Under review as a conference paper at ICLR 2025

Supplemental Materials for “Revisiting PCA for
Time Series Reduction in Temporal Dimension”

A DATA DESCRIPTION

The experimental data comprises 13 widely-used datasets from various domains, each distinguished
by unique attributes:

e ETT (Zhou et al.,|2021): The ETT dataset includes two hourly-level datasets (ETTh1 and
ETTh2) and two 15-minute-level datasets (ETTm1 and ETTm?2). Each dataset comprises
seven oil and load features of electricity transformers spanning from July 2016 to July
2018. There are 7 variables for each dataset, with 17,420 time steps for ETTh and 69,680
time steps for ETTm. The series in these datasets exhibit strong periodicity. For univariate
forecasting, only the “oil temperature” variable is used for training and testing.

* EthanolConcentration (Bagnall et al., 2018): The dataset comprises 544 time series formed
by the raw spectra of water and ethanol solutions in authentic whisky bottles, with each
series having a length of 1,751. Ethanol concentrations range from 35%, 38%, 40%, to 45%.
The primary objective of this dataset is to ascertain the ethanol concentration (category)
within each sample. As a multivariate dataset, each variable corresponds to measurements
at different wavelengths, spanning Ultraviolet (UV) light, Visible (VIS) light, and Near
Infrared (NIR). For our experiments, the NIR variable is selected.

* Handwriting (Bagnall et al., 2018)): This dataset comprises 1,000 time series samples of
subjects wearing a smartwatch while writing the 26 English letters. Each series has a
length of 152, with three dimensions corresponding to three accelerometer values. In our
experiments, we select the last dimension.

 SelfRegulationSCP (Bagnall et al.| [2018)): SelfRegulationSCP encompasses two datasets,
SelfRegulationSCP1 and SelfRegulationSCP2, involving self-regulation of slow cortical
potentials. In SelfRegulationSCP1, data from a healthy subject include cursor movement on
a computer screen, with visual feedback regulating slow cortical potentials (Cz-Mastoids).
SelfRegulationSCP1 consists of 561 series samples, each with a length of 896. In Self-
RegulationSCP2, data from an artificially respirated ALS patient similarly involve cursor
movement, with auditory and visual feedback regulating slow cortical potentials. SelfRegu-
lationSCP2 comprises 380 series samples, each with a length of 1,152. The classification
objective is to categorize based on recorded slow cortical potentials, where positive and
negative potentials correspond to different classes. The analysis in both datasets focuses on
the last dimension of the data in experiments.

» UWaveGestureLibrary (Bagnall et al.| |2018): The UWaveGestureLibrary dataset comprises
eight simple gestures generated from accelerometers, totaling 4,479 series samples. Each
sample includes the x, y, z coordinates of a gesture, with each series having a length of 315.
In the experiments, the analysis is focused on the z-coordinate series.

* FloodModeling (Tan et al.,[2021)): FloodModeling comprises three hourly datasets (Flood-
Modeling1, FloodModeling2, and FloodModeling3). These datasets aim to predict the
maximum water depth for flood modeling. The three datasets contain 673, 559, and 613
hourly rainfall events time series, respectively. Each time series in the datasets has a length
of 266 time steps. These time series are utilized to predict the maximum water depth of a
domain represented by a Digital Elevation Model (DEM). Both the rainfall events and DEM
are synthetically generated by researchers at Monash University.

* Covid3Month (Tan et al.;|2021)): The Covid3Month dataset comprises 201 time series, where
each time series represents the daily confirmed cases for a country. The length of each time
series is 84. The objective of this dataset is to predict the COVID-19 death rate on April 1,
2020, for each country using the daily confirmed cases over the preceding three months.

B DETAILS ON TIME SERIES MODELS

The descriptions and implementations of the evaluated time series models are provided below:

14

Under review as a conference paper at ICLR 2025

Linear (Zeng et al.,[2023): The Linear model represents a groundbreaking method utilizing a linear
model, outperforming a substantial portion of Transformer-based models for TSF. The corresponding
code is accessible at: https://github.com/cure-lab/LTSF-Linearl

Informer (Zhou et all) [2021)): Informer is an efficient Transformer architecture specifically de-
signed for TSF. The code for this model can be found at https://github.com/zhouhaoyi/
Informer2020.

FEDformer (Zhou et al., [2022): FEDformer is an efficient Transformer architecture that reduces
computational complexity through frequency-domain self-attention, utilizing Fourier or wavelet
transforms and random selection of frequency bases. The code for this model can be accessed at:
https://github.com/MAZiging/FEDformer.

TimesNet (Wu et al.,|2023): TimesNet transforms 1D time series into a set of 2D tensors based on
multiple periods and utilizes a CNN-based model to extract features. The code for TimesNet can be
found athttps://github.com/thuml/Time—Series—Library.

PatchTST (Nie et al., [2022): PatchTST employs a segmentation approach for time series by dividing
it into multiple time patches, treating each as a token. The model uses an attention module to learn
the relationships between these tokens. The publicly available source code for PatchTST can be
found athttps://github.com/yuginie98/patchtst.

C TSF RESULTS OF PATCHTST WITH PCA PREPROCESSING

PCA preprocessing is separately applied to each patch series in the patch-based time series model
PatchTST. Additionally, to enhance prediction stability, PatchTST employs instance normalization
technology (Kim et al.}[2022). However, integrating this technology with PCA series poses challenges:
the fluctuation of PCA series is considerable, and adding instance normalization further destabilizes
the predictions. Consequently, after applying PCA processing, we exclude the instance normalization
module from PatchTST. For comparative analysis, we also assess the performance of PatchTST
without the instance normalization module on the original series.

Table [7| presents the forecasting results of PatchTST. It is observed that the original PatchTST
achieves optimal performance. However, a surprising discovery is the pivotal role played by the
instance normalization process in PatchTST. Omitting the instance normalization module results in
a significant deterioration in PatchTST performance, exhibiting much worse results compared to
training PatchTST (also without the instance normalization module) after PCA preprocessing. These
findings suggest that PCA is effective for patch-based time series models, yet further exploration is
required to identify alternative methods to instance normalization.

D TSF RESULTS OF RNN-BASED MODELS WITH PCA PREPROCESSING

Due to issues with gradient vanishing or exploding (Hanin,|[2018), RNN-based models exhibit unstable
performance in TSA with long historical series windows and have consequently been increasingly
supplanted by Transformer, linear, and CNN-based models. Nonetheless, to more comprehensively
evaluate the impact of PCA preprocessing, we assess its effect on RNN-based models for TSF tasks.
Specifically, two typical RNN-based models, GRU (Chung et al.l [2014)) and LSTM (Hochreiter,
1997), are tested. Original historical series or PCA series are fed into the GRU or LSTM cells
to extract features, and their hidden state h, containing the feature information, are projected and
transformed to obtain the final predictions. Table §|shows that for GRU, PCA preprocessing leads to
superior performance in 18 out of 32 settings, and for LSTM, PCA preprocessing achieves better
results in half of the settings. These results indicate that PCA preprocessing does not degrade the
performance of RNN-based models. Additionally, since RNN models process time series sequentially,
their computational cost is more sensitive to the length of the model input. Table [0]demonstrates that
PCA preprocessing has a significant acceleration effect on RNN-based models, reducing training
time to one-fourth and inference time to one-third of the original times. Although RNN-based models
are not as commonly used as other models, PCA remains an effective tool for time series reduction in
scenarios where they are appropriate.

15

https://github.com/cure-lab/LTSF-Linear
https://github.com/zhouhaoyi/Informer2020
https://github.com/zhouhaoyi/Informer2020
https://github.com/MAZiqing/FEDformer
https://github.com/thuml/Time-Series-Library
https://github.com/yuqinie98/patchtst

Under review as a conference paper at ICLR 2025

Table 7: TSF experiments of PatchTST. The - symbol after the model signifies the removal of instance
normalization processing, and the * symbol after the model indicates the application of PCA. The
best result is indicated in bold font, while the second-best result is underlined.

Models PatchTST PatchTST- PatchTST*
Metric MSE MAE MSE MAE MSE MAE

9 | 0.055 0.179 0.141 0.300 0.073 0.214
192 | 0.071 0.205 0.196 0.368 0.082 0.234
336 | 0.081 0.225 0.186 0.360 0.087 0.237
720 | 0.087 0.232 0.372 0.527 0.131 0.289

9 | 0.129 0.282 0.232 0.381 0.166 0.324
192 | 0.168 0.328 0.221 0.368 0.214 0.376
336 | 0.185 0.351 0.537 0.542 0.224 0.390
720 | 0.224 0.383 0.485 0.561 0.298 0.447

9 | 0.026 0.121 0.122 0.296 0.031 0.134
192 | 0.039 0.150 0.127 0.299 0.041 0.157
336 | 0.053 0.173 0.252 0.450 0.058 0.184
720 | 0.074 0.207 0.276 0.454 0.084 0.220

9 | 0.065 0.186 0.130 0.281 0.070 0.200
192 1 0.094 0.231 0.132 0.283 0.098 0.238
336 | 0.120 0.265 0.165 0.322 0.124 0.269
720 | 0.171 0.322 0.286 0.424 0.177 0.328

ETThl

ETTh2

ETTml

ETTm2

Table 8: TSF Results of RNN-based models. The * symbols after models indicate the application of
PCA before inputting the series into the models. Bold font represents the superior result.

Models GRU GRU* LSTM LSTM* |

Metric MSE MAE MSE MAE | MSE MAE MSE MAE |

96 | 0.182 0.349 0.167 0.141 | 0.323 0.498 0.209 0.382
192 1 0.326 0.487 0.148 0.316 | 0.354 0.515 0.292 0.469
336 { 0.233 0.408 0.144 0.310 | 0.387 0.553 0.261 0.441
720 | 0.266 0.441 0.183 0.352 | 0.370 0.539 1.565 1.215

96 | 0.307 0.405 0.257 0.403 | 0.153 0.313 0419 0.516
192 1 0.227 0.382 0.279 0.417 | 0.207 0.364 0.298 0.440
336 | 0.320 0.462 0.273 0.419 | 0.333 0.461 0.249 0.497
720 | 0.392 0.502 0.285 0.435 | 0.421 0.534 0.349 0.378

96 | 0.070 0.198 0.164 0.335 | 0.091 0.249 0.130 0.292
192 | 0.141 0.295 0.188 0.360 | 0.175 0.349 0.131 0.280
336 | 0.227 0.393 0.275 0.455|0.217 0.381 0.282 0.461
720 | 0.400 0.547 0.268 0.446 | 0.368 0.525 0.289 0.467

96 | 0.074 0.200 0.141 0.298 | 0.086 0.218 0.151 0.310
192 1 0.119 0.267 0.187 0.352 | 0.119 0.270 0.211 0.368
336 | 0.193 0.360 0.161 0.310 | 0.218 0.378 0.158 0.314
720 | 0.224 0.368 0.258 0.408 | 0.240 0.385 0.298 0.446

Better Count \ 14 18 16 16 \

ETThl

ETTh2

ETTml

ETTm?2

Table 9: Average training/inference time (s) of RNN-based models on TSF tasks. The * symbols after
the time series models indicate the application of PCA. Bold font represents the superior result.

| GRU GRU* | LSTM _ LSTM* |
Training time | 167.65 4150 | 177.12 46.59 |

PCA time | - 088 | - 0.88 |
Inference time | 3.02 097 | 3.06 0.99 |
PCA time | - 001 | - 0.01 |

16

Under review as a conference paper at ICLR 2025

E DETAILED TRAINING/INFERENCE TIME

Table[T0|presents the average training and inference time (including PCA processing time) for various
time series models, evaluated across different TSA tasks. With the assistance of PCA preprocessing,
the training and inference of the models are accelerated to varying degrees.

Table 10: Average training/inference time (s) of different time series models across different TSA
tasks. The * symbols after the time series models indicate the application of PCA before inputting

the series into the models.
|Linear Linear*|Informer Informer* |FEDformer FEDformer*|TimesNet TimesNet*|PatchTST PatchTST*|

Training time | 25.47 14.82 | 336.74 232.16 | 1560.67 1450.31 | 488.65 372.66 | 118.04 67.67

|
PCAtime | - 088 | - 088 | - 088 | - 088 | - 088 |
Inference time| 0.67 ~ 0.63 | 4.94 297 | 1215 1131 | 575 403 | 141 124 |
PCAtime | - 001 | - 001 | - 001 | - 001 | - 0.01 |

F IMPACT OF THE NUMBER OF PRINCIPAL COMPONENTS

The number of principal components is a crucial hyperparameter in PCA. If too many principal
components are selected, the reduction in dimensionality may be insufficient, failing to achieve the
desired acceleration in training/inference. Conversely, too few principal components can result in the
loss of important features, leading to a decline in model performance.

Impact of the number of principal components on ETTm1 Impact of the number of principal components on ETTm2

100 1.00 A

[0.092

[0.090

0.96 0.088

I 0.086

Sum of Variance Ratio
Mean Squared Error
Sum of Variance Ratio

o
©
N
Mean Squared Error

0.084 0.88

I 0.082

0 20 40 60 80 100 0 20 40 60 80 100
Numbers of Principle Components Numbers of Principle Components

Figure 6: Impact of the number of principal components on model’s performance.

Fig. [6]illustrates the impact of the number of principal components on the performance of Linear
for the ETTm1 and ETTm?2 datasets. The red line depicts the variation of the sum of variance ratio
with the number of principal components, representing the importance of the features after PCA
dimensionality reduction. As the number of principal components increases, the importance of the
selected features also increases, but the rate of increase diminishes. Notably, even with only one
principal component, the importance of the features is already approximately 90%, and after the
number of principal components reaching to 48 (the number chosen in our experiment), further
increasing the number of principal components results in minimal change in feature importance. The
blue line represents the MSE of the model on the test set as a function of the number of principal
components. As the number of principal components increases, the MSE decreases, but the rate
of decrease also diminishes. These results suggest that selecting 48 principal components strikes a
judicious balance between computational efficiency and predictive performance for TSF.

G PCA VISUALIZATIONS

Fig. [/| depicts the shapes of series after PCA preprocessing and the series obtained by inverse
transforming PCA series. It is evident that PCA series include the primary information of the original
series with a small subset of initial values (principal components), while the remaining values exhibit
minimal fluctuations. The similarity of the original series can also be reflected in the PCA series.
Furthermore, series inverse transformed from PCA series appear significantly smoother compared to
the original series, effectively achieving denoising of the series.

17

Under review as a conference paper at ICLR 2025

Origin
Series
o 50 100 150 200 250 300 350 o 50 100 150 200 250 300 350 o 50 100 150 200 250 300 350
Series
o 10 20 30 40 0 10 20 30 40 o 10 20 30 40
Inversed
[Series
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350 o 50 100 150 200 250 300 350

Figure 7: Visualizations of original series, PCA series and PCA-inversed series.

H PREDICTION SHOWCASES

Fig. [§] presents some prediction showcases of the Linear model with and without PCA preprocessing.
It is observed that the predictions of the Linear model on the original series and the PCA series are
highly consistent.

ETThl ETTh2
—0.81 — GroundTruth
—— Prediction + PCA
—— Prediction 0.5
-1.0
1.2 0.0
-1.4 05
-1.6
-1.0
-1.8 —— GroundTruth
_1.54 — Prediction + PCA
| — prediction
-2.0
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
ETTml ETTm2
—— GroundTruth 0.75 —— GroundTruth
Prediction + PCA) —— Prediction + PCA
-0.4 Prediction —— Prediction
0.50
-0.6 Lo
0.00
-0.8
-0.25
-1.0 -0.50
-0.75
-1.2
-1.00
0 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Figure 8: Prediction showcases on ETT datasets.

18

