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ReCorD: Reasoning and Correcting Diffusion for HOI Generation
Anonymous Author(s)

DALL-E 3SDXLReCorD

a man is
carrying a

bicycle

a man is
standing on a

chair

a boy is lying
on a bench

BoxDiff LayoutLLM-T2I

Figure 1: Existing approaches frequently encounter difficulties in accurately interpreting prompts related to human-object
interactions, resulting in misplaced objects and inaccurate poses. In contrast, our ReCorD shows significantly improved
generation capabilities in diverse scenes, indicating superior proficiency in rendering complex interactions. Best view in colors
as we use different colors to represent the triplets <human,object,interaction>.

ABSTRACT
Diffusion models revolutionize image generation by leveraging nat-
ural language to guide the creation of multimedia content. Despite
significant advancements in such generative models, challenges
persist in depicting detailed human-object interactions, especially
regarding pose and object placement accuracy. We introduce a
training-free method named Reasoning and Correcting Diffusion
(ReCorD) to address these challenges. Our model couples Latent
Diffusion Models with Visual Language Models to refine the gener-
ation process, ensuring precise depictions of HOIs. We propose an
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interaction-aware reasoning module to improve the interpretation
of the interaction, along with an interaction correcting module
to refine the output image for more precise HOI generation deli-
cately. Through a meticulous process of pose selection and object
positioning, ReCorD achieves superior fidelity in generated images
while efficiently reducing computational requirements. We conduct
comprehensive experiments on three benchmarks to demonstrate
the significant progress in solving text-to-image generation tasks,
showcasing ReCorD’s ability to render complex interactions ac-
curately by outperforming existing methods in HOI classification
score, as well as FID and Verb CLIP-Score.

CCS CONCEPTS
• Information systems→Multimedia content creation; •Com-
puting methodologies→ Image manipulation.

KEYWORDS
multimodal image generation, visual language model, diffusion
model, human-object interaction
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1 INTRODUCTION
In recent years, diffusion models have become a cornerstone in
the field of multimedia processing, demonstrating remarkable suc-
cess across a wide array of generative tasks [26, 35, 53, 61, 63, 71].
Among them, text-to-image (T2I) generation has attracted signifi-
cant attention [8, 12, 40, 54, 62] due to its user-friendly nature lever-
aging natural language guidance. While state-of-the-art (SOTA) T2I
diffusion models, such as SDXL [42] and DALL-E 3, have greatly
improved image realism and expanded the conceptual possibilities
of generation, ongoing challenges persist. In particular, they of-
ten encounter difficulties with text prompts that contain intricate
human-object interactions (HOI) [23].

As illustrated in Figure 1, despite their training on extensive
datasets, T2I methods like SDXL and DALL-E 3 exhibit flaws in
rendering human poses or object placements. In the example of
“a boy is lying on a bench”, although DALL-E 3 precisely captures
the lying pose, it incorrectly locates the boy, whereas SDXL places
the boy on the bench accurately but does not manage to render
the lying down pose. These inaccuracies may stem from the inher-
ent biases or assumptions about the interaction between the given
human and object, embedded within the large-scale datasets [50]
used to train T2I models [16]. Such biases can lead to hallucina-
tion problems [34], resulting in models failing to generate images
matching the intended interactions accurately. For instance, given
the prompt “a man is carrying a bicycle” as in Figure 1, SDXL and
DALL-E 3 might err in posture and object placement because the
most common association in the datasets is “riding,” leading to
inaccuracies in depicting the intended interaction.

To enhance the accuracy of T2I models in generating interac-
tions, a possible avenue is to ensure the correct positioning of both
the human and the object within the image. Previously, several
layout-to-image (L2I) models [13, 27, 29, 59, 69] have been pro-
posed to include the layout of each object as additional input for
diffusion models, aiming to gain more precise control over the out-
put images. For instance, GLIGEN [29] retrain the model with the
layout-annotated dataset by the Gated Self-Attention. DenseDif-
fusion [27] and BoxDiff [59] exemplify training-free L2I methods
that necessitate supplementary inputs for operation. However, the
requirement for user-specific layouts can be time-consuming and
inconvenient for users. In addition, especially in scenarios involv-
ing HOI, simplistic inputs like boxes prove inadequate in capturing
complex attributes such as posture and body orientation, which are
crucial for the accurate depiction of interaction, ultimately resulting
in suboptimal images. The deficiency is evident in Figure 1, where
BoxDiff struggles to generate realistic interactions despite being
provided with layout information as additional input.

On the other hand, alternative approaches have integrated Large
Language Models (LLMs) to augment diffusion models, aiming
better to grasp the nuances of textual prompts in image gener-
ation [15, 30, 43, 58, 60, 70]. Innovations such as LMD [30] and
LayoutLLM-T2I [43] have pioneered to employ LLMs for creating
more intuitive and accurate image outputs. LMD utilizes a dual-
phase approach, initially using a pre-trained LLM to create a scene
layout with captioned bounding boxes. It further proceeds with
a layout-grounded controller to guide diffusion models. Addition-
ally, LayoutLLM-T2I starts by generating a coarse layout and then

implements a specially trained transformer module within the de-
noising UNet for fine-grained generations. Despite the progress
made with LLM-assisted methods in image generation, a pivotal
limitation arises when handling HOI. Predominantly dependent
on textual prompts, these methods exhibit two possible shortcom-
ings. Firstly, they may overlook the intricate spatial dynamics and
nuanced interactions within an image due to the limited informa-
tion the prompt provides. Secondly, in some cases, the LLMs may
over-analyze the textual prompt, leading to hallucinations where
they generate fabricated content that is not grounded in reality. An
evident illustration of this phenomenon is presented in the first
row of Figure 1. Despite the prompt suggesting a man carrying a
bicycle, the LLM-assisted LayoutLLM-T2I tends to overanalyze and
assume an additional man riding the bike instead, resulting in the
generation of human-like artifacts riding the bicycle, which is not
the intended interaction. Such deficiency underscores the critical
need for advanced approaches to interpret information from the
concise HOI prompts better, ensuring image generation that closely
aligns with the intended interactions.

In this paper, we propose Reasoning and Correcting Diffusion
(ReCorD) for generating human-object interaction. We argue that
proper HOI generation requires both the correct human posture
and precise object positioning to facilitate realistic interaction. To
achieve this, we introduce an innovative pipeline depicted in Fig-
ure 2. Our approach includes three key steps. First, we employ
the Latent Diffusion Model (LDM) to produce a set of human can-
didates performing the verb in the text prompt, emphasizing the
correct posture by employing intransitive prompts. Next, as Visual
Language Models (VLMs) excel at comprehending image contents,
we harness their visual reasoning capabilities to select candidates
with optimal posture and determine the appropriate placement of
the object based on their interpretation of the interaction scene.
Finally, we introduce a refinement mechanism to adjust object po-
sitions while preserving accurate human posture. By implementing
inverse attention masks and bounding box constraints, we prevent
the overlap of attention maps between humans and objects during
image generation, enhancing the fidelity of the final image output.
Our proposed ReCorD guarantees precise control over the depicted
interactions, effectively mitigating the risks of hallucinatory inaccu-
racies. To the best of our knowledge, this work is the first attempt
to introduce interaction generation in a training-free fashion which
eliminates the need for additional HOI-labeled data and avoiding
computational challenges associated with training. We summarize
our main contributions as follows:

(1) We introduce a novel reasoning framework that integrates
LDM with VLMs to overcome the challenges of generating
realistic HOI, mitigating issues presented in previous ap-
proaches, such as LLMs overanalyzing simple text prompts
and training data biases in LDM.

(2) To enhance human figure depiction accuracy, we design
a correction mechanism within LDM for dynamic image
adjustment, enabling precise control and refinement of hu-
man interactions in generated images as well as enhancing
the portrayal accuracy significantly.

(3) The extensive experiments demonstrate our training-free
ReCorD’s proficiency in creating captivating and realistic
HOI scenes, outperforming state-of-the-art techniques.
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2 RELATEDWORK
2.1 Conditioned T2I Diffusion Models
Recent advancements in diffusion models [9, 11, 21, 25, 36, 52]
have significantly improved the capabilities of large-scale T2I gen-
eration models such as DALL-E [45, 46], Imagen [49], and Stable
Diffusion [42, 48]. While these models guided solely by plain text
demonstrate the ability to generate high-quality images, they strug-
gle with prompts that demand detailed attribute specifications and a
nuanced understanding of spatial relationships [47]. Consequently,
recent research on diffusion models extended beyond text-based
conditions and incorporated advanced conditioning mechanisms
such as inpainting masks [27], sketches [56], key points [29], seg-
mentation maps [10] and layouts [16], facilitating enhanced spa-
tial manipulations. The modification of models marks this evolu-
tion to include additional encoders, achieved through strategies
like fine-tuning [3, 29, 39, 65], or constructing new models from
scratch [24]. For instance, SpaText [3] and GLIGEN [29] introduce
spatial modulations into pre-trained models, employing fine-tuning
with adapters to perform layout constraints. Despite the enhance-
ments, the requirement for model retraining for each new condition
type remains a significant challenge. Building on the foundation of
the previous diffusion models, we propose a training-free frame-
work designed explicitly to enhance the proficiency of LDM in
interpreting and visualizing the intricate relationships of HOIs.

2.2 Image Generation with Spatial Control
As T2I models are traditionally trained on datasets featuring brief
text captions, they frequently struggle to capture the nuances of
more complex captions that contain multiple phrases [51]. Follow-
ing the insight from Prompt-to-Prompt [18] that trained T2I models
inherently provide token-region associations through their atten-
tion maps, several works [2, 4, 7, 16, 22, 27, 59] have been proposed
to mitigate this issue. For instance, MultiDiffusion [4] choose to
conduct individual denoising procedures for every phrase, respec-
tively, at every timestep. However, this independent generation
technique frequently stumbles over lifelike compositions and is
easily hindered by bias toward specific actions or objects. Attend-
and-Excite [7] strategically manipulates the noise map to enhance
the activation of previously overlooked tokens in cross-attention
maps. Yet, a limitation arises since the mere intensification of at-
tention to certain tokens does not always lead to a holistic repre-
sentation of the intended information within the generated output.
BoxDiff [59] comes up with three spatial constraints to optimize
the cross-attention layers given instinctive inputs, e.g., bounding
box or scribble, during the sampling process. InteractDiffusion [22]
introduces a novel approach to generating images with precise
HOI by tokenizing interaction using a conditioning self-attention
layer for the accuracy of the complexities of interaction represen-
tation. To better impose regulations on the generated human, the
rectangular-shaped constraints cannot be applied since bounding
boxes cannot properly convey the details of human action, such as
body orientation, facial direction, etc. Building on these training-
free approaches, our pipeline assures that the object is matched
with a sufficiently strong attention map and the human can be
generated in a legitimate pose. Thus, a complex scene containing
interaction can be precisely rendered.

2.3 LLM-assisted Image Generation
The integration of Large Language Models (LLMs) with diffusion
models has significantly transformed T2I generation, capitalizing on
the superior generalization abilities of LLMs [14, 30, 31, 58, 60, 66].
LayoutGPT [14] adopt LLMs for layout generation via in-context
learning. VisorGPT [60] takes one step further by fine-tuning to em-
brace diverse modalities, including key points, semantic masks, etc.
LMD [30] represents pioneering efforts in this integration, utilizing
LLMs to interpret object locations from text prompts, thus enhanc-
ing the accuracy and quality of generated images. LayoutLLM-
T2I [43] query ChatGPT for text-to-layout induction and introduce
a Layout-aware Spatial transformer with a view to improve lay-
out and image generation simultaneously. Emphasizing the central
role of LLMs, these advancements bypass the need for additional
information inputs, allowing LLMs to shape the initial layout con-
figurations and interpret user prompts directly. Despite the success-
ful outcomes of using LLMs, they fail to address the challenge of
generating the explicit posture of humans given specific actions.
Compared to LLMs, LDMs demonstrate a better understanding of
scene kinetics based on simple text prompts. Therefore, we propose
to leverage such advantage of LDMs alongside the robust visual
reasoning abilities of VLMs to generate accurate HOI.

3 METHOD
We introduce the ReCorD, an interaction-aware model that main-
tains training-free superiority. The resulting images hinge on the
human adopting the appropriate pose and ensure the object is lo-
cated in a suitable position according to the given text prompt. Our
generative pipeline comprises three modules: Coarse Candidates
Generation, Interaction-aware Reasoning, and Interaction Correct-
ing. To abbreviate these modules, we term them asM𝑔 ,M𝑟 , and
M𝑐 , respectively. We decomposed the denoising process𝑇 into two
stages, i.e.𝑇1 and𝑇2, by observing that the diffusion model captures
the initial layout during the early denoising steps and refines the de-
tails in the later iterations [4]. In the former stage,M𝑔 generates 𝑘
coarse candidates, whileM𝑟 suggests the ideal pose and layout w.r.t.
the text prompt. Subsequently,M𝑐 corrects object locations while
preserving selected poses to refine the cursory images into desired
ones. Importantly, ReCorD empowers the diffusion model to create
images aligned with text prompts, highlighting complex spatial
conditions and intricate interactions without additional training.
The overall pipeline is depicted in Figure 2, and we elaborate on
the details of each module in the following sections.

3.1 Coarse Candidates Generation Module
Given a text prompt𝑦 containing the HOI attribute, i.e., a statement
describes an interaction between a single human and an object
phrased as “a subject is verbing an object”, we enhance interac-
tion representation by adopting distinct attention mechanisms [55]
withinM𝑔 . More precisely, we manipulate cross-attention and self-
attention maps to generate candidate images 𝑘 associated with the
action subject to the prompt.
Cross-Attention Maps Manipulation. To facilitate image gen-
eration concerning the textual information, we incorporate such
conditions into LDMs using cross-attentionmaps. During denoising,
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Figure 2: Overall architecture of ReCorD. Given a text prompt, ReCorD is structured by three components during the inference
of LDM and VLMs, where we first leverage Coarse Candidates GenerationM𝑔 to produce coarse candidates. Then, Interaction-
aware ReasoningM𝑟 determines the optimal pose and layout regarding to the input. Finally, Interaction CorrectingM𝑐 adjusts
object placements and maintains the chosen poses to enhance the preliminary images within one generation cycle.

LDMs initially sample a latent vector 𝑧𝑡 from a Gaussian distribu-
tion N(0, 1) and progressively remove noise to obtain 𝑧𝑡−1 at each
step 𝑡 ∈ [𝑇1, · · · , 0]. After encoding the prompt 𝑦 into text tokens
via text encoder, the cross-attention map is defined as follows:

A = Softmax
(
QK⊺/

√
𝑑

)
, (1)

where Q = 𝜙𝑞 (𝜑 (𝑧)) and K = 𝜙𝑘 (𝜓 (𝑦)) represent the query and
key embeddings derived by corresponding projection functions.
𝜑 and𝜓 are spatial normalization [68] and the text encoder from
CLIP [44], which yields intermediate representations and 𝑁 text
tokens 𝜓 (𝑦) = {𝑤1 · · ·𝑤𝑁 }. For simplicity, we omit the subscript
𝑡 that represents the denoising step while manipulating attention
maps.

Modeling the cross-attention map for the interaction (verbing
in the 𝑦) is challenging when generating HOI scenes, leading to
an ambiguous representation of the verb token. To address this
issue, we propose an alternative intransitive prompt 𝑦, which typi-
cally excludes object-related descriptions in 𝑦. The cross-attention
maps Ã using 𝑦 can be derived by substituting K in eq. (1) with
K̃ = 𝜙𝑘 (𝜓 (𝑦)). As illustrated in Figure 3, Ã captures more informa-
tive clues, especially for the verb token, compared toA when using
𝑦 as the text prompt, resulting in interactive representations. Conse-
quently, we formulate the final cross-attention maps by rearranging
the maps as follows:

A𝑐𝑟𝑜𝑠𝑠 =

{
Ã𝑛 if 𝑤𝑛 ∈ 𝜓 (𝑦)
A𝑛 otherwise,

(2)

where 𝑛 denotes the index of text tokens. Ideally, we embrace the
attention maps if the text token exists in the intransitive prompt.
Self-AttentionMapsManipulation. In contrast to cross-attention
maps, self-attention maps lack direct token associations but still in-
fluence the spatial layout and appearance of generated images [33].

Therefore, we manipulate the self-attention maps similarly to eq. (2)
for latent representation once the denoising step 𝑡 > 𝛾 for obtaining
A𝑠𝑒𝑙 𝑓 , where 𝛾 is a predefined parameter ensuring that scenes and
objects from original tokens𝜓 (𝑦) can be generated effectively.

3.2 Interaction-Aware Reasoning Module
As an intermediate module bridging the others, we present the
Interaction-Aware Reasoning moduleM𝑟 (see Figure 4) following
the generation of coarse candidates inM𝑔 . This module comprises
two components powered by VLM: the Pose Selection Agent and
the Layout Agent. Specifically, the Pose Selection Agent selects an
image aligning with the prompt 𝑦, while the Layout Agent adjusts
the object’s location and preserves human key points P and further
determines the target position 𝑏𝑜 for the correction moduleM𝑐 .
Pose Selection Agent. As the pose plays a vital characteristic in
the HOI generation, we first couple an agent to select the appro-
priate pose conditioned on the prompt. The Pose Selection Agent
integrates the initial prompt𝑦 with previously generated candidates
to create the pose template. Leveraging the visual comprehension
capabilities of VLMs, this agent excels in identifying the precise
pose corresponding to 𝑦, enhancing the model’s ability to inter-
pret visual data beyond relying solely on textual cognition as in
LLMs. This pivotal step ensures that the pose information initially
obtained from LDMs is meticulously refined for subsequent phases.
Layout Agent. To address the issue of LLM-assisted methods being
overly reliant on prompts for sampling layouts, we incorporate the
identified key points P and the bounding box 𝑏ℎ for humans as
additional data. Recognizing that an interaction involves both the
relation to human and the object, we collect the crucial information
of P using 33 key points in (𝑥,𝑦) coordinates and represent 𝑏ℎ =

(𝑥𝑚𝑖𝑛, 𝑦𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥 ). Additionally, we use the image selected
by the former agent as inputs to VLMs for layout suggestion tasks.

4



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

ReCorD: Reasoning and Correcting Diffusion for HOI Generation ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Coarse Candidates Generation 

replacing

a

a

man

man

carrying

carrying a bicycle

Figure 3: For a text prompt involving HOI, M𝑔 attempts
to generate coarse candidates by substituting the attention
maps obtained from the full prompt (top row) with those
derived from the intransitive prompt (bottom row).

Wefirst extract the object’s location𝑏𝑜 usingOtsu’s algorithm [41],
an automatic thresholding technique applied to the object’s cross-
attention map A𝑐𝑟𝑜𝑠𝑠 to isolate regions with higher values. Subse-
quently, we detect human key points using MediaPipe Pose Land-
marker to create the segmentation mask 𝑚ℎ . Consecutively, we
establish a series of guidelines and fixed protocols for VLMs adher-
ence, including constraints on 𝑏ℎ to maintain the integrity of the
intended human poses and an overlapping reduction strategy to im-
prove the quality of generated images containing multiple objects.
Furthermore, inspired by the Chain-of-Thought approach [57], we
enhance the logical coherence by guiding VLMs to construct visual
attribute information for human posture. We ground the VLMs in
logical reasoning across multiple factors such as pose types, body
orientation, object relations, etc. Drawing on insights from previous
research [5, 37], we prepare VLMs with three examples, aiding in
the clarification of visual representation and reducing ambiguity
to construct the interaction template. Eventually, we extract the
proposed location 𝑏𝑜 forM𝑐 and integrate a checking mechanism
to determine whether the alteration in 𝑏𝑜 falls within a predeter-
mined threshold. If the change is minimal which indicates a minor
difference,M𝑟 would signal no changes toM𝑐 . This mechanism is
crucial for maintaining a streamlined and resource-efficient genera-
tion process, ensuring only significant location adjustments prompt
further action. Please refer to the supplementary material for the
details of pose and interaction templates.

3.3 Interaction Correcting Module
Wedelicately refine the candidate image provided by the dual agents
while preserving the original human pose inM𝑐 , as shown in Fig-
ure 5. To combine the generative capabilities of LDMs with the
reasoning abilities of VLMs, we incrementally update the latent 𝑧𝑡
to adjust the object’s position and size based on bounding boxes
𝑏𝑜 related to the interaction. Notably, we conduct the denoising
process for 𝑡 ∈ [𝑇2, · · · , 0], including modulation of cross-attention
and self-attention maps, as described in Section 3.1.

Simultaneously modifying the object’s location requires con-
sideration of potential overlap with the human body since cross-
attention maps from different tokens may exhibit strong values in

Interaction-aware Reasoning 

Layout Agent

Pose Selection Agent

Visual Attributes
Pose Types: Dynamic
Body Orientation: Frontal
Facial Direction: Looking Sideways
Object Relationship: On human Human key points 

Object bounding box Object bounding box 

Coarse Candidates Selected image

Figure 4: Given 𝑘 coarse images, the Pose Selection Agent
identifies the image most closely aligning with the text
prompt 𝑦, and the Layout Agent updates the object’s position
𝑏𝑜 by reasoning arrangements while preserving the pose P.

the same region which will deteriorate image quality. To address
this challenge, we introduce a mechanism for eliminating attention
overlap. Specifically, given the token index of the object denoted
as𝑚, we use the cross-attention map 𝐴𝑚 to construct an inverse
mask at each time step 𝑡 , denoted as 𝐴𝑚 = 1 −𝐴𝑚 , where 1 is the
tensor of the same dimension as 𝐴𝑚 containing all elements equal
to 1. This inverse attention map is then applied to the remaining
maps using an element-wise product operation defined as

𝐴𝑛 = 𝐴𝑚 ⊙ 𝐴𝑛, ∀𝑛 ≠𝑚. (3)

Through this correction mechanism outlined in eq. (3), we can
mitigate the issue of attention overlap between humans and ob-
jects while updating the object positions, ensuring the successful
generation of updated objects.
Conditioned Spatial Constraints Since our ReCorD is training-
free and does not involve additional learnable networks for knowl-
edge transfer, we employ box constraints [59] to regularize the
denoiser, which can be formulated as

L = L𝐼𝐵 + L𝑂𝐵 + L𝐶𝐶 , (4)

where each term in sequence order represents the inner-box, outer-
box, and corner constraint, respectively. We apply eq. (4) to update
the latent at each time step 𝑡 with corresponding weight 𝛼𝑡 as

𝑧𝑡 ← 𝑧𝑡 − 𝛼𝑡 · ∇L . (5)

Through slight update 𝑧𝑡 at each step, we ensure that the ob-
ject holds sufficient mutual information with the box region and
conforms to the specified size, i.e. 𝑏𝑜 , thereby accurately correcting
the object’s position to represent the interaction. As LDM aims to
denoise iteratively and involve the attention maps as intermediate.
We denote that LDM(𝑧𝑡 , 𝑦, 𝑡, 𝑠) is the diffusion process at time step
𝑡 before manipulation, which seeks the corresponding attention
maps. After going through our proposed ReCorD, the denoising
UNet is reused to predict the latent representation at next step. For-
mally LDM(𝑧𝑡 , 𝑦, 𝑡, 𝑠) symbolizes the diffusion model that adopts
the manipulated attention maps, resulting in the prediction, i.e.
𝑧𝑡−1. The complete algorithm can be found in the supplementary.
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Table 1: Comparison between ReCorD and existing baselines in terms of generated image quality scores in SCLIP, S𝑣𝑒𝑟𝑏CLIP ,
PickScore, FID, along with HOI classification score on HICO-DET and VCOCO. Ours† represents using SDXL as backbone.

HICO-DET V-COCO

Method SCLIP ↑ S𝑣𝑒𝑟𝑏CLIP ↑ PickScore ↑ FID ↓ HOIFull ↑ HOIRare ↑ SCLIP ↑ S𝑣𝑒𝑟𝑏CLIP ↑ PickScore ↑ FID ↓ HOI ↑
SD [48] 31.74 21.82 21.50 51.31 18.78 10.02 31.10 21.26 21.26 77.29 15.85
A&E [7] 31.63 21.72 21.33 46.41 16.57 8.62 31.21 21.11 21.11 70.74 14.52
LayoutLLM-T2I [43] 31.63 22.02 21.01 38.94 16.98 8.06 31.65 21.62 20.88 59.35 16.64
BoxDiff [59] 31.42 21.69 21.22 45.88 16.33 8.67 31.06 21.27 20.96 68.67 12.34
InteractDiffusion [22] 28.72 21.34 20.40 29.74 21.57 10.25 28.34 20.76 20.16 49.74 15.78
MultiDiffusion [4] 31.64 21.81 21.67 51.51 22.46 11.15 32.53 21.31 21.81 83.27 17.96
SDXL [42] 32.06 22.29 22.68 40.32 25.85 14.24 31.76 21.40 22.54 75.40 19.02
LMD [30] 28.67 20.11 20.62 51.37 9.10 2.65 29.31 20.29 20.56 75.68 10.26

Ours 31.92 22.26 21.49 37.03 22.86 12.72 31.60 21.55 21.31 58.20 20.00
Ours† 32.40 22.65 22.54 36.72 26.33 15.39 31.94 21.84 22.22 60.74 22.48

Interaction-Correcting 

Suggested Layout

a

a

man

man

carrying

carrying a bicycle

Denoising steps

bicycle

replacing

Figure 5:M𝑐 refine the coarse candidate according to the sug-
gested layout by adjusting object location and size based on
Eq. 4, employing the inverse mask𝐴𝑚 along with an element-
wise product to deal with the attention overlapping concerns.

4 EXPERIMENTS
4.1 Experimental Setup
Datasets. Given the absence of a standard benchmark crafted for
HOI generation, we assess the efficacy of our approach by extracting
HOI triplets from two established HOI detection datasets, namely
HICO-DET [6] and VCOCO [17], to form the input text prompts.
HICO-DET includes 600 triplets across 80 object categories and
117 verb classes, while VCOCO contains 228 triplets, spanning
80 object classes and 29 verb types. For a comprehensive assess-
ment, we incorporate the non-spatial relationship category in T2I-
CompBench [23], which is characterized by 875 interaction terms.
We select prompts that exclusively involve HOIs in T2I-CompBench.
To enhance diversity, we apply random subject augmentation to
each verb and object pair extracted from the datasets to form the
input prompt. Accordingly, our experiments are conducted across
three datasets: HICO-DET, with 7,650 HOI prompts; VCOCO, con-
tributing 2,550 prompts; and the non-spatial relationship category
of T2I-CompBench, adding 465 prompts. More details are described
in the supplementary.

Baselines.We report comparisons with nine strong-performing
models, 1) T2I models: Stable Diffusion (SD) [48], Attend-and-Excite
(A&E) [7], SDXL [42], and DALL-E 3. 2) L2I models: BoxDiff [59],
MultiDiffusion [4] and InteractDiffusion [22]. 3) LLM-assisted T2I
models: LayoutLLM-T2I [43] and LMD [30]. We utilized the official
implementations and the default settings for each baseline. For L2I
models, we provide the actual bounding box data from HICO-DET
and VCOCO datasets in addition to the text prompts as inputs. For
LLM-assisted methods, the input layouts are exclusively generated
by LLMs, rather than being sourced from the datasets.
Evaluation Metrics. To measure the interaction in the generated
images, we utilize the CLIP-Score SCLIP [19] evaluating the similar-
ity between the input text and the generated images. While this met-
ric is commonly applied to estimate fidelity to text prompts, we note
its inclination towards a noun or object bias, with CLIP often unable
to differentiate among verbs, relying instead on nouns [38, 64]. To
address this, we specifically extract verbs from the text prompts
and calculate the Verb CLIP-Score S𝑣𝑒𝑟𝑏CLIP . In addition, we introduce
a HOI classification score to evaluate the interaction depiction. By
transforming a pre-trained, SOTA HOI detector [67] into a classi-
fier, we evaluate HOI instances in generated images and compare
them against the ground truth of HICO-DET and VCOCO. The
accuracy of HOI classification is evaluated based on the top three
accuracy scores. HOIFull and HOIRare represent scores for the full
and rare set, respectively, on the HICO-DET dataset. The rare set is
selected based on having fewer than 10 instances across the dataset.
Moreover, we employ the Fr𝑒chet Inception Distance (FID) [20] and
PickScore [28] to assess image quality. FID compares the Fr𝑒chet dis-
tance distribution of Inception features between real and generated
images, whereas PickScore, a text-image scoring metric, exceeds
human performance in predicting user preferences.
Implementation Details. We choose the Stable Diffusion [48]
model as the default backbone andGPT4V [1] as the VLM inM𝑟 .We
set the ratio of classifier-free guidance to 7.5, denoising steps 𝑇1 =

10,𝑇2 = 50, and use the DDIM [52] scheduler within denoising steps.
The number of coarse candidates 𝑘 = 5, and the hyperparameter
𝛾 = 5 initials the operation for self-attention maps manipulation.
For evaluation, one image is generated per triplet for HICO-DET and
VCOCO datasets and three images per triplet for T2I-CompBench.
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Figure 6: Visual comparison with existing baselines for HICO-DET (a-c) and VCOCO (d-f) using different text prompts, where
ReCorD attains better delineation of interaction, and renders images matching the text instructions. (a) a young man is signing
a sports ball. (b) a woman is carrying a pizza. (c) a boy is chasing a bird. (d) a child is cutting a cake. (e) a toddler is pointing at a
laptop. (f) a woman is holding a fork. The bounding boxes on the results of L2I models are additional input for HOI generation.

4.2 Qualitative Results
We provide a qualitative comparison to assess the generated HOIs.
As depicted in Figure 6, ReCorD outperforms other SOTA methods
by generating realistic human poses and object placements that
align with text prompts, proofing its proficiency in depicting object
interactions with high fidelity. In contrast, baseline methods often
tend tomisplace objects or fail to capture the nuances of intended ac-
tions. For L2I models with additional layout inputs, BoxDiff achieves
object size requirements but struggles to accurately depict inter-
action poses; InteractDiffusion fails to accurately portray subtle
activities despite the fine-tuning, as seen in (a), (d), (e), and (f); Mul-
tiDiffusion strives for precise object placement despite generating
images in various sizes. On the other hand, LayoutLLM-T2I, despite
leveraging language models for improved layout generation, of-
ten produces objects disproportionate to humans, which is evident
in (e) and (f). Furthermore, the tendency of the refiner module in
SDXL as well as LMD to prioritize nouns over verbs compromises
their interaction depiction capabilities. Especially, SDXL struggles

with action poses (a), (b), (d), and (e), and DALL-E 3 with object
sizing and placement (a), (c), (e), and (f), illustrating key areas where
ReCorD advances beyond the limitations of existing solutions.

4.3 Quantitative Results
We present the quantitative comparison of the generated results,
with prompts sourced from HICO-DET and VCOCO in Table 1, and
results using prompts formed from T2I CompBench in Table 2.
CLIP-based Image-Text Similarity. The results of CLIP-Score
SCLIP reveal that our ReCorD outperforms other methods on HICO-
DET and T2I-CompBench, and it is comparable to MultiDiffusion
on VCOCO. Furthermore, our ReCorD achieves the best results
across all three datasets in terms of Verb CLIP-Score S𝑣𝑒𝑟𝑏CLIP , this
confirms our ability to generate more closely matched interactions.
Evaluation of Image Quality. As per PickScore evaluation, our
ReCorD model is comparable with the SDXL model and outper-
forms other methods. This demonstrates that after incorporating
our designed Interaction-Correcting Module with SD models. Our
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Figure 7: User Study on HOI Generation

ReCorD can maintain the image generation quality of the model
while achieving more authentic interaction. Furthermore, when
comparing the generated images with real ones in HICO-DET and
VCOCO datasets using FID scores, our model outperforms other
methods except InteractDiffusion. Notably, given that InteractD-
iffusion is fined-tuned using HICO-DET and COCO datasets [32],
the performance of our ReCorD is particularly remarkable as it
operates without the need for training or additional HOI data.
Evaluation of InteractionAccuracy.Table 1 validates ourmethod
significantly enhances the accuracy of HOI generation in both
datasets, revealing the efficacy in synthesizing more precise HOI.

4.4 User Study
We conduct a user survey with 95 participants who are asked to
evaluate images generated by baseline methods and our ReCorD
based on four criteria: Interaction, Posture, Position&Size, and Overall
Quality. We generated eight distinct images for each of 24 randomly
selected prompts from the HICO-DET and VCOCO datasets, using
methods including A&E, LMD, SD, SDXL, MultiDiffusion, InteractD-
iffusion, BoxDiff, and ReCorD. According to the results represented
in Figure 7, ReCorD emerged as the clear favorite, garnering be-
tween 60% to 80% of the votes across the criteria, indicating its
effectiveness in accurately generating the correct postures and po-
sitioning objects within reasonable areas, which are key factors
ensuring the accurate depiction of interactions. The results of the
user study illustrate that our ReCorD can better align with human
understanding of HOIs, underscoring its advanced capability to not
only recognize but also precisely delineate the nuances of HOIs.

4.5 Ablation Studies
For the ablation studies, Figure 8 displays the HOI generation results
of the SD incorporating modules in our ReCorD : (a) with only SD,
(b) with SD andM𝑔 , and (c) with SD andM𝑔 +M𝑟 +M𝑐 . With only
SD, the generated outputs appear to be suboptimal, likely influenced
by biases inherent in its training data, leading to misinterpretation
of the intended interaction described in the text prompts. From the
results in (b), it shows that with the inclusion ofM𝑔 , the accuracy
of the generated human action is significantly improved due to
our intransitive prompt altering technique, highlighting that sim-
plifying the prompt to focus on the core action enables the model
to generate the intended human poses with enhanced precision.

a boy is chasing
a bird

a woman is
smelling a cup

a girl is standing
on a chair

a boy is feeding a
bird

(a)

(b)

(c)

Figure 8: Ablation study of integrating different modules: (a)
SD, (b) SD +M𝑔 , (c) SD +M𝑔 +M𝑟 +M𝑐 . Evidently, (a) depicts
biased actions, (b) shows factual actions yet with flawed in-
teraction, and (c) generates genuine interaction images with
proper object locations while keeping the correct actions.

However, it still struggles to accurately position objects in relation
to humans in the images, resulting in a mistaken interaction. For
our ReCorD,M𝑟 helps select appropriate poses and retain suitable
candidates whileM𝑐 refines images to obtain accurate interaction
with the correct object size and position while maintaining the
selected pose. As a result, HOI generation of our complete pipeline
in (c) exemplifies the most successful outcomes achieved.

Table 2: Comparison with SOTAs on T2I-CompBench.

Method SCLIP ↑ S𝑣𝑒𝑟𝑏CLIP ↑ PickScore ↑
SD [48] 30.03 21.39 20.96
A&E [7] 29.59 21.65 20.33
LayoutLLM-T2I [43] 30.35 22.13 20.36
MultiDiffusion [4] 30.59 21.74 21.14
SDXL [42] 30.44 21.86 21.82
LMD [30] 27.27 20.63 19.94

Ours 30.14 21.94 20.83
Ours† 30.71 22.38 21.64

5 CONCLUSION
We have introduced ReCorD framework, tailored explicitly for HOI
image generation. This method comprises three interaction-specific
modules that synergistically interact with each other. Our core idea
revolves around reasoning layout and correcting attention maps
using VLM-based agents and an LDM to address this challenge. Ex-
tensive experiments demonstrate the effectiveness of our approach
in enhancing image accuracy and semantic fidelity to the input text
prompts, particularly in capturing intricate concepts of interactions
that several baseline generative models struggle with. Additionally,
we quantify our improvements through various protocols and a
user survey focused on HOI generation, providing valuable insights
and paving the way for future explorations in this domain.
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