
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Supplemental Materials for “Revisiting PCA for
Time Series Reduction in Temporal Dimension”
A DATA DESCRIPTION

The experimental data comprises 13 widely-used datasets from various domains, each distinguished
by unique attributes:

• ETT (Zhou et al., 2021): The ETT dataset includes two hourly-level datasets (ETTh1 and
ETTh2) and two 15-minute-level datasets (ETTm1 and ETTm2). Each dataset comprises
seven oil and load features of electricity transformers spanning from July 2016 to July
2018. There are 7 variables for each dataset, with 17,420 time steps for ETTh and 69,680
time steps for ETTm. The series in these datasets exhibit strong periodicity. For univariate
forecasting, only the “oil temperature” variable is used for training and testing.

• EthanolConcentration (Bagnall et al., 2018): The dataset comprises 544 time series formed
by the raw spectra of water and ethanol solutions in authentic whisky bottles, with each
series having a length of 1,751. Ethanol concentrations range from 35%, 38%, 40%, to 45%.
The primary objective of this dataset is to ascertain the ethanol concentration (category)
within each sample. As a multivariate dataset, each variable corresponds to measurements
at different wavelengths, spanning Ultraviolet (UV) light, Visible (VIS) light, and Near
Infrared (NIR). For our experiments, the NIR variable is selected.

• Handwriting (Bagnall et al., 2018): This dataset comprises 1,000 time series samples of
subjects wearing a smartwatch while writing the 26 English letters. Each series has a
length of 152, with three dimensions corresponding to three accelerometer values. In our
experiments, we select the last dimension.

• SelfRegulationSCP (Bagnall et al., 2018): SelfRegulationSCP encompasses two datasets,
SelfRegulationSCP1 and SelfRegulationSCP2, involving self-regulation of slow cortical
potentials. In SelfRegulationSCP1, data from a healthy subject include cursor movement on
a computer screen, with visual feedback regulating slow cortical potentials (Cz-Mastoids).
SelfRegulationSCP1 consists of 561 series samples, each with a length of 896. In Self-
RegulationSCP2, data from an artificially respirated ALS patient similarly involve cursor
movement, with auditory and visual feedback regulating slow cortical potentials. SelfRegu-
lationSCP2 comprises 380 series samples, each with a length of 1,152. The classification
objective is to categorize based on recorded slow cortical potentials, where positive and
negative potentials correspond to different classes. The analysis in both datasets focuses on
the last dimension of the data in experiments.

• UWaveGestureLibrary (Bagnall et al., 2018): The UWaveGestureLibrary dataset comprises
eight simple gestures generated from accelerometers, totaling 4,479 series samples. Each
sample includes the x, y, z coordinates of a gesture, with each series having a length of 315.
In the experiments, the analysis is focused on the z-coordinate series.

• FloodModeling (Tan et al., 2021): FloodModeling comprises three hourly datasets (Flood-
Modeling1, FloodModeling2, and FloodModeling3). These datasets aim to predict the
maximum water depth for flood modeling. The three datasets contain 673, 559, and 613
hourly rainfall events time series, respectively. Each time series in the datasets has a length
of 266 time steps. These time series are utilized to predict the maximum water depth of a
domain represented by a Digital Elevation Model (DEM). Both the rainfall events and DEM
are synthetically generated by researchers at Monash University.

• Covid3Month (Tan et al., 2021): The Covid3Month dataset comprises 201 time series, where
each time series represents the daily confirmed cases for a country. The length of each time
series is 84. The objective of this dataset is to predict the COVID-19 death rate on April 1,
2020, for each country using the daily confirmed cases over the preceding three months.

B DETAILS ON TIME SERIES MODELS

The descriptions and implementations of the evaluated time series models are provided below:

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Linear (Zeng et al., 2023): The Linear model represents a groundbreaking method utilizing a linear
model, outperforming a substantial portion of Transformer-based models for TSF. The corresponding
code is accessible at: https://github.com/cure-lab/LTSF-Linear.

Informer (Zhou et al., 2021): Informer is an efficient Transformer architecture specifically de-
signed for TSF. The code for this model can be found at https://github.com/zhouhaoyi/
Informer2020.

FEDformer (Zhou et al., 2022): FEDformer is an efficient Transformer architecture that reduces
computational complexity through frequency-domain self-attention, utilizing Fourier or wavelet
transforms and random selection of frequency bases. The code for this model can be accessed at:
https://github.com/MAZiqing/FEDformer.

TimesNet (Wu et al., 2023): TimesNet transforms 1D time series into a set of 2D tensors based on
multiple periods and utilizes a CNN-based model to extract features. The code for TimesNet can be
found at https://github.com/thuml/Time-Series-Library.

PatchTST (Nie et al., 2022): PatchTST employs a segmentation approach for time series by dividing
it into multiple time patches, treating each as a token. The model uses an attention module to learn
the relationships between these tokens. The publicly available source code for PatchTST can be
found at https://github.com/yuqinie98/patchtst.

C TSF RESULTS OF PATCHTST WITH PCA PREPROCESSING

PCA preprocessing is separately applied to each patch series in the patch-based time series model
PatchTST. Additionally, to enhance prediction stability, PatchTST employs instance normalization
technology (Kim et al., 2022). However, integrating this technology with PCA series poses challenges:
the fluctuation of PCA series is considerable, and adding instance normalization further destabilizes
the predictions. Consequently, after applying PCA processing, we exclude the instance normalization
module from PatchTST. For comparative analysis, we also assess the performance of PatchTST
without the instance normalization module on the original series.

Table 7 presents the forecasting results of PatchTST. It is observed that the original PatchTST
achieves optimal performance. However, a surprising discovery is the pivotal role played by the
instance normalization process in PatchTST. Omitting the instance normalization module results in
a significant deterioration in PatchTST performance, exhibiting much worse results compared to
training PatchTST (also without the instance normalization module) after PCA preprocessing. These
findings suggest that PCA is effective for patch-based time series models, yet further exploration is
required to identify alternative methods to instance normalization.

D TSF RESULTS OF RNN-BASED MODELS WITH PCA PREPROCESSING

Due to issues with gradient vanishing or exploding (Hanin, 2018), RNN-based models exhibit unstable
performance in TSA with long historical series windows and have consequently been increasingly
supplanted by Transformer, linear, and CNN-based models. Nonetheless, to more comprehensively
evaluate the impact of PCA preprocessing, we assess its effect on RNN-based models for TSF tasks.
Specifically, two typical RNN-based models, GRU (Chung et al., 2014) and LSTM (Hochreiter,
1997), are tested. Original historical series or PCA series are fed into the GRU or LSTM cells
to extract features, and their hidden state h, containing the feature information, are projected and
transformed to obtain the final predictions. Table 8 shows that for GRU, PCA preprocessing leads to
superior performance in 18 out of 32 settings, and for LSTM, PCA preprocessing achieves better
results in half of the settings. These results indicate that PCA preprocessing does not degrade the
performance of RNN-based models. Additionally, since RNN models process time series sequentially,
their computational cost is more sensitive to the length of the model input. Table 9 demonstrates that
PCA preprocessing has a significant acceleration effect on RNN-based models, reducing training
time to one-fourth and inference time to one-third of the original times. Although RNN-based models
are not as commonly used as other models, PCA remains an effective tool for time series reduction in
scenarios where they are appropriate.

15

https://github.com/cure-lab/LTSF-Linear
https://github.com/zhouhaoyi/Informer2020
https://github.com/zhouhaoyi/Informer2020
https://github.com/MAZiqing/FEDformer
https://github.com/thuml/Time-Series-Library
https://github.com/yuqinie98/patchtst


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 7: TSF experiments of PatchTST. The - symbol after the model signifies the removal of instance
normalization processing, and the * symbol after the model indicates the application of PCA. The
best result is indicated in bold font, while the second-best result is underlined.

Models PatchTST PatchTST- PatchTST*

Metric MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.055 0.179 0.141 0.300 0.073 0.214
192 0.071 0.205 0.196 0.368 0.082 0.234
336 0.081 0.225 0.186 0.360 0.087 0.237
720 0.087 0.232 0.372 0.527 0.131 0.289

E
T

T
h2

96 0.129 0.282 0.232 0.381 0.166 0.324
192 0.168 0.328 0.221 0.368 0.214 0.376
336 0.185 0.351 0.537 0.542 0.224 0.390
720 0.224 0.383 0.485 0.561 0.298 0.447

E
T

T
m

1 96 0.026 0.121 0.122 0.296 0.031 0.134
192 0.039 0.150 0.127 0.299 0.041 0.157
336 0.053 0.173 0.252 0.450 0.058 0.184
720 0.074 0.207 0.276 0.454 0.084 0.220

E
T

T
m

2 96 0.065 0.186 0.130 0.281 0.070 0.200
192 0.094 0.231 0.132 0.283 0.098 0.238
336 0.120 0.265 0.165 0.322 0.124 0.269
720 0.171 0.322 0.286 0.424 0.177 0.328

Table 8: TSF Results of RNN-based models. The * symbols after models indicate the application of
PCA before inputting the series into the models. Bold font represents the superior result.

Models GRU GRU* LSTM LSTM*

Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h1

96 0.182 0.349 0.167 0.141 0.323 0.498 0.209 0.382
192 0.326 0.487 0.148 0.316 0.354 0.515 0.292 0.469
336 0.233 0.408 0.144 0.310 0.387 0.553 0.261 0.441
720 0.266 0.441 0.183 0.352 0.370 0.539 1.565 1.215

E
T

T
h2

96 0.307 0.405 0.257 0.403 0.153 0.313 0.419 0.516
192 0.227 0.382 0.279 0.417 0.207 0.364 0.298 0.440
336 0.320 0.462 0.273 0.419 0.333 0.461 0.249 0.497
720 0.392 0.502 0.285 0.435 0.421 0.534 0.349 0.378

E
T

T
m

1 96 0.070 0.198 0.164 0.335 0.091 0.249 0.130 0.292
192 0.141 0.295 0.188 0.360 0.175 0.349 0.131 0.280
336 0.227 0.393 0.275 0.455 0.217 0.381 0.282 0.461
720 0.400 0.547 0.268 0.446 0.368 0.525 0.289 0.467

E
T

T
m

2 96 0.074 0.200 0.141 0.298 0.086 0.218 0.151 0.310
192 0.119 0.267 0.187 0.352 0.119 0.270 0.211 0.368
336 0.193 0.360 0.161 0.310 0.218 0.378 0.158 0.314
720 0.224 0.368 0.258 0.408 0.240 0.385 0.298 0.446

Better Count 14 18 16 16

Table 9: Average training/inference time (s) of RNN-based models on TSF tasks. The * symbols after
the time series models indicate the application of PCA. Bold font represents the superior result.

GRU GRU* LSTM LSTM*
Training time 167.65 41.50 177.12 46.59

PCA time - 0.88 - 0.88

Inference time 3.02 0.97 3.06 0.99
PCA time - 0.01 - 0.01

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

E DETAILED TRAINING/INFERENCE TIME

Table 10 presents the average training and inference time (including PCA processing time) for various
time series models, evaluated across different TSA tasks. With the assistance of PCA preprocessing,
the training and inference of the models are accelerated to varying degrees.

Table 10: Average training/inference time (s) of different time series models across different TSA
tasks. The * symbols after the time series models indicate the application of PCA before inputting
the series into the models.

Linear Linear* Informer Informer* FEDformer FEDformer* TimesNet TimesNet* PatchTST PatchTST*
Training time 25.47 14.82 336.74 232.16 1560.67 1450.31 488.65 372.66 118.04 67.67

PCA time - 0.88 - 0.88 - 0.88 - 0.88 - 0.88

Inference time 0.67 0.63 4.94 2.97 12.15 11.31 5.75 4.03 1.41 1.24
PCA time - 0.01 - 0.01 - 0.01 - 0.01 - 0.01

F IMPACT OF THE NUMBER OF PRINCIPAL COMPONENTS

The number of principal components is a crucial hyperparameter in PCA. If too many principal
components are selected, the reduction in dimensionality may be insufficient, failing to achieve the
desired acceleration in training/inference. Conversely, too few principal components can result in the
loss of important features, leading to a decline in model performance.

Figure 6: Impact of the number of principal components on model’s performance.

Fig. 6 illustrates the impact of the number of principal components on the performance of Linear
for the ETTm1 and ETTm2 datasets. The red line depicts the variation of the sum of variance ratio
with the number of principal components, representing the importance of the features after PCA
dimensionality reduction. As the number of principal components increases, the importance of the
selected features also increases, but the rate of increase diminishes. Notably, even with only one
principal component, the importance of the features is already approximately 90%, and after the
number of principal components reaching to 48 (the number chosen in our experiment), further
increasing the number of principal components results in minimal change in feature importance. The
blue line represents the MSE of the model on the test set as a function of the number of principal
components. As the number of principal components increases, the MSE decreases, but the rate
of decrease also diminishes. These results suggest that selecting 48 principal components strikes a
judicious balance between computational efficiency and predictive performance for TSF.

G PCA VISUALIZATIONS

Fig. 7 depicts the shapes of series after PCA preprocessing and the series obtained by inverse
transforming PCA series. It is evident that PCA series include the primary information of the original
series with a small subset of initial values (principal components), while the remaining values exhibit
minimal fluctuations. The similarity of the original series can also be reflected in the PCA series.
Furthermore, series inverse transformed from PCA series appear significantly smoother compared to
the original series, effectively achieving denoising of the series.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 7: Visualizations of original series, PCA series and PCA-inversed series.

H PREDICTION SHOWCASES

Fig. 8 presents some prediction showcases of the Linear model with and without PCA preprocessing.
It is observed that the predictions of the Linear model on the original series and the PCA series are
highly consistent.

Figure 8: Prediction showcases on ETT datasets.

18


