
Preprint

A ADDITIONAL RESULTS

A.1 HOW DOES THE CHOICE OF LEARNABLE FUNCTION CLASS AND DESIGN OF ENCODINGS
IMPACT EULERFLOW?

EulerFlow at its core is an optimization loop over a simple, feedforward ReLU-based multi-layer
perception inherited from Neural Scene Flow Prior (Li et al., 2021b). How does this choice of
learnable function class impact the performance of EulerFlow? To better understand these design
choices we examine the choice of non-linearity and time feature encoding.

Figure 15: Mean Dynamic Normalized EPE of EulerFlow on the Argoverse 2 val split for less-smooth
configurations of its learnable function class. These results indicate that the smoothness of the ReLU
non-linearity proposed by Li et al. transfers well to EulerFlow.

One of Li et al.’s core theoretical contributions demonstrates that NSFP’s ReLU MLP is a good prior
for scene flow because it represents a smooth learnable function class, and scene flow is often locally
smooth with respect to input position. However, unlike NSFP, EulerFlow is fitting flow over a full
ODE; while it seems reasonable to assume that this ODE is typically also locally smooth, cases like
adjacent cars moving rapidly in opposite directions may benefit from the ability to model higher
frequency, less locally smooth functions. To test this hypothesis, we ablate EulerFlow by replacing its
normalized time with higher frequency sinusoidal time embeddings (mirroring Wang et al.’s proposed
time embedding for NTP), as well as try other popular non-linearities like SinC (Ramasinghe et al.,
2024) and Gaussian (Chng et al., 2022) from the coordinate network literature. Figure 15 features
negative results on these ablations across the board; Gaussians were unable to converge due the
extremely high frequency representation triggering early stopping, while the use of SinC and higher
frequency time embeddings both resulted in worse overall performance, indicating that Li et al.’s
smooth function prior does indeed seem appropriate for EulerFlow’s neural prior.

A.2 EULERFLOW WITH MONOCULAR DEPTH ESTIMATES

While EulerFlow only consumes point clouds, we can leverage RGB-based video monocular depth
estimators to fit scene flow. In Figure 16, we use DepthCrafter (Hu et al., 2024) to generate a point
cloud from the raw RGB of the tabletop video from Figure 14, Row 4.

Figure 16: Visualizations of EulerFlow’s emergent 3D point tracking behavior on monocular
depth estimates from DepthCrafter (Hu et al., 2024). Interactive visualizations available at
vedder.io/eulerflow.

A.3 HOW DOES EULERFLOW FAIL?

As we discuss in Section 6.1, EulerFlow does not understand projective geometry — its optimization
losses use Chamfer Distance which directly associates points, sometimes resulting in moving shadows

15

https://vedder.io/eulerflow


Preprint

Figure 17: Visualizations of one of the failure modes of EulerFlow where flow is predicted on
the edges of the moving "shadow" in the point cloud. Interactive visualizations available at
vedder.io/eulerflow.

on background objects. To demonstrate this, we select a particularly egregious example in Figure 17,
featuring a frame from the jack being thrown across the table. Due to the moving shadow cast
by the jack onto the table, EulerFlow incorrectly assigns flow to the table surface nearby the jack,
particularly on the leading edge, even though the table surface is stationary.

B FAQ

B.1 WHAT DATASETS DID YOU PRETRAIN ON?

EulerFlow is not pretrained on any datasets. It is a test-time optimization method (akin to NeRFs),
and as we show with our tabletop data, this means it runs out-of-the-box on arbitrary point cloud data.

B.2 WHY DIDN’T YOU USE A NEURAL ODE OR A LIQUID NEURAL NETWORK?

Neural ODEs (Chen et al., 2018) take variable size and number of steps in latent space to do inference;
imagine a ResNet that can use an ODE solver to dynamically scale the impact of the residual block,
as well as decide the number of residual blocks. They are not a function class specially designed to
fit derivative estimates well. Similar to Neural ODEs, Liquid Neural Networks (Hasani et al., 2021)
focus on the same class of problems and are similarly not applicable.

B.3 WHY DIDN’T YOU DO EXPERIMENTS ON FLYINGTHINGS3D / <SIMULATED DATASET>?

Most popular synthetic datasets do not contain long observation sequences (Mayer et al., 2016; Butler
et al., 2012), but instead include standalone frame pairs. Our method leverages the long sequence
of observations to refine our neural estimate of the true ODE. Indeed, on two frames, EulerFlow
collapses to NSFP.

More importantly, these datasets are also not representative of real world environments. To quote
Chodosh et al.: “[FlyingThings3D has] unrealistic rates of dynamic motion, unrealistic correspon-
dences, and unrealistic sampling patterns. As a result, progress on these benchmarks is misleading
and may cause researchers to focus on the wrong problems.” Khatri et al. also make this point by
highlighting the importance of meaningfully breaking down the object distribution during evaluation
identify performance on rare safety-critical categories. FlyingThings3D does not have meaningful
semantics; it’s not obvious what things even matter or how to appropriately break down the scene.

Instead, we want to turn our attention to the sort of workloads that do clearly matter — describing
motion in domains like manipulation or autonomous vehicles, where it seems clear that scene flow,
if solved, will serve as powerful primitive for downstream systems. This is why we performed
qualitative experiments on the tabletop data we collected ourselves; to our knowledge, no real-world
dynamic datasets of this nature exist with ground truth annotations, but we want to emphasize that
EulerFlow works in such domains, and consequently EulerFlow and other Scene Flow via ODE-based
methods can be used as a primitive in these real world domains.

16

https://vedder.io/eulerflow


Preprint

C EULERFLOW IMPLEMENTATION DETAILS

Our neural prior ω is a straightforward extension to NSFP’s coordinate network prior6; however,
instead of taking a 3D space vector (positions X,Y, Z → R) as input, we encode a 5D space-time-
direction vector: positions X,Y, Z,→ R, sequence normalized time t → [↑1, 1] (i.e. the point cloud
time scaled to this range), and direction d → {BWD = ↑1,FWD = 1}. This simple encoding scheme
enables description of arbitrary regions of the ODE, allowing for the ODE to be queried at frequencies
different from the sensor frame rate. Euler integration enables simple implementation of multi-step
forward, backward, and cyclic consistency losses without extra bells and whistles. For efficiency,
we use Euler integration with !t set as the time between observations for our ODE solver, enabling
support for arbitrary sensor frame rates, and set the cycle consistency balancing term ε = 0.01 and
optimization window W = 3 for all experiments.

EulerFlow’s definition of TruncatedChamfer is symmetric7, i.e. TruncatedChamfer(A,B) =
TruncatedChamfer(B,A). If this symmetric TruncatedChamfer is naively implemented via a perfor-
mant differentiable CUDA accelerated K=1NN computation8 from A to B and from B to A, on an
NVIDIA V100, EulerFlow spends roughly 80% of its compute time performing these KNN checks.
To accelerate this, we precompute exact GPU accelerated KD-Trees (Grandits et al., 2021) for the
input point clouds {P0, . . . , PN}, and when possible query those trees instead of computing K=1NN.
In practice, we found these queries are almost instant, and reduce the time spent computing K=1NNs
to about 40% of the total wall-clock time of EulerFlow.

Additionally, while Equation 3 is phrased as independent Euler integration steps for each timestep,
we are able to share integration across the losses; we perform two integrations from t to t+W and t
to t↑W , and use the intermediary locations along this trajectory as inputs to intermediary losses.

C.1 FORMULATING THE ODE

Given a (possibly moving) particle in some canonical frame (i.e. time 0), we define a function
L(x0, y0, z0, t) that can describe its location at an arbitrary future time t, i.e. a Lagrangian description
of motion (Figure 4).

L(x0, y0, z0, t) = xt, yt, zt (4)

For notational clarity to access xt, yt, zt individually, we can define

Lx(x0, y0, z0, t) = xt (5)
Ly(x0, y0, z0, t) = yt (6)
Lz(x0, y0, z0, t) = zt (7)

Similarly, we can define F (xt, yt, zt, t) to describe the instantaneous velocity of a point xt, yt, zt at
some arbitrary time t, i.e. a Eulerian description of motion (Figure 4).

dL(x0, y0, z0, t)

dt
=

dL

dt
=

(
dLx

dt
,
dLy

dt
,
dLz

dt

)
= F (xt, yt, zt, t) (8)

F is defined in terms of the total derivative of L with respect to t, as x0, y0, z0 are initial conditions that
do not vary with time (i.e. dL

dt = ωL
ωt +

ωL
ωx0

dx0
dt + ωL

ωy0

dy0

dt + ωL
ωz0

dz0
dt = ωL

ωt , as dx0
dt = dy0

dt = dz0
dt = 0).

We can exactly define L recursively in terms of the initial conditions and F , i.e.

6Hyperparameters (e.g. filter width of 128) of NSFP’s prior are kept fixed, except for depth (Section 5.2.3).
7This is in keeping with NSFP, but in opposition to other methods like FastNSF (Li et al., 2023). We found

that a symmetric definition provided non-trivial performance improvements to EulerFlow.
8We used PyTorch3D (Ravi et al., 2020), which has custom CUDA operations with CUDA templated support

for single neighbor differentiable KNN.

17



Preprint

L(x0, y0, z0, t) = (x0, y0, z0) +

∫ t

0
F (Lx(x0, y0, z0, ϑ), Ly(x0, y0, z0, ϑ), Lz(x0, y0, z0, ϑ), ϑ)dϑ

(9)

or, more compactly,

L(x0, y0, z0, t) = (x0, y0, z0) +

∫ t

0
F (xε , yε , zε , ϑ)dϑ (10)

Our function L can thus be defined as a multi-dimensional ODE in terms of F with initial conditions
x0, y0, z0.

C.2 ARBITRARY START AND END TIMES FROM THE EULERIAN FORMULATION

In the above derivation, L requires that a moving point be defined in terms of a canonical frame
defined at time 0, as is common in the deformation in reconstruction literature. However, the Eulerian
formulation has no such requirement, allowing us to select arbitrary start and end times across
different point queries. To showcase this, we can query F to extract the trajectory of a particle at t
across the range [t, t→] starting at xt, yt, zt simply by changing the range of the integral in Equation 10,
i.e.

E(xt, yt, zt, t, t
→) = (xt, yt, zt) +

∫ t→

t
F (xε , yε , zε , ϑ)dϑ (11)

While E and L appear similar on their face, E is strictly more flexible than L. In principle you could
choose to redefine L to use t as the time for your canonical frame, but this is a global choice; you
cannot do this on a per-query basis. However, with E’s Eulerian framing, we can extract a different
point’s trajectory from the entirely different range t† to t‡ (i.e. E(xt† , yt† , zt† , t

†, t‡)) without concern
for a canonical frame definition. It need not even be the case that t < t→; indeed, this extraction works
even if t > t→, i.e. extracting the backwards trajectory through time.

C.3 EULER INTEGRATION TO APPROXIMATELY SOLVE THE ODE

If F is of arbitrary form and we want to compute the concrete values of L, we cannot exactly compute
the continuous integral from 0 to t; we must approximate this with finite differences. Thus, we split
the time range 0 to t into k steps, where each step is of size t

k . Thus, we can again define L via
recursion, but this time explicitly.

L(x0, y0, z0, 0) = (x0, y0, z0) (12)

L(x0, y0, z0, ϑ +
t

k
) ↓ L(x0, y0, z0, ϑ) +

t

k
· F (xε , yε , zε , ϑ), (13)

or directly without recursion,

L(x0, y0, z0, t) ↓ (x0, y0, z0) +
k∑

n=1

t

k
· F (xn t

k
, yn t

k
, zn t

k
, n

t

k
) (14)

This finite difference solving approach is Euler integration.

C.4 ESTIMATING THE FLOW FIELD WITH EULERFLOW’S NEURAL PRIOR

For a given scene, we do not have access to L or F directly; these are are the true functions that
uniquely characterize the underlying motion of the scene that we are trying to estimate. For EulerFlow,
we represent our estimate of the scene’s flow field F with a neural prior, ω, i.e.

18



Preprint

F (x, y, z, t) ↓ ω(x, y, z, t) (15)

and thus

L(x0, y0, z0, t) ↓ (x0, y0, z0) +
k∑

n=1

t

k
· ω(xn t

k
, yn t

k
, zn t

k
, n

t

k
) (16)

and, using the arbitrary start and end definition from Appendix C.2, with k steps from the range t to
t→ and ϖ = t→↑t

k

E(xt, yt, zt, t, t
→) ↓ Eϑ(xt, yt, zt, t, t

→) = (xt, yt, zt)+
k∑

n=1

ϖ · ω(xnϖ+t, ynϖ+t, znϖ+t, nϖ+ t) (17)

This formulation makes EulerFlow highly flexible, enabling optimization of ω’s estimate of F with
objectives that take either an Eulerian view (directly on ω via Equation 15) or a Lagrangian view (on
point rollouts for arbitrary start and end ranges via Equation 17).

19


