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A Experimental details and more results

We run all the experiments on Nvidia RTX 2080 Ti GPUs and V100 GPUs. Table 4 summarizes the
set of images used in each figure or table in the main paper.

Figure/Table Comments

Figure 1a We’ve tuned hyperparams for the attack (see Appendix A.1) and carried out
evaluations on the whole CIFAR-subset. The first sampled batch of size 16 from
CIFAR-subset was used in Figure 1a to demonstrate the quality of recovery for
low-resolution images when BatchNorm statistics are not assumed to be known.

Figure 1b We’ve tuned hyperparams for the attack (see Appendix A.1) and carried out
evaluations on the whole ImageNet-subset. The best-reconstructed image in
ImageNet-subset was used in Figure 1b to demonstrate the quality of recovery
for high-resolution images when BatchNorm statistics are not assumed to be
known.

Figure 2a Percentages of class labels per batch were evaluated over the entire CIFAR10
dataset, for a random seed.

Figure 2b The first sampled batch of size 16 was used in Figure 2b to demonstrate the
quality of recovery when labels are not assumed to be known.

Table 2 and Figure 3 We’ve tuned hyperparams for the attack and carried out evaluations on the whole
CIFAR-subset. Table 2 summarizes the performance of the attack on the whole
CIFAR-subset and Figure 3 shows example images.

Table 4: Summary of experimental testbed for each evaluation.

A.1 Hyper-parameters

Training. For all experiments, we train ResNet-18 for 200 epochs, with a batch size of 128. We
use SGD with momentum 0.9 as the optimizer. The initial learning rate is set to 0.1 by default, except
for gradient pruning with p = 0.99 and p = 0.999. where we set the initial learning rate to 0.02. We
decay the learning rate by a factor of 0.1 every 50 epochs.

The attack. We report the performance under different αTV’s (Figure 4) and αBN’s (Figure 5).

(a) Original (b) αTV=0 (c) αTV=1e-3 (d) αTV=5e-3 (e) αTV=1e-2 (f) αTV=5e-2 (g) αTV=1e-1 (h) αTV=5e-1

Figure 4: Attacking a single CIFAR-10 images in BNexact setting, with different coefficients for the
total variation regularizer (αTV’s). αTV=1e-2 gives the best reconstruction.

(a) Original (b) αBN=0 (c) αBN=5e-4 (d) αBN=1e-3 (e) αBN=5e-3 (f) αBN=1e-2

Figure 5: Attacking a batch of 16 CIFAR-10 images in BNinfer setting, with different coefficients for
the BatchNorm regularizer (αBN’s). αTV=1e-3 gives the best reconstruction.
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A.2 Details and more results for Section 3

Attacking a single ImageNet image. We launched the attack on ImageNet using the objective
function in Eq. 3, where αTV = 0.1, αBN = 0.001. We run the attack for 24,000 iterations using
Adam optimizer, with initial learning rate 0.1, and decay the learning rate by a factor of 0.1 at
3/8, 5/8, 7/8 of training. We rerun the attack 5 times and present the best results measured by LPIPS
in Figure 1.

Qualitative and quantitative results for a more realistic attack. We also present results of a
more realistic attack in Table 5 and Figure 6, where the attacker does not know BatchNorm statistics
but knows the private labels. We assume the private labels to be known in this evaluation, because for
those batches whose distribution of labels is uniform, the restoration of labels should still be quite
accurate [Yin et al., 2021]. As shown, in the evaluated setting, the attack is no longer effective when
the batch size is 32 and Intra-InstaHide with k = 4 is applied. The accuracy loss to stop the realistic
attack is only around 3% (compared to around 7% to stop the strongest attack) .

Figure 6: Reconstruction results under different defenses for a more realistic setting (when the
attacker knows private labels but does not know BatchNorm statistics). We also present the results
for the strongest attack from Figure 3 for comparison. Using Intra-InstaHide with k = 4 and batch
size 32 seems to stop the realistic attack.

None GradPrune (p) MixUp (k) Intra-InstaHide (k) GradPrune (p = 0.9)
+ MixUp + Intra-InstaHide

Parameter - 0.5 0.7 0.9 0.95 0.99 0.999 4 6 4 6 k = 4 k = 4

Test Acc. 93.37 93.19 93.01 90.57 89.92 88.61 83.58 92.31 90.41 90.04 88.20 91.37 86.10

Time (train) 1× 1.04× 1.06× 1.06× 1.10×

Attack batch size = 16, the strongest attack

Avg. LPIPS ↓ 0.41 0.41 0.42 0.46 0.48 0.50 0.55 0.50 0.49 0.69 0.69 0.62 0.73
Best LPIPS ↓ 0.21 0.22 0.27 0.29 0.30 0.29 0.48 0.31 0.28 0.56 0.56 0.37 0.65
(LPIPS std.) 0.09 0.08 0.07 0.06 0.06 0.06 0.04 0.10 0.10 0.06 0.07 0.10 0.05

Attack batch size = 16, attacker knows private labels but does not know BatchNorm statistics

Avg. LPIPS ↓ 0.49 0.51 0.48 0.51 0.52 0.56 0.60 0.71 0.71 0.75 0.75 0.74 0.74
Best LPIPS ↓ 0.30 0.33 0.31 0.33 0.34 0.39 0.44 0.48 0.53 0.65 0.63 0.61 0.63
(LPIPS std.) 0.08 0.09 0.08 0.08 0.07 0.07 0.05 0.08 0.07 0.04 0.05 0.08 0.05

Attack batch size = 32, the strongest attack

Avg. LPIPS ↓ 0.45 0.46 0.48 0.52 0.54 0.58 0.63 0.50 0.49 0.69 0.69 0.62 0.73
Best LPIPS ↓ 0.18 0.18 0.22 0.31 0.43 0.48 0.54 0.31 0.28 0.56 0.56 0.37 0.65
(LPIPS std.) 0.11 0.11 0.09 0.07 0.05 0.04 0.04 0.10 0.10 0.06 0.07 0.10 0.05

Attack batch size = 32, attacker knows private labels but does not know BatchNorm statistics

Avg. LPIPS ↓ 0.48 0.50 0.53 0.53 0.55 0.60 0.63 0.73 0.72 0.76 0.76 0.76 0.77
Best LPIPS ↓ 0.29 0.32 0.32 0.31 0.40 0.41 0.55 0.63 0.60 0.68 0.63 0.66 0.65
(LPIPS std.) 0.08 0.07 0.07 0.08 0.08 0.06 0.04 0.06 0.06 0.04 0.05 0.06 0.05

Table 5: Utility-security trade-off of different defenses for a more realistic setting (when the attacker knows
private labels but does not know BatchNorm statistics). We also present the results for the strongest attack from
Table 2 for comparison. We evaluate the attack on 50 CIFAR-10 images and report the LPIPS score (↓: lower
values suggest more privacy leakage). We mark the least-leakage defense measured by the metric in green.
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A.3 More results for the strongest attack

Full version of Figure 3. Figure 7 provides more examples for reconstructed images by the
strongest attack under different defenses and batch sizes.

(a) Batch size = 1

(b) Batch size = 16

(c) Batch size = 32

Figure 7: Reconstruction results under different defenses with batch size 1 (a), 16 (b) and 32 (c). Full
version of Figure 3.

Results with MNIST dataset. We’ve repeated our main evaluation of defenses and attacks (Table 2)
on MNIST dataset [Deng, 2012] with a simple 6-layer ConvNet model. Note that the simple ConvNet
does not contain BatchNorm layers. We evaluate the following defenses on the MNIST dataset with a
6-layer ConvNet architecture against the strongest attack (private labels known):

• GradPrune (gradient pruning): gradient pruning sets gradients of small magnitudes to zero.
We vary the pruning ratio p in {0.5, 0.7, 0.9, 0.95, 0.99, 0.999, 0.9999}.

• MixUp: we vary k in {4,6}, and set the upper bound of a single coefficient to 0.65 (coeffi-
cients sum to 1).

• Intra-InstaHide: we vary k in {4,6}, and set the upper bound of a single coefficient to 0.65
(coefficients sum to 1).

• A combination of GradPrune and MixUp/Intra-InstaHide.

We run the evaluation against the strongest attack and batch size 1 to estimate the upper bound of
privacy leakage. Specifically, we assume the attacker knows private labels, as well as the indices of
mixed images and mixing coefficients for MixUp and Intra-InstaHide.
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Figure 8: Reconstruction results of MNIST digits under different defenses with the strongest atttack
and batch size 1.

For MNIST with a simple 6-layer ConvNet, defending the strongest attack with gradient pruning may
require the pruning ratio p ≥ 0.9999. MixUp with k = 4 or k = 6 are not sufficient to defend the
gradient inversion attack. Combining MixUp (k = 4) with gradient pruning (p = 0.99) improves
the defense, however, the reconstructed digits are still highly recognizable. Intra-InstaHide alone
(k = 4 or k = 6) gives a bit better defending performance than MixUp and GradPrune. Combining
InstaHide (k = 4) with gradient pruning (p = 0.99) further improves the defense and makes the
reconstruction almost unrecognizable.

A.4 More results for encoding-based defenses

We visualize the whole reconstructed dataset under MixUp and Intra-InstaHide defenses with different
batch sizes in Figure 10, 11 and 12. Sample results of the original and the reconstructed batches are
provided in Figure 9.

Figure 9: Original and reconstructed batches of 16 images under MixUp and Intra-InstaHide defenses.
We visualize both the original and the absolute images for the Intra-InstaHide defense. Intra-InstaHide
makes pixel-wise matching harder.
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(a) Original (b) MixUp, k=4 (c) MixUp, k=6 (d) MixUp+GradPrune, k=4, p=0.9

(e) Original (f) InstaHide, k=4 (g) InstaHide, k=6 (h) InstaHide+GradPrune, k=4,
p=0.9

Figure 10: Reconstrcuted dataset under MixUp and Intra-InstaHide against the strongest attack (batch
size is 1).
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(a) Original (b) MixUp, k=4 (c) MixUp, k=6 (d) MixUp+GradPrune, k=4, p=0.9

(e) Original (f) InstaHide, k=4 (g) InstaHide, k=6 (h) InstaHide+GradPrune, k=4,
p=0.9

Figure 11: Reconstrcuted dataset under MixUp and Intra-InstaHide against the strongest attack (batch
size is 16).

18



(a) Original (b) MixUp, k=4 (c) MixUp, k=6 (d) MixUp+GradPrune, k=4, p=0.9

(e) Original (f) InstaHide, k=4 (g) InstaHide, k=6 (h) InstaHide+GradPrune, k=4,
p=0.9

Figure 12: Reconstrcuted dataset under MixUp and Intra-InstaHide against the strongest attack (batch
size is 32).
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B Theoretical Insights for Defenses’ Working Mechanism

In this section, we provide some theoretical insights for the mechanism of each defense.

B.1 Gradient pruning

Gradient pruning is a non-oblivious case of applying sketching techniques [Cohen et al., 2019] to
compress the gradient vector. Usually, if we only observe the vector after sketching, it is hard to
recover the original vector unless certain assumptions of the vector itself and the sketching technique
have been made. Therefore, gradient pruning prevents the attacker from seeing the original gradient
and make the inversion harder.

B.2 MixUp and InstaHide

Intuitively, MixUp and InstaHide’s working mechanism may come from mixing k images in a single
encoded image, which appears to be similar to multiplying the batch size by a factor of k, thus makes
the attack less effective. In Section B.3, we provide theoretical analysis for this intuition, by showing
that mixing k images and using a batch size of k are essentially similar, with any neural network that
has a fully connected layer as its first layer.

Another layer of security of InstaHide seems to come from applying random sign-flipping on the
mixed images. As mentioned in Section 5.1, for an InstaHide-encoded image x ∈ Rd, we apply
the total variation regularizer on |x| instead of x, which pushes the gap between absolute value of
adjacent pixels (i.e., ||xj | − |xj+1||) to be small. However having ||xj | − |xj+1|| = δ for some
small δ < 10−4 does not imply that |xj − xj+1| = δ; in fact, |xj − xj+1| can be as large as 1− δ.
Therefore, the random sign flipping operation in InstaHide could potentially make the total variation
image prior less effective in some sense (see Figure 9).

B.3 Property of gradient in a small batch

The goal of this section is to present the following results,
Lemma B.1. Given a neural network with ReLU activation function, each row of the gradient of
first layer weights is a linear combination of images, i.e.

(
∂L(W )

∂W1
)i =

b∑
j=1

αi,jx
>
i

where the b is the number of images in a small batch, {x1, · · · , xb} ∈ Rd are images in that small
batch.

In Section B.4 and B.5, we show the above observation holds for one/two-hidden layer neural network.
In Section B.6, we generalize it to multiple layer neural network.

The standard batched k-vector sum can be defined as follows:
Definition B.2. Give a database X list of vectors x1, · · · , xn. Given a list of observations
y1, · · · , ym where for each j ∈ [m], there is a set Sj such that yj =

∑
i∈Sj

xi and |Sj | = b.
We can observe y1, · · · ym but has no access to database, the goal is to recover Sj and the vectors xi
being use, for each j.

The above definition is a mathematical abstraction of MixUp recovery/attack. It can be further gener-
alized to InstaHide, if we only observe the |yj |. We also want to remark that in the above definition,
we simplify the formulation by using coefficients 1 for all vectors. It can be easily generalized to
settings where random coefficients are assigned to vectors in the database for MixUp/InstaHide.

Using Lemma B.1, we notice that
Lemma B.3. Under the condition of Lemma B.1, given a list of observation of gradients, and the
problem recovering images is also a batched vector sum problem.

Thus, gradient attack is essentially an variation of MixUp/Instahide attack.

20



B.4 One Hidden Layer

We consider a one-hidden layer ReLU activated neural network with m neurons in the hidden layer:

f(x) = a>φ(Wx)

where a ∈ Rm and W ∈ Rm×d. We define objective function L as follows:

L(W ) =
1

2

n∑
i=1

(yi − f(W,xi, a))2

We can compute the gradient of L in terms of wr

∂L(W )

∂wr
=

n∑
i=1

(f(W,xi, a)− yi)arxi1〈wr,xi〉

Let x̃ = 1
n

∑n
i=1 xi,

∂L(W )

∂wr
= (f(W, x̃, a)− y)arx̃1〈wr,x̃〉

Another version

∂L(W )

∂wr
=

n∑
i=1

(f(W,xi, a)− yi) ·
(
arx̃1〈wr,x̃〉

)
B.5 Two Hidden Layers

Suppose a ∈ Rm, V ∈ Rm×d,W ∈ Rm×m. The neural network is defined as f : Rd → R, here we
slightly deviate from the standard setting and assume the input dimension is m, in order to capture
the general setting.

f(x) = a>φ(Wφ(V x))

Consider the mean square loss

L(W,V, a) =
1

2

n∑
i=1

|f(xi)− yi|2

The gradient with respect to W is

∂L(W,V, a)

∂W
=

n∑
i=1

(f(xi)− yi) diag{φ′(Wφ(V xi))}︸ ︷︷ ︸
m×m

a︸︷︷︸
m×1

φ(V xi)
>︸ ︷︷ ︸

1×m

and the gradient with respect to V is

∂L(W,V, a)

∂V
=

n∑
i=1

(f(xi)− yi) diag{φ′(V xi)}︸ ︷︷ ︸
m×m

W>︸︷︷︸
m×m

diag{φ′(Wφ(V xi))}︸ ︷︷ ︸
m×m

a︸︷︷︸
m×1

x>i︸︷︷︸
1×d

B.6 The multi-layers case

The following multiple layer neural network definition is standard in literature.

Consider a L layer neural network with one vector a ∈ RmL and L matrices WL ∈ RmL×mL−1 , · · · ,
W2 ∈ Rm2×m1 and W1 ∈ Rm1×m0 . Let m0 = d. In order to write gradient in an elegant way, we
define some artificial variables as follows

gi,1 =W1xi, hi,1 = φ(W1xi), ∈ Rm1 ∀i ∈ [n]

gi,` =W`hi,`−1, hi,` = φ(W`hi,`−1), ∈ Rm` ∀i ∈ [n],∀` ∈ {2, 3, · · · , L}
(4)

Di,1 = diag
(
φ′(W1xi)

)
, ∈ Rm1×m1 ∀i ∈ [n]

Di,` = diag
(
φ′(W`hi,`−1)

)
, ∈ Rm`×m` ∀i ∈ [n],∀` ∈ {2, 3, · · · , L}
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where φ(·) is the activation function and φ′(·) is the derivative of activation function.

Let f : Rm0 → R denote neural network function:

f(W,x) = a>φ(WL(φ(· · ·φ(W1x))))

Thus using definition of f and h, we have

f(W,xi) = a>hi,L, ∈ R, ∀i ∈ [n]

Given n input data points (x1, y1), (x2, y2), · · · (xn, yn) ∈ Rd×R. We define the objective function
L as follows

L(W ) =
1

2

n∑
i=1

(yi − f(W,xi))2.

We can compute the gradient of L in terms of W` ∈ Rm`×m`−1 , for all ` ≥ 2

∂L(W )

∂W`
=

n∑
i=1

(f(W,xi)− yi) Di,`︸︷︷︸
m`×m`

 L∏
k=`+1

W>k︸︷︷︸
mk−1×mk

Di,k︸︷︷︸
mk×mk

 a︸︷︷︸
mL×1

h>i,`−1︸ ︷︷ ︸
1×m`−1

(5)

Note that the gradient for W1 ∈ Rm1×m0 (recall that m0 = d) is slightly different and can not be
written by general form. Here is the form

∂L(W )

∂W1
=

n∑
i=1

(f(W,xi)− yi) Di,1︸︷︷︸
m1×m1

 L∏
k=2

W>k︸︷︷︸
mk−1×mk

Di,k︸︷︷︸
mk×mk

 a︸︷︷︸
mL×1

x>i︸︷︷︸
1×m0

(6)

22


	Introduction
	Gradient Inversion Attacks
	Strong Assumptions Made by SOTA Attacks
	The state-of-the-art attacks
	Strong assumptions
	Re-evaluation under relaxed assumptions

	Defenses Against the Gradient Inversion Attack
	Encrypt gradients
	Perturbing gradients
	Weak encryption of inputs (i.e. encoding inputs)

	Evaluation of defenses
	Experimental setup
	Performance of defense methods
	Performance of combined defenses
	Time estimate for end-to-end recovery of a single image

	Conclusions
	Experimental details and more results
	Hyper-parameters
	Details and more results for Section 3
	More results for the strongest attack
	More results for encoding-based defenses

	Theoretical Insights for Defenses' Working Mechanism
	Gradient pruning
	MixUp and InstaHide
	Property of gradient in a small batch
	One Hidden Layer
	Two Hidden Layers
	The multi-layers case


