s′

P o
h(s

′ | s, a) exp
(−V πk

h+1(s
′)

λ

))∣∣∣∣∣
=

∣∣∣∣∣∣∣∣λ log

1 +

∑
s′(P̂

o,k
h (s′ | s, a)− P o

h(s
′ | s, a)) exp

(
−V

πk
h+1(s

′)

λ

)
∑

s′ P
o
h(s

′ | s, a) exp
(

−V
πk
h+1(s

′)

λ

)

∣∣∣∣∣∣∣∣

≤ 2λ

∣∣∣∣∣∣∣∣
∑

s′(P̂
o,k
h (s′ | s, a)− P o

h(s
′ | s, a)) exp

(
−V

πk
h+1(s

′)

λ

)
∑

s′ P
o
h(s

′ | s, a) exp
(

−V
πk
h+1(s

′)

λ

)
∣∣∣∣∣∣∣∣

≤ 2λmax
s′

∣∣∣∣∣ P̂ o,k
h (s′ | s, a)− P o

h(s
′ | s, a)

P o
h(s

′ | s, a)

∣∣∣∣∣
where the first inequality follows from | log(1 + x)| ≤ 2|x| and the second inequality follows from
the Holder’s inequality.

By Hoeffding’s inequality and an union bound over all s, a′, Nk
h (s, a), the following inequality holds

with probability at least 1− δ,

max
s′

∣∣∣P̂ o,k
h (s′ | s, a)− P o

h(s
′ | s, a)

∣∣∣ ≤ ∥∥∥P̂ o,k
h (· | s, a)− P o

h(· | s, a)
∥∥∥
1
≤

√
4S log(SAH2K/δ)

Nk
h (s, a)

.

Then we create an ϵ-net Nϵ(λ) with g over λ ∈ [0, H/ρ] such that

max
λ∈[0,H/ρ]

|g(λ, P̂ o,k
h )− g(λ, P o

h)| ≤ max
λ∈Nϵ(η)

|g(λ, P̂ o,k
h )− g(λ, P o

h)|+ 2ϵ .

Then we know that |Nϵ(λ)| is bounded by the area of the rectangle [0, H/ρ]× [−H,H] over ϵ2,

|Nϵ(λ)| ≤
2H2

ρϵ2
.

Taking an union bound over Nϵ(λ) and denote c = min
s′

P o
h(· | s, a), we have the following inequality

happens with at least 1− δ′ probability:

σP̂h(s)
(V̂ πk

h+1)(s, a)− σPh(s)(V̂
πk

h+1)(s, a) ≤ max
λ∈[0,H/ρ]

|g(λ, P̂ o,k
h )− g(λ, P o

h)|

≤ max
λ∈Nϵ(λ)

|g(λ, P̂ o,k
h )− g(λ, P o

h)|+ 2ϵ

≤ 2
H

ρ
max
s′

∣∣∣∣∣ P̂ o,k
h (s′ | s, a)− P o

h(s
′ | s, a)

P o
h(s

′ | s, a)

∣∣∣∣∣+ 2ϵ

≤ 2
H

ρc

√
4S log(2SAH4K/δ′ρϵ2)

Nk
h (s, a)

+ 2ϵ ,

Take ϵ = 1
2
√
K

, then

σP̂h(s)
(V̂ πk

h+1)(s, a)− σPh(s)(V̂
πk

h+1)(s, a) ≤ 2
H

ρc

√
4S log(8SAH4K2/δ′ρ)

Nk
h (s, a)

+
1√
K

.
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G Proof of Proposition 1

Claim A.1 (Suboptimality of non-robust optimal policy). There exists a robust MDP M =
⟨S,A,P, r,H⟩ with uncertainty set P of uncertainty radius ρ, such that the non-robust optimal
policy is Ω(1)-suboptimal to the uniformly random policy.

Proof. We consider a robust MDP with three states s0, s1, s2 and two actions a0, a1. Without loss of
generality, we let s0 be the initial state. On the initial state s0, both actions will lead to a reward of 0.
On state s1, a reward of 1/(H − 1) is given for both actions. On state s2, a reward of −1/(H − 1) is
given for both actions. The nominal transition dynamic of the MDP is the following. Taking action
a0 on s0 will be transited to s1 with a probability of ϵ and be transited to s2 with a probability of ϵ,
while ϵ > 0.5. Taking the other action a1 will have equal probability of transiting to s1 and s2. The
states s1 and s2 are absorbing, in the sense that taking any action on these two states will be transited
by to the same state. The transition of the MDP is also illustrated in Figure 3, where a dashed line
denotes a probabilistic transition and a solid line denotes deterministic transition. With the nominal

Figure 3: The left figure describes the nominal transition dynamic of the MDP. The right figure describes the
robust transition dynamic of the MDP.

transition, it is clear that an optimal policy would be always taking a0. Denote this policy as πo,∗, the
value for this policy under nominal transition over K episodes is

V πo,∗(s0) = K(H − 1)

(
ϵ · 1

H − 1
− (1− ϵ) · 1

H − 1

)
= 2ϵ− 1 > 0 ,

where the last inequality is due to ϵ > 0.

However, consider the uncertainty radius ρ and the robust transition denoted by the right figure of
Figure 3. That is, taking a0 on s0 will leads to a transition to s1 with probability ϵ− ρ/2 and to s2
with probability 1− ϵ+ ρ/2. Note that as ϵ > 0.5, ρ ≤ 1, ϵ− ρ/2 > 0. Moreover, this transition is
indeed the worst case transition for any non-uniform policy. Let Ṽ denotes the robust value under the
above described transition. With a uniform policy π, the value of it under this transition is

Ṽ π(s0) = K(H − 1)

(
0.5
(
ϵ− ρ

2

)
· 1

H − 1
− 0.5

(
1− ϵ+

ρ

2

)
) · 1

H − 1

)
= ϵ− ρ/2− 0.5 .

The value of πo,∗ is, however,

Ṽ πo,∗(s0) = K(H − 1)

((
ϵ− ρ

2

)
· 1

H − 1
−
(
1− ϵ+

ρ

2

)
) · 1

H − 1

)
= 2ϵ− ρ− 1 .

For any 2ϵ− 1 ≤ ρ ≤ 1, we have Ṽ πo,∗(s0) ≤ Ṽ π(s0). Since ϵ > 0.5 is arbitrary, the optimal policy
under the nominal transition is non-robust even under the slightest perturbation.
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H Auxiliary lemmas

Lemma 11 ([3]). An ϵ-cover of a subset T of a pseudometric space (S, d) is a set T̂ ⊂ T such that
for each t ∈ T there is a t̂ ∈ T̂ such that d(t, t̂) ≤ ϵ. The ϵ-covering number of T is

N(ϵ, T, d) = min
{
|T̂ | : T̂ is an ϵ-cover of T

}
.

Let Fd be the set of L-Lipschitz functions (wrt ∥ · ∥∞ ) mapping from [0, 1]d to [0, 1]. Then

logN (ϵ, Fd, ∥ · ∥∞) = Θ

((
L

ϵ

)d
)

.

Lemma 12 (Lemma 7.5 [1]). For arbitrary K sequence of trajectories {skh, akh}Hh=1, k = 1, . . . ,K,
we have

K∑
k=1

H∑
h=1

1√
Nk

h (s
k
h, a

k
h)

≤ 2H
√
SAK .

Proof. We have

K∑
k=1

H∑
h=1

1√
Nk

h

(
skh, a

k
h

) =

H∑
h=1

∑
(s,a)∈S×A

NK
h (s,a)∑
i=1

1√
i

≤ 2

H∑
h=1

∑
(s,a)∈S×A

√
NK

h (s, a)

≤
H∑

h=1

√
SA

∑
s,a

NK
h (s, a)

= H
√
SAK ,

where the first inequality is by
∑N

i=1
1√
i
≤ 2

√
N and the second inequality follows by Cauchy-

Schwarz inequality.

Lemma 13 (Fundamental inequality of Online Mirror Descent for RL (Lemma 17 [30])). Let β > 0.
Let π1

h(· | s) be the uniform distribution. Then, by updating with OMD and with KL divergence
regularization, for any k ∈ [K], h ∈ [H] and s ∈ S, the following holds for any stationary policy π,

K∑
k=1

〈
Qk

h(· | s), πk
h(· | s)− πh(· | s)

〉
≤ logA

β
+

β

2

K∑
k=1

∑
a

πk
h(a | s)

(
Qk

h(s, a)
)2

. (6)
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I More experimental details

Other configurations and set up The episode length is set to 20 and all algorithms are trained
with 3000 episodes. The evaluation results are averaged over 20 runs and is presented with 1 standard
deviation. All experiments are conducted with 64 core ADM 3990X.

Results with ℓ1 distance constrained s-rectangular uncertainty sets With the uncertainty set
described with ℓ1 distance with s-rectangular set, we present the following experimental results.

(a) ρ = 0.1 (b) ρ = 0.2 (c) ρ = 0.3

Figure 4: Cumulative rewards obtained by robust and non-robust policy optimization on robust transition with
different level of uncertainty ρ = 0.1, 0.2, 0.3 under ℓ1 distance, s-rectangular set.

Results with KL divergence constrained (s, a)-rectangular uncertainty sets With the uncer-
tainty set described with KL divergence, we present the following experimental results. All other
configurations and set up remains the same with those for uncertainty set with ℓ1 distance.

(a) ρ = 0.1 (b) ρ = 0.2 (c) ρ = 0.3

Figure 5: Cumulative rewards obtained by robust and non-robust policy optimization on robust transition with
different level of uncertainty ρ = 0.1, 0.2, 0.3 under KL divergence.
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