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This supplementary material provides two templates, i.e., Pose Se-
lection Template and Interaction Template, as described in the main
paper. We further offer the details of the conditioned spatial con-
straints used for the update of the latent, along with the complete
algorithm. Additionally, we present how we conduct random sub-
ject augmentation to each verb and object pair from HICO-DET [6],
VCOCO [7], and the non-spatial category of T2I-CompBench [23]
to formulate the input prompt. Lastly, we display more qualitative
comparisons and ablation studies of our ReCorD.

1 POSE SELECTION TEMPLATE
In M𝑟 of our method, we query the VLM-based Pose Selection
Agent with previously generated candidates and an input prompt,
utilizing the capability of VLMs to process visual information. Be-
low, we provide the template to form the input prompt:

Pose Selection Template:
Given the input images and the prompt, 𝑦, which picture con-
tains the most possible pose for the given action? Please an-
swer by number.

2 INTERACTION TEMPLATE
When engaging the Layout Agent, we integrate detected key points
P, the human’s bounding box 𝑏ℎ , and the object’s location 𝑏𝑜 into
the Interaction Template. Additionally, the image selected by the
Pose Selection Agent is provided as supplementary data for the
VLM to deliberate on when suggesting the layout. In construct-
ing the Interaction Template, we explicitly design guidelines and
procedures for the VLMs to follow. We also enhance the logical
flow by directing the VLMs to analyze human postures’ visual at-
tributes using the Chain-of-Thought method [57] and in-context
learning examples. A simplified version of the Interaction Template
is presented below, with the complete version available in Table S2.

Interaction Template:
Your Role: Expert Human Pose Analyst
Objective: Think step by step, your task is analyzing key points
of human pose in square images according to the user’s prompt
and manipulating the bounding boxes of objects to the correct
locations while maintaining visual accuracy.
[Key Guidelines + Process Steps + In-context Examples]
Your Current Task: Carefully follow the provided guidelines
and steps closely to accurately identify the human pose based
on . . .
User Prompt: Input Prompt 𝑦, Key points: P, Original Human
Location: 𝑏ℎ , Original Object Location: 𝑏𝑜 .
Reasoning:

3 DETAILED FORMULATION FOR
CONDITIONED SPATIAL CONSTRAINTS

The mentioned loss function [59] is crafted to constrain the genera-
tive image, ensuring that the cross-attentionmap of the object token
shows sufficiently strong values within the specified bounding box
𝑏𝑜 . Since such an objective involves three terms: inner-box, outer-
box, and corner constraints, we elaborate on the corresponding
conditions in the following paragraphs.
Inner-box Constraint The target of L𝐼𝐵 is to regularize the
construction so that objects would approach the mask regions.
A straightforward solution is to ensure that the objects align with
the desired position, i.e., a series of binary masks M = {𝑀𝑖 } and
that high responses from cross-attention maps occur only within
the mask regions. To accomplish such a purpose, we can compose
the objective as

L𝐼𝐵 =

𝑁∑︁
𝑖=1
[1 − 1

𝐾

∑︁
(A ·𝑀𝑖 )𝐾 ], (S1)

where (·)𝐾 represents the top-𝐾 selection that collects 𝐾 highest
magnitude of resulting representations.
Outer-box Constraint In contrast to the previous constraint,L𝑂𝐵
aims to penalize the model when the attention maps extend beyond
the specified area, thereby preventing the object from moving out
of the target regions. Accordingly, L𝑂𝐵 is defined as

L𝑂𝐵 =

𝑁∑︁
𝑖=1
[ 1
𝐾

∑︁
(A · (1 −𝑀𝑖 ))𝐾 ], (S2)

where 1 is the matrix containing all elements equal to 1.
Corner Constraint As L𝐼𝐵 and L𝑂𝐵 regularize the position and
hold limited spatial conditions, we introduce L𝐶𝐶 specified for
corner restrictions. Ideally, we uniformly retrieve 𝐿 samples from
the margin between𝑀𝑖 and A in the embedding space around the
corner coordinates. The objective that corresponds to the axis is
optimized as

L𝑥 =

𝑁∑︁
𝑖=1
[ 1
𝐿

∑︁
U(∥𝜉𝑥 (𝑀𝑖 ) − 𝜉𝑥 (A)∥, 𝐿, 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥 )] (S3)

L𝑦 =

𝑁∑︁
𝑖=1
[ 1
𝐿

∑︁
U(∥𝜉𝑦 (𝑀𝑖 ) − 𝜉𝑦 (A)∥, 𝐿,𝑦𝑚𝑖𝑛, 𝑦𝑚𝑎𝑥 )], (S4)

where 𝜉𝑥 (·) ∈ R𝑊 and 𝜉𝑦 (·) ∈ R𝐻 project the mask𝑀𝑖 and cross-
attention map A using the max operator along x-axis and y-axis,
respectively. We aim to bring 𝜉 (𝑀𝑖 ) close to 𝜉 (A) by this objective.
Eventually, the corner constraint can be represented as

L𝐶𝐶 = L𝑥 + L𝑦 . (S5)

By coupling these constraints within our correction mechanism,
we can preserve poses and avoid attention overlapping. This superi-
ority gives ReCorD adjustment ability and integrates the reasoning
capabilities of VLM to render interactions effectively.
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4 INTERACTION-CORRECTING ALGORITHM
Given an optimal pose and layout proposed byM𝑟 ,M𝑐 combines
these to produce accurate HOI images. Our complete algorithm in
M𝑐 can be derived as follows:

Algorithm 1: Interaction-Correcting Algorithm.
1 Input: A full prompt 𝑦 with 𝑁 tokens, an intransitive

prompt 𝑦, an object token index𝑚, a seed 𝑠 selected and an
object bounding box 𝑏𝑜 proposed byM𝑟 .

2 Output: Interaction-corrected image latent 𝑧0.
3 𝑧𝑇 ∼ N(0, 𝐼 ) a Gaussian noise sampled with seed 𝑠
4 for 𝑡 ∈ [𝑇2, · · · , 0] do
5 𝐴← LDM(𝑧𝑡 , 𝑦, 𝑡, 𝑠)
6 𝐴̃← LDM(𝑧𝑡 , 𝑦, 𝑡, 𝑠)
7 A𝑐𝑟𝑜𝑠𝑠 ,A𝑠𝑒𝑙 𝑓 ← manipulating 𝐴, 𝐴̃ by eq. (2)
8 𝐴𝑚 = 1 −𝐴𝑚
9 for 𝑛 ∈ [1, · · · , 𝑁 ] do
10 if 𝑛 ≠𝑚 then
11 𝐴𝑛 ← 𝐴𝑚 ⊙ 𝐴𝑛
12 end
13 𝑧𝑡 ← 𝑧𝑡 − 𝛼𝑡 · ∇L
14 𝑧𝑡−1 ← LDM(𝑧𝑡 , 𝑦, 𝑡, 𝑠)
15 end
16 Return 𝑧0

5 DETAILS OF AUGMENTATION
HICO-DET and VCOCO For HICO-DET and VCOCO, we derive
HOI triplets and diversify the subjects to include men, women,
and individuals of various ages, providing a total of 15 variations.
Ultimately, this process yields 7,650 HOI prompts for HICO-DET
and 2,550 for VCOCO. The complete list of subjects is as follows:

Subject Augmentation of HICO-DET & VCOCO:
“man, woman, boy, girl, old man, old woman, teenager, child,
young man, young woman, adult, kid, elderly person, middle-
aged person, toddler”

T2I-CompBench Non-Spatial Relationship Category For T2I-
CompBench, we initially remove any prompts that do not involve
HOIs, such as those including dogs, cats, etc., to align with our
experimental framework. We then retain prompts that use careers
as subjects, such as mechanics or musicians. Next, we standardize
these prompts by converting all subject references to ’person’ and
eliminating duplicate HOIs to maintain the variety of our selected
prompts. We enrich our dataset through augmentation sequentially,
resulting in a collection of 465 diverse prompts.

Subject Augmentation of T2I-CompBench:
“person, man, woman, child”

6 MORE QUALITATIVE COMPARISON
In Figure S2, we present additional comparison between ReCorD
and the methods A&E [7] and LMD [30]. ReCorD excels in these

methods by precisely generating human poses and object place-
ments corresponding with text prompts, demonstrating its ability
to render object interactions with great precision. On the other
hand, A&E and LMD frequently misplace objects or struggle to
grasp the intended actions’ subtleties fully. A&E, although capable
of generating multiple objects, falls short in capturing complex in-
teractions, which is evident in (a), (d), and (e). Furthermore, despite
the help from the SDXL’s refiner module, LMD’s inclination to
emphasize nouns rather than verbs undermines its ability to depict
interactions accurately.

As demonstrated in Figure S3, we conduct the experiments be-
tween ReCord and other baseline methods on T2I-CompBench.
Considering inputs are solely textual, we exclude L2I-based meth-
ods in this experiment. For MultiDiffusion [4], we leverage its abil-
ity of text-to-panorama while restricting the image dimensions to
512 × 512. However, A&E and MultiDiffusion have difficulties gen-
erating interactions derived from the erroneous priors inherent in
pre-trained diffusion models, similar to those observed in SD [48].
Even with the support of LLM for layout generation, LayoutLLM-
T2I [43] and LMD fail to adequately address the critical aspect of
postures, focusing primarily on object creation within the gener-
ated layouts. Particularly, both SDXL [42] and DALL-E 3 struggle
with precise object placement and managing the correct number of
objects.

7 MORE ABLATION STUDIES
Impact of Inverse Mask𝐴𝑚 Figure S1 demonstrates the effective-
ness of our correction mechanism in eliminating attention overlap-
ping issues. In HOI scenes, the human and the object often share
overlapping regions. As shown in the scenario without applying
element-wise product operation on 𝐴𝑚 (w/o 𝐴𝑚 ), the absence of
𝐴𝑚 leads to attention overlapping issues, resulting in the fusion of
human and object in the generated images. On the other hand, by
applying element-wise product operation on 𝐴𝑚 (w/ 𝐴𝑚 ), our cor-
rection mechanism ensures the successful generation of objects, as
it mitigates the attention overlapping between humans and objects

a man is petting
a bird

a teenager is
holding a backpack

a woman is
carrying a chair

w/o 

w/ 

Figure S1: Ablation study of inverse mask 𝐴𝑚 . The element-
wise product operation on 𝐴𝑚 resolves the attention overlap-
ping issues in HOI generation.
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Figure S2: Visual comparison to other existing benchmarks for HICO-DET and VCOCO using various text prompts, ReCorD
excels by providing clearer delineation of interaction and generating images that accurately reflect the given text instructions.
(a) a young man is signing a sports ball. (b) a woman is carrying a pizza. (c) a boy is chasing a bird. (d) a child is cutting a cake.
(e) a toddler is pointing at a laptop. (f) a woman is holding a fork.

during correcting process in ReCorD.

Impact of 𝛾 in Self-Attention Map Modulation As shown in Ta-
ble S1, we compare the impact of parameter 𝛾 on VCOCO dataset.
Parameter 𝛾 determines when to execute self-attention map modu-
lation (once denoising steps 𝑡 > 𝛾 ). We observe that increasing 𝛾
enhances pose preservation, but it reduces the quality of images.
Conversely, if the 𝛾 value is too small, the chosen pose cannot be
maintained. Therefore, we select an appropriate 𝛾 value of 5, which
allows ReCorD to preserve the pose while enabling the generation
of HOI details.

Table S1: Impact of adjustment parameter 𝛾 .

SCLIP ↑ S𝑣𝑒𝑟𝑏CLIP ↑ PickScore ↑ FID ↓ HOI ↑
𝛾 = 5 31.94 21.84 22.22 60.74 22.48
𝛾 = 10 31.33 22.11 21.89 64.33 21.20
𝛾 = 15 31.00 19.86 21.69 74.30 19.23
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SD MultiDiffusion

a man is tying
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ladder

LMD

Figure S3: Visual comparison against existing benchmarks for T2I-CompBench using various text prompts, ReCorD achieves
improved delineation of interaction and produces images that closely match the text instructions.
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Table S2: Our full prompt for the Interaction Template.

1 # Your Role: Expert Human Pose Analyst

2

3 ## Objective: Think step by step , your task is analyzing keypoints of human pose in square images according to the

user 's prompt and manipulating the bounding boxes of the object to the correct locations while maintaining visual

accuracy.

4

5 ## Human Pose Key Points and Bounding Box Specifications and Analysis

6 1. Image Coordinate: Define square images with top -left at [0, 0] and bottom -right at [512, 512].

7 2. Annotations of Key Points: ["nose", "left eye inner", "left eye", "left eye outer", "right eye inner", "right eye",

"right eye outer", "left ear", "right ear", "mouth left", "mouth right", "left shoulder", "right shoulder", "left

elbow", "right elbow", "left wrist", "right wrist", "left pinky", "right pinky", "left index", "right index",

"left thumb", "right thumb", "left hip", "right hip", "left knee", "right knee", "left ankle", "right ankle",

"left heel", "right heel", "left foot index", "right foot index"]

8 3. Box Format: [Top -left x, Top -left y, Bottom -right x, Bottom -right y]

9 4. Object Size: The object 's bounding box size is represented as a fraction of the image size.

10 5. Results of Analysis: Pose Types: [" Static", "Dynamic"], Body Orientation: [" Frontal", "Backward", "Profile",

"Angled"], Facial Direction: [" Directly at Viewer", "Looking Upwards", "Looking Downwards", "Looking Sideways",

"Looking at objects"], Object Relationship: ["Above human", "Under human", "Beside human", "In front of human",

"Behind human", "On human", "Near human"], Object Size: ["one -tenth", "one -fifth", "three -tenths", "two -fifths",

"one -half", "three -fifths", "seven -tenths", "four -fifths", "nine -tenths", "one"], Object Location: [,,,]

11

12 ## Key Guidelines

13 1. Alignment: Follow the user 's prompt , keeping the attributes of the specified object.

14 2. Boundary Adherence: Keep the bounding box coordinate within [0, 512].

15 3. Visual Accuracy: Ensure the object 's bounding box size is visually accurate and aligned with the human pose.

16 4. Minimal Modifications: Change the bounding box of the object only if it doesn 't match the scene affordances.

17 5. Human Location Constraints: The human bounding box should not be altered.

18 6. Overlap Reduction: Minimize intersections of all the bounding boxes.

19

20 ## Process Steps

21 1. Interpret Prompts: Read and understand the user 's prompt.

22 2. Key Points Analysis: Identify all key points of the person and perform pose estimation to understand the spatial

relationships between different key points.

23 3. Implement Changes: Review and adjust the current bounding box of object while considering the interaction and scene

affordances.

24 4. Explain Adjustments: Justify the reasons behind the alteration and ensure the adjustment abides by the key

guidelines.

25 5. Output the Results: Present the analysis and predict the updated absolute coordinates of the object 's bounding box ,

which should include a list of bounding boxes in Python format.

26

27 ## Examples

28

29 - Example 1

30 User Prompt: a woman is sitting on a horse. Key Points: [[228, 87], [232, 81], [234, 81], [235, 82], [228, 80],

[228, 79], [227, 78], [242, 83], [232, 80], [232, 95], [228, 94], [254, 118], [233, 113], [264, 173], [234, 163],

[236, 202], [223, 194], [233, 219], [219, 200], [227, 211], [217, 201], [230, 206], [220, 200], [264, 201], [243,

200], [233, 246], [206, 263], [239, 309], [169, 373], [244, 331], [168, 392], [226, 352], [145, 396]], Original

Human Location: [200, 43, 278, 358], Original Object Location: [120, 46, 452, 389].

31 Reasoning: Here , there is one woman and one horse.

32 Pose Types: "Dynamic"

33 Body Orientation: "Profile"

34 Facial Direction: "Looking Sideways"

35 Object Relationship: "Under human"

36 Object Size: "two -fifths"

37 Updated Object Location: [101, 131, 433, 474]

38

39 Your Current Task: Carefully follow the provided guidelines and steps closely to accurately identify the human pose

based on the given prompt and adjust the bounding boxes in accordance with the user 's prompt. Ensure adherence to

the above output format.

40

41 User Prompt: { {{ GT_prompt }}. Key Points: {{ kps }}, Original Human Location: {{ ori_h_bbox }}, Original Object

Location: {{ ori_o_bbox }}.}

42 Reasoning:

5
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