
Table 2: Notations for GPP.

Terminology Symbol Meaning

Model M The model to probe.

Stimuli space X The space of stimuli.

Representation space A ✓ R
d The space of vector representations of M.

Basis functions � The function (contained in M) mapping from X to A.

Vector representation �(x) The vector representation of a stimulus x 2 X .

↵ ↵ : A 7! R
+, mapping to the 1st parameter of a Beta distribution.

� � : A 7! R
+, mapping to the 2nd parameter of a Beta distribution.

t↵ A random function such that t↵(a) ⇠ Gamma(↵(a), 1).

t� A random function such that t�(a) ⇠ Gamma(�(a), 1).

Beta distribution Beta(↵(a),�(a)) The Beta distribution for g(a), 8a 2 A.

Mean function µ µ : A 7! R.

Kernel function k k : A⇥A 7! R.

GP GP(µ, k) A GP with mean function µ and kernel function k.

f↵ ⇠ GP(µ, k) f↵ : A 7! R, the (latent) function for approximating t↵.

f� ⇠ GP(µ, k) f� : A 7! R, the (latent) function for approximating t� .

✓ Parameter for the Beta GP in GPP, ✓ = (µ, k).

Beta GP G(✓) A distribution over functions mapping from A to [0, 1].

Classifier g ⇠ G(✓) g = 1
1+e�f : A 7! [0, 1], a random function.

Observations D D = {(�(xi), yi)}|D|
i=1, xi 2 X , yi 2 {0, 1}.

Beta GP posterior G(✓ | D) The Beta GP conditional on observations D.

Queries aq aq = [�(xj)]
|aq|
j=1 2 R

d⇥|aq|.

Predicted probabilities g(aq) g(aq) = [g(a)]a2aq .

A Notation407

In Table 2, we include the main notation used in this paper.408

B Details on the Beta GP in GPP409

As shown in § 2.2 and §2.3, with observations D = {(ai, yi)}|D|
i=1, the posterior of a Beta GP can be410

written as the transformed version of a GP, i.e.,411

g =
1

1 + e�f
⇠ G(✓ | D), where f ⇠ GP(µD, kD).

We show how to obtain the mean and kernel functions µD, kD in §B.1, as well as the posterior of412

weights in §B.2 for the cosine kernel. The behavior of GPP relies on two hyperparameters, ✏ and413

s, and we explain what they are and how to set them in §B.3. In §B.4, we analyze and bound the414

episteme of GPP.415

As a reference, Figure 8 shows the graphical model of GPP.416

13

✓

f↵

f�
g y

x

s

N

✏

t↵

t� h y

x

s

N

Figure 8: Left: Graphical model of the Beta GP in GPP with N observations. Right: The stochastic
process that a Beta GP approximates, where h = t↵

t↵+t�
⇠ Beta(✏, ✏), t↵ ⇠ Gamma(✏, 1), t� ⇠

Gamma(✏, 1), and t↵ ?? t� . In Beta GP, g = e
f↵

ef↵+e
f�

, where f↵ approximates log t↵, and f�

approximates log t� . Hyperparameter s is the weight for each observation.

B.1 Posterior inference (extension of §2.3.2)417

Without loss of generality, we write observations as a union of a dataset (of size n) with the positive418

labels only and a dataset (of size |D| � n) with negative labels only, i.e., D = {(ai, yi)}|D|
i=1 =419

D
+ [D

� where D
+ = {(ai, yi)}ni=1 and D

� = {(ai, yi)}|D|
i=n+1.420

For convenience, we use the following short-hand notation:421

v
0 = log(

1

✏+ s
+ 1), v

00 = log(
1

✏
+ 1), y

0 = log(✏+ s)� v
0

2
, y

00 = log(✏)� v
00

2
.

Observing a positive example is equivalent to observing y
0 with noise N (0, v0) on f↵ and observing422

y
00 with noise N (0, v00) on f� . Vice versa for observing a negative example. We also denote 1m as a423

column vector of size m filled with 1s, and Im as an identity matrix of size m.424

Recall that f↵ ⇠ GP(µ, k), f� ⇠ GP(µ, k) and f↵ ?? f� . The posterior for f↵ is f↵ | D ⇠425

GP(µ↵, k↵). For any a, a
0 2 A,426

µ↵(a) = µ(a) + k(a,a)K�1
↵

(y↵ � µ(a)), k↵(a, a
0) = k(a, a0)� k(a,a)K�1

↵
k(a, a0), (5)

where427

k(a,a) = [k(ai, a)]
|D|
i=1 2 R

1⇥|D|
, k(a, a0) = [k(ai, a

0)]|D|
i=1 2 R

|D|⇥1
,

µ(a) = [µ(ai)]
|D|
i=1 2 R

|D|⇥1
, K = [k(ai, aj)]

|D|
i=1,j=1 2 R

|D|⇥|D|
,

and428

y↵ =

"
y
01n

y
001|D|�n

#
2 R

|D|⇥1
, K↵ = K +

"
v
0
In 0

0 v
00
I|D|�n

#
2 R

|D|⇥|D|
.

Similarly for f� | D ⇠ GP(µ� , k�), we have429

µ�(a) = µ(a) + k(a,a)K�1
�

(y� � µ(a)), k�(a, a
0) = k(a, a0)� k(a,a)K�1

�
k(a, a0), (6)

where430

y� =

"
y
001n

y
01|D|�n

#
2 R

|D|⇥1
, K� = K +

"
v
00
In 0

0 v
0
I|D|�n

#
2 R

|D|⇥|D|
.

Since f = f↵ � f� , by combining Eq. 5 and Eq. 6, we have f | D ⇠ GP(µD, kD), and431

µD(a) = µ↵(a)� µ�(a) = k(a,a)
⇣
K

�1
↵

(y↵ � µ(a))�K
�1
�

(y� � µ(a))
⌘
,

kD(a, a0) = k↵(a, a
0) + k�(a, a

0) = 2k(a, a0)� k(a,a)
⇣
K

�1
↵

+K
�1
�

⌘
k(a, a0). (7)

Thus, we obtain the closed-form posterior for function f .432

For classifier g(a) = 1
1+e�f(a) , we can then get its PDF as follows,433

pg(a)(y) =
1

y(1� y)
p
2⇡kD(a, a)

exp

� (log(y)� log(1� y)� µD(a))2

2kD(a, a)

!
. (8)

14

B.2 Posterior inference for weights (extension of §2.3.3)434

If we use the cosine kernel in §2.3.3, the posterior of f↵ can be written as435

f↵(a) = W
>
↵
 (a) + µ(a), where W↵ | D ⇠ N (u↵,⌃↵),W↵ 2 R

d+1
.

This means f↵(a) | D ⇠ N (u>
↵
 (a) + µ(a), (a)>⌃↵ (a)).436

Because of Eq. 5 and Eq. 4, we can also write the posterior of f↵ as437

µ↵(a) = µ(a) + (a)> (a)K�1
↵

(y↵ � µ(a)),

k↵(a, a
0) = (a)> (a)� (a)> (a)K�1

↵
 (a)> (a).

By comparing the above two ways of writing the posterior of f↵, we obtain438

u↵ = (a)K�1
↵

(y↵ � µ(a)), ⌃↵ = Id+1 � (a)K�1
↵
 (a)>.

Similarly, for f�(a) = W
>
�
 (a) + µ(a),W� | D ⇠ N (u� ,⌃�), we have439

u� = (a)K�1
�

(y� � µ(a)), ⌃� = Id+1 � (a)K�1
�
 (a)>.

Then, for f = f↵ � f� = W
>
 (a),W | D ⇠ N (µ,⌃), we have440

u = (a)
⇣
K

�1
↵

(y↵ � µ(a))�K
�1
�

(y� � µ(a))
⌘
, ⌃ = 2Id+1 � (a)

⇣
K

�1
↵

+K
�1
�

⌘
 (a)>.

This means we can directly sample classifiers from a Beta GP with a cosine kernel by sampling441

weights W from a multivariate Gaussian distribution defined above.442

B.3 How to set hyperparameters443

There are two hyperparameters in GPP with the cosine kernel: ✏, which determines the prior, and s,444

which determines the posterior.445

For any a 2 A, the prior on the probability that the label is positive is Beta(✏, ✏). As noted in §2.3.1,446

✏ < 1 reflects a belief that g(a) should be close to either 0 or 1; ✏ = 1 gives a uniform distribution447

over [0, 1]; and ✏ > 1 reflects a belief that g(a) is centered at 0.5. In the Beta GP, the Beta prior is448

approximated as449

pg(a)(y) =
1

y(1� y)
q
4⇡ log(1

✏̂
+ 1)

exp

� (log(y)� log(1� y))2

4 log(1
✏̂
+ 1)

!
. (9)

Eq. 9 is obtained using the prior of f , i.e., µD(a) = 0, kD(a, a) = 2k(a, a) = 2 log(1
✏̂
+ 1), in Eq. 8.450

Users can choose Beta(✏̂, ✏̂) for moment matching in Eq. 9 to get a better approximation of Beta(✏, ✏).451

Figure 9 shows both the PDF of Beta priors and the approximations.452

For setting the hyperparameter s, users can also directly inspect the behaviors of different values of s453

and choose an appropriate value. Figure 10 and Figure 11 show how the posterior changes with one454

negative or two opposite-label observations. Larger s leads to more concentrated posterior.455

Since all of these distributions are easily computable and can be visualized clearly, users can directly456

inspect the behaviors of these different hyperparameters and choose a suitable option.457

B.4 Analyses of episteme (extension of §2.4)458

For each a 2 A, episteme is the negative of H[g(a)]. By Eq. 8, we have459

H[g(a)] = �
Z

pg(a)(y) log pg(a)(y) dy

= �E[log pg(a)(y)]

= E[log (y(1� y))] +H[f(a)]

< H[f(a)].

15

Figure 9: PDF of Beta(✏, ✏) and the approximations that either use ✏ for moment matching or ✏̂.
Because both the PDF of Beta distributions and the approximations in Eq. 9 are easily computable,
users can inspect the distributions directly and choose the right ✏̂ to match with their own beliefs.

Figure 10: PDF of Beta(✏, ✏ + s) and the approximates that either uses ✏ for moment matching or
✏̂. These distributions are the (approximated) posteriors of g(a) after observing 1 negative example.
Hyperparameter s are 1 (Left), 5 (Middle) or 100 (Right), and with a larger s, the approximate
becomes more concentrated at a lower value of g(a).

Figure 11: The same setup as Figure 10, except that the observations include 1 positive and 1 negative
examples at the same representation a. A larger s results in a PDF that is more concentrated at
g(a) = 0.5.

16

Figure 12: Ontology of training labels for the 3D Shapes dataset [Burgess and Kim, 2018].

The last inequality is because y(1� y) < 1, i.e., log (y(1� y)) < 0.460

In §2.3.1, we set a constraint on the kernel k such that k(a, a) = log(1
✏
+ 1). By Eq. 7, the entropy461

of f(a) can be bounded as follows.462

H[f(a)] =
1

2
log(2⇡ekD(a, a))  1

2
log(4⇡e log(

1

✏
+ 1)).

Hence there exists a lower bound on episteme for GPP. However, H[g(a)] can approach �1 because463

(1) variable y can be infinitely close to 0 or 1, and (2) kD(a, a) can also be infinitely close to 0, which464

means episteme has no finite upper bound.465

In natural language, our analyses of episteme show that ignorance has a limit, but knowledge has no466

limit. This is a widely recognized idea, and it is also reflected in the words of Zhuangzi, a Chinese467

philosopher from the 4th century BCE: “Your life has a limit, but knowledge has none.”468

C Experiment details469

In this section, we include details on experiment setups and additional results.470

C.1 3D Shapes ontology471

The ontology of training labels for the 3D Shapes dataset [Burgess and Kim, 2018] is illustrated in472

Figure 12. Images are generated from 6 ground truth independent primitives: 10 floor colors, 10 wall473

colors, 10 object colors, 8 scales, 4 shapes and 15 orientations of the shapes (orientation is excluded474

from the ontology since it’s only distinguishable for cubes). The disjunctive level of the ontology475

groups together ranges of color and shape primitives into binary concepts: warm/cool and small/large,476

respectively. Concepts in the conjunctive level are the Cartesian product of concepts in the disjunctive477

level and the shape primitives.478

C.2 Real-world OOD detection479

In-distribution (ID) queries are sampled disjointly from the validation split of the ImageNet480

dataset[Russakovsky et al., 2015], where the probe observes 10 sets of Ds using 10 binary classifica-481

tion tasks defined by ImageNet superclasses. These superclasses are defined by building a tree using482

17

the WordNet hierarchy [Miller, 1994] where the leaves of this tree are ImageNet classes (e.g., the483

superclass "dog" contains Chihuahua, Japanese Spaniel, Maltese, etc.). The ten classification tasks484

we use are: (1) dog vs snake, (2) fish vs lizard, (3) bird vs snake, (4) dog vs bird, (5) cat vs bird, (6)485

fish vs snake, (7) bird vs fish, (8) snake vs lizard, (9) cat vs dog„ (10) bird vs lizard.486

Out-of-distribution (OOD) images are generated with pixel-wise uniform random noise. This noise is487

passed through the basis function � to construct the OOD query.488

C.3 Relations between judged probability, episteme and alea489

In this section, we present more empirical results. The experiment setting is the same as §3.3.490

First, we evaluate how judged probability and alea change as episteme increases, and how judged491

probability changes as alea increases. Figure 13 and Figure 14 show the results for GPP and492

LPE respectively. Each row corresponds to a different ground truth probability, which means the493

probability that an originally positive stimulus remains to have positive labels in observations, when494

we manually inject fuzziness to concepts in the 3D Shapes dataset [Burgess and Kim, 2018]. So495

in the ideal case, judged probability predictions should converge to the ground truth probability for496

stimuli that are originally positive. Each scattered point corresponds to the predictions on a stimulus497

that is originally positive.498

GPP consistently produces rational uncertainty measures. There are no extreme judged probability499

predictions with low episteme. Alea converges to low values for 1.0 ground truth probability and500

higher values when the ground truth probability is 0.25 or 0.75, and alea converges to the highest501

values when the ground truth probability is 0.5. These are all expected since with 0.5 ground truth502

probability, the level fuzziness reaches the highest.503

On the contrary, LPE tends to have more extreme predictions on judged probability no matter what504

the ground truth probability is. However, the average judged probability of LPE does get affected by505

the ground truth probability. For example, when the ground truth probability is 0.25, more masses506

of judged probability accumulate between 0 to 0.2. This means the average judged probability can507

be close to 0.25. Similarly, when the ground truth probability is 0.5, about half of the predictions508

of judged probability are between 0.8 to 1.0, and the other half are between 0.0 to 0.2. While this509

ensures the judged probability is close to ground truth probability if we average over all stimuli, the510

individual predictions cannot be used to evaluate the fuzziness of concepts.511

Figure 15 shows AUROC, AUPRC and accuracy of GPP and LPE for different numbers of observa-512

tions. These metrics are averaged over both positive and negative queries. Interestingly, even when513

the ground truth probability is 0.25 (only 1/4 of the positive examples remain positive), GPP can514

still achieve almost 1.0 AUROC and AUPRC. As expected, the accuracy of GPP is about 0.5 for515

0.25 ground truth probability (since the judged probability predictions are mostly lower than 0.5 for516

the positive examples, and the negative examples are almost all correct). But because LPE does not517

always have low judged probability predictions even if ground truth probability is 0.25, its accuracy518

is higher than 0.5.519

These results confirm the rationality and good performance of GPP as a valid probing method.520

18

Figure 13: Relationships between judged probability, episteme and alea using GPP.

19

Figure 14: Relationships between judged probability, episteme and alea using LPE.

20

Figure 15: AUROC, AUPRC and accuracy of GPP and LPE using different numbers of observations.

21

