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A NOTATIONAL CONVENTIONS

Throughout the paper, we use variable superscripts to denote parameters of probability distributions, e.g., {yt}1≤t≤n denotes
a family of first-move attacker’s strategies, indexed by attacker type t.

Probability distribution dependency on other distributions is usually implicit, but if we want to state explicitly that yt is
picked with the knowledge of x (hence optimal yt changes with x), we write yt(x) with functional notation.

We use variable subscripts to denote values of probability distributions (i. e. we use matrix notation), e. g. we write xi to
denote probability assigned to move i ∈ I by probability distribution x ∈ Prob(I). Likewise, for player payoffs, e.g., ri,t,j
is the defender’s payoff after move i was played against the attacker of type t who played move j.

Parametrized set families are subscripted, as there is no other use for set subscript, e.g., Ct,j is the set of possible payoffs of
attacker of type t after he played move j.

Often we use various combinations of variables i, t, j, k as subscripts, always keeping this order in accordance with the
order of how values of these variables are picked (see Section 4).

B DOBSS

From discussion in Section 3 we can derive the following quadratic programming solution to one-phase Bayesian Stackelberg
games.

maximize
x, yt

∑
i∈I

n∑
t=1

∑
j∈Jt

ptxiy
t
jri,t,j ,

subject to∑
i∈I

xi = 1,∑
j∈Jt

ytj = 1 for each 1 ≤ t ≤ n,

∑
i∈I

∑
j∈Jt

xiy
t
jci,t,j ≥

≥
∑
i∈I

xici,t,j
for each 1 ≤ t ≤ n, j ∈ Jt,

x ≥ 0, yt ≥ 0 for each 1 ≤ t ≤ n.

(1)

It is a quadratic program as it contains non-linear terms xiy
t
j . There is no linear program (LP) formulation of polynomial

size, as Bayesian Stackelberg Games are known to be NP-hard [Conitzer and Sandholm, 2006]. However, there are two
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standard ways to deal with non-linear terms that we describe next as they are relevant to the solution of two-phase games
studied in this paper.

B.1 HARSANYI TRANSFORMATION

If there is only one attacker type, then a linear relaxation of DOBSS (with constraints ytj ∈ {0, 1} dropped) computes an
optimal strategy of the defender: Stackelberg games with one type of attacker are solvable in polynomial time [Conitzer and
Sandholm, 2006]. A Bayesian Stackelberg game can always be transformed into a Stackelberg game (a normal form) using
the Harsanyi transformation at the expense of the exponential explosion of the problem size.

In the normal form, the set of moves of the single attacker is a set J of sequences (j1, j2, . . . , jn) with jt ∈ Jt, 1 ≤ t ≤ n.
For move j ∈ J , the defender’s payoff for move i ∈ I is ri,j =

∑n
t=1 ptri,t,jt and attacker’s payoff is ci,j =

∑n
t=1 ptci,t,jt .

In other words, the single attacker in a normal-form game selects in a single move attacks for all the attacker’s types. The
payoffs are the expected payoffs when the probability distribution over the types of the attacker is {pt}.

It turns out that the two-phase Bayesian Stackelberg games studied in this paper can be transformed into Bayesian Stackelberg
games using a similar transformation. Also, here, this would result in an exponential explosion of the problem size. We
describe this in detail in Section 5.

The Harsanyi transformation is not an effective approach to Bayesian Stackelberg games. DOBSS solves the problem
exponentially faster, even if the entire branch-and-bound tree is explored in the solution of the mixed integer linear
program [Paruchuri et al., 2008]. As we discuss in Section 5, the situation is even worse in the case of two-phase games.

C LINEARIZATION OF PIECEWISE-LINEAR PROBLEMS

Since attackers have optimal pure strategies, without a loss of generality, we may put constraints ytj ∈ {0, 1} for each
1 ≤ t ≤ n, j ∈ Jt into problem (1). Then for non-linear terms xiy

t
j , j ∈ Jt, we may introduce new variables ati,j and

constraints

0 ≤ ati,j ≤ ytj for each i ∈ I, j ∈ Jt,∑
j∈Jt

ati,j = xi for each i ∈ I.

Since yt ∈ Prob(Jt) and ytj ∈ {0, 1}, in any feasible solution we have ati,j = xiy
t
j . We substitute ati,j for each occurrence

of xiy
t
j in problem (1) to get mixed integer linear program (MILP) formulation of (1). This is the celebrated DOBSS

algorithm [Pita et al., 2009].

In the paper, we exploit the observation that similar substitutions may be performed for any piecewise-linear problem. i.e., a
problem in which a feasible set can be decomposed into a finite union of polyhedra with a property that the restriction of the
objective function to each polyhedron is linear. Such problems can be characterized to be polynomial problems in which all
higher-order terms are products of an arbitrary number of binary variables and, at most, one continuous variable.

D SOLVING TWO-PHASE GAMES

In the present section we derive quadratic and mixed integer optimization problems that compute optimal strategies in
two-phase Bayesian Stackelberg games. We start with a MIQP version and then apply linearization trick described in
Section C to get a MILP formulation.

D.1 A SOLUTION WITH QUADRATIC PROGRAMMING

Recall quadratic linear problem (4a). We will show that it finds the expected defender’s payoff and the optimal attacker’s
and defender’s strategies.

The objective function (4a) is the expected defender’s payoff E(R + R′) that he wishes to maximize, from equation (1).
Conditions (4b), (4c) and (4d) together with (4h) assure that x ∈ Prob(I), yt ∈ Prob(Jt) and zt,j,c ∈ Prob(Kt)
respectively.



We introduce variables γt,j,c and constraints that enforce that

γt,j,c = max
k∈Kt

∑
i∈It,j,c

xic
′
i,t,j,k.

From (4e), we have γ ≥ max. Therefore, for each 1 ≤ t ≤ n and each j ∈ Jt, we have∑
c∈Ct,j

γt,j,c ≥
∑

c∈Ct,j

max
k∈Kt

∑
i∈It,j,c

xic
′
i,t,j,k ≥∑

c∈Ct,j

∑
k∈Kt

∑
i∈It,j,c

xiz
t,j,c
k c′i,t,j,k =

∑
k∈Kt

∑
i∈I

xiz
t,j,ci,t,j
k c′i,t,j,k.

Hence condition (4f) guarantees that each inequality in the above chain is equality, in particular the first inequality guarantees
that for each γ we have γ ≤ max. It follows from Proposition 4.1 that strategy zt,j,c is optimal if and only if∑

k∈K

∑
i∈It,j,c

zt,j,ck xic
′
i,t,j,k = γt,j,c.

The second inequality in the above chain guarantees that it is indeed the case.

From Proposition 4.2, strategy yt is optimal if and only if∑
i∈I

xici,t,j +
∑

c∈Ct,j

max
k∈Kt

∑
i∈It,j,c

xic
′
i,t,j,k ≥∑

i∈I

xici,t,j +
∑

c∈Ct,j

max
k∈Kt

∑
i∈It,j,c

xic
′
i,t,j,k for each j ∈ Jt.

This inequality is encoded as (4g).

D.2 LINEARIZATION

We used substitutions

xiy
t
jz

t,j,ci,t,j
k ← wi,t,j,k,

xiy
t
j ←

∑
k∈Kt

wi,t,j,k,

xiz
t,j,ci,t,j
k ,

ytjγt,j,c ← ut,j,c

for 1 ≤ t ≤ n, i ∈ I, j ∈ Jt, k ∈ Kt, c ∈ Ct,j .

Constraints (3i), (3d), (3h) and (3o) imply that

si,t,j,k =

{
xi if zt,j,ci,jk = 1

0 if zt,j,ci,jk = 0,

hence indeed si,t,j,k = xiz
t,j,ci,t,j
k in any feasible solution.

Constraints (3j), (3k), (3o) for big enough M imply that

ut,j,c =

{
γt,j,c if ytj = 1
0 if ytj = 0,

hence indeed ut,j,c = ytjγt,j,c.



T1 T2 T3 T4 ∅
T1T2 13, -13 24, -21 -42, 41 -85, 81 0, 0
T1T3 13, -12 -20, 23 44, -45 -80, 81 0, 0
T1T4 15, -15 -22, 20 -45, 42 85, -85 0, 0
T2T3 -14, 13 24, -25 41, -42 -82, 84 0, 0
T2T4 -13, 14 23, -24 -40, 43 81, -85 0, 0
T3T4 -13, 13 -25, 21 42, -44 85, -85 0, 0

T1 T2 T3 T4 ∅
T1T2 54, -68 125, -124 -202, 208 -403, 415 0, 0
T1T3 74, -64 -115, 120 212, -225 -406, 403 0, 0
T1T4 65, -50 -112, 113 -219, 224 424, -400 0, 0
T2T3 -72, 64 108, -123 225, -207 -418, 403 0, 0
T2T4 -60, 50 100, -100 -220, 217 400, -412 0, 0
T3T4 -71, 56 -113, 123 200, -216 407, -424 0, 0

Table 1: Payoff matrices discussed in Example E.1

Finally, constraints (3l), (3m), (3n) and (3o) imply that

wi,t,j,k =

{
xi if ytj = 1 and z

t,j,ci,j
k = 1

0 if ytj = 0 or zt,j,ci,jk = 0,

hence indeed wi,t,j,k = xiy
t
jz

t,j,ci,t,j
k .

This shows equivalence of the MILP formulation (3a) and the MIQP formulation (4a).

E TRANSFORMATION TO SINGLE-PHASE GAME

Example E.1. For a Los Angeles airport security game with 4 terminals and 2 patrols with payoff matrices given in Table 1
(notice varying attacker payoffs) a two-phase MILP formulation has 465 variables (with 115 binary variables). In the
reduction to a single-phase game discussed above, the attacker has 34505 moves. For this reduction, the MIQP formulation
of DOBSS (which is much smaller than the MILP formulation) has 34513 variables (with 34505 binary variables).
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