
Appendix for Parameter-free HE-friendly Logistic
Regression

1 Additional Details on Theoretical Framework

Lemma 1 Let DS and DT be the sample and the true target distributions, respectively. Then for any
hypothesis h ∈ H, the following inequality holds:

RDT (h) ≤ min
h′∈H

RDS (h ′) +DH,H(DS ,DT ) (1)

Proof 1 For a given h ∈ H,

RDT (h) = RDS (h ′) +RDT (h)−RDS (h ′)

≤ RDS (h ′) +DH(DS ,DT )

which holds for all h ′ ∈ H. Therefore, the result follows. ¶

Following the notations and definitions in Mohri et al. [2018], let S = {zi = (xi, yi) ∼ DS : i =
1, ..., N} represent the class labeled data of N samples. Then the empirical Rademacher complexity
ofH with respect to S is the random variable

R̂DS (H) = Eσ

[
sup
h∈H

1

N

N∑
i=1

σih(zi)

]
(2)

where σ = {σ1, ..., σN} are independent uniform {±1}-valued Rademacher random variables. The
Rademacher complexity of H is the expectation of the empirical Rademacher complexity over all
samples of size N :

RN (H) = EDS [R̂DS (H)] = ESσ

[
sup
h∈H

1

N

N∑
i=1

σih(zi)

]
(3)

Theorem 1 Let DS and DT be the sample and the true target distributions, respectively. Then, for
any δ > 0, with probability at least 1− δ, the following classification generalization bound holds for
all hypothesis h ∈ Hρ = {(x, y)→ ω · (yx) : ‖ω‖2 ≤ 1/ρ, ‖x‖2 ≤ r}:

RDT (h) ≤ 1

N

N∑
i=1

loge0
(
1 + e−2yiω·xi

)
+DHρ(DS ,DT ) (4)

+
16r

ρ
√
N

+

√
log log2

4r
ρ

N
+

√
log 2

δ

2N
(5)

where e0 = log(1 + 1/e).

Proof 2 We define Λ(H1) for a scoring function h ∈ H1 by

Λ(H1) = {x 7→ h(x, y) : y ∈ Y, h ∈ H1} = {x 7→ y(ω · x) : y ∈ Y, ‖ω‖2 ≤ 1}

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



Then for any 0 < ρ < 2r, by Theorem 9.2 and Theorem 13.2, 13.4 in Mohri et al. [2018] and some
slight modifications adapted to our classification setting, we have the following general margin bound
ofRDS (h):

RDS (h) ≤ 1

N

N∑
i=1

1ξh(zi)≤ρ +
8

ρ
<N (Λ(H1)) +

√
log log2

4r
ρ

N
+

√
log 2

δ

2N

where e0 = log(1 + 1/e).

We next derive a margin upper bound of <N (Λ(H1)). Since |ω · yx| ≤ ‖ω‖2‖yx‖2 ≤ r by the
Cauchy–Schwarz inequality, we have

<̂N (Λ(H1)) =
1

N
Eσ

[
sup

‖ω‖2≤1,y∈Y
ω ·

N∑
i=1

yσixi

]
=

1

N
Eσ

[
sup
y∈Y
‖
N∑
i=1

yσixi)‖2

]

≤ 1

N

∑
y∈Y

Eσ

[
‖
N∑
i=1

yσixi‖2

]
≤ 1

N

∑
y∈Y

√√√√Eσ

[
‖
N∑
i=1

yσixi‖22

]

≤ 1

N

∑
y∈Y

√√√√ N∑
i=1

‖yxi‖22 ≤
2r√
N

where the third inequality holds by definition of the dual norm. Since∑
y∈Y

exp(
h(xi, y)− h(xi, yi)

ρ
) =

∑
y∈Y

exp(
yω · xi − yiω · xi

ρ
)

= exp(
ω · xi − yiω · xi

ρ
) + exp(

−ω · xi − yiω · xi
ρ

) = 1 + exp(
−2yiω · xi

ρ
)

if we let ω̃ = ω/ρ, then ‖ω̃‖ ≤ 1/ρ

1

N

N∑
i=1

1ξh(zi)≤ρ ≤
1

N

N∑
i=1

loge0

∑
y∈Y

e
h(xi,yi)−h(xi,y)

ρ

 =
1

N

N∑
i=1

loge0 (1 + exp(−2yiω̃ · xi))

Therefore we have

RDS (h) ≤ 1

N

N∑
i=1

loge0 (1 + exp(−2yiω̃ · xi)) +
16r

ρ
√
N

+

√
log log2

4r
ρ

N
+

√
log 2

δ

2N

and the result follows from Lemma 1. ¶

Notice that the first term of the right-hand side of Eq. (4) is the loss function for the logistic regression
where the conditional probability takes the form of logit function:

Pr[y = 1|x] =
1

1 + e−2ω·x

As a result, the upper bound of the empirical target error is composed with the loss function for the
logistic regression over the sample distributionDs and theH,H-divergence between two distributions.
In our framework by step 2 and step 3, we tried to mitigate the difference between the two distributions.
Through Figure 3-(b) and empirical results in Table 2, we have shown that our framework works well,
even though the underlying distribution of DS and DT are different.

2 Details on Ridge Regression with Private Variables

2.1 Regression with one Encrypted Private Variable

We start with the following multivariate linear regression with one dependent variable Y , p- indepen-
dent non-private variables X1, X2, . . . , Xp, and one private variable Xs:

Y = ω0 + ω1X1 + ω2X2 + · · ·+ ωpXp + ωsXs + ε (6)
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where ωI = (ω0, ω1, ..., ωp, ωs)
T consists of regression coefficients to be estimated and ε is error

term. For i = 1, ...n, (xi1, . . . , xip, xis, yi) denotes the i-th observations of X1, X2, . . . , Xp, Xs,
and Y . We assume that n > p+ 1, which means that there are more observations than the number of
independent variables.

2.1.1 Homomorphic encryption of a private variable

Let hi = h(xis) be the fully homomorphic encryption of a private variable xis, then the data
transferred to the server is (xi1, . . . , xip, h(xis), yi) for i = 1, ...n. For the convenience, from now
on, operations between a plaintext and a ciphertext, or between ciphertexts, are denoted as those
between plaintexts.

Using centered inputs by replacing each xij with xij − x̄j , each h(xis) with h(xis) − h̄s, and
estimating ω0 by ȳ =

∑n
i=1 yi, (6) becomes a regression model without intercept as

yi = ω1xi1 + ω2xi2 + · · ·+ ωpxip + ωsh(xis) + εi, i = 1, ..., n
y = Xω + ε

=


x11 · · · x1p h(x1s)

...
. . .

...
...

xi1 · · · xip h(xis)
...

. . .
...

...
xn1 · · · xnp h(xns)


︸ ︷︷ ︸

X


ω1

...
ωp
ωs


︸ ︷︷ ︸

ω

+


ε1
ε2
...
εn


︸ ︷︷ ︸

ε

(7)

2.1.2 Ridge estimate without matrix inverse on an encrypted variable

By adding a regularization term to an error function in order to control over-fitting, the total error
function to be minimized takes the form

E(ω) =ED(ω) + EW (ω)

=
1

2

N∑
i=1

(yi − (ω1xi1 + ω2xi2 + · · ·+ ωpxip + ωsh(xis)))
2 +

λ

2
ωTω. (8)

The ridge regression solutions are then shown to be

ω̂RLS = (XTX + λIp+1)−1XTy (9)

where Ip+1 is a (p + 1) × (p + 1)-identity matrix. Note that the intercept ω0 is not regularized
because of centering of the variables. The ridge estimate is therefore

f̂ = X(XTX + λIp+1)−1XTy = XXT (XXT + λIn)−1y (10)

whereXXT is an n× n matrix.
The last equality holds becauseXT (XXT +λIn) = (XTX+λIp+1)XT , and therefore (XTX+

λIp+1)−1XT = XT (XXT + λIn)−1.

Since

XXT =

p∑
i=1

xix
T
i + hsh

T
s = X(−s)X

T
(−s) + hsh

T
s (11)

where hs = (h(x1s), ..., h(xns))
T andX(−s) is the other part ofX , by Sherman-Woodbury inver-

sion formula, we have
(XXT + λIn)−1 = (X(−s)X

T
(−s) + λIn + hsh

T
s )−1

= (X(−s)X
T
(−s) + λIn)−1−

(X(−s)X
T
(−s) + λIn)−1hsh

T
s (X(−s)X

T
(−s) + λIn)−1

1 + hTs (X(−s)X
T
(−s) + λIn)−1hs

=A−1 − A
−1hsh

T
sA
−1

1 + hTsA
−1hs

(12)
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where A = X(−s)X
T
(−s) + λIn. Using the singular vector decomposition (SVD) of X(−s) =

UΣV T where U ∈ <n×n and V ∈ <p×p are orothogonal matrices and Σ ∈ <n×p are diagonal
matrix with diagonal entries σ1 ≥ .... ≥ σp, we have

A−1 = (X(−s)X
T
(−s) + λIn)−1 = (UΣΣTUT + λIn)−1 = U(ΣΣT + λIn)−1UT (13)

and letting σp+1 = · · · = σn = 0, we define the following terms

ξ = hTsA
−1hs =hTs U(ΣΣT + λIn)−1UThs =

n∑
j=1

hTs uj
1

σ2
j + λ

uTj hs =

n∑
j=1

(hTs uj)
2

σ2
j + λ

η =hTsA
−1y = hTs U(ΣΣT + λIn)−1UTy =

n∑
j=1

(hTs uj)(u
T
j y)

σ2
j + λ

. (14)

Then the ridge estimate becomes

f̂ =XXT (XXT + λIn)−1y = (XXT + λIn − λIn)(XXT + λIn)−1y

=y − λ(XXT + λIn)−1y = y − λA−1y + λ
A−1hsh

T
sA
−1

1 + hTsA
−1hs

y

=y − λA−1y +
λη

1 + ξ
A−1hs

=y − λU(ΣΣT + λIn)−1UTy +
λη

1 + ξ
U(ΣΣT + λIn)−1UThs

=y −
n∑
j=1

λuj(u
T
j y)

σ2
j + λ

+
λη

1 + ξ

n∑
j=1

uj(u
T
j hs)

σ2
j + λ

=

n∑
j=1

σ2
j

σ2
j + λ

uj(u
T
j y) +

λη

1 + ξ

n∑
j=1

uj(u
T
j hs)

σ2
j + λ

(15)

where uj are the columns of U ∈ <n×n and
∑n
j=1 uju

T
j = In.

2.1.3 Fast Ridge estimate

The above computation involves n summations. To simplify the computations, we notice that
U = [U1, U2] ∈ <n×n where U1 = [u1, ...,up] ∈ <n×p and U2 = [up+1, ...,un] ∈ <n×(n−p) and
U1 ⊥ U2. Using the reduced SVD and the fact that σp+1 = · · · = σn = 0, we have the freedom to
choose U2 as long as U1 ⊥ U2. Therefore, we choose up+1 in such a way that uj are orthogonal
to hs for all j = p+ 2, ..., n by letting up+1 be the complement of the orthogonal projection of hs
onto U1 as follows:

ûp+1 = (In − PU1
)hs = (In −

p∑
i=1

uiu
T
i )hs = hs −

p∑
i=1

ui(u
T
i hs)

up+1 = ûp+1/‖ûp+1‖, up+1(uTp+1hs) = hs −
p∑
i=1

ui(u
T
i hs). (16)

Then ξ and η can be simplified as
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η =

p+1∑
j=1

hTs uj
σ2
j + λ

uTj y =

p∑
j=1

hTs uj
σ2
j + λ

uTj y +
1

λ
yTup+1(uTp+1hs)

=

p∑
j=1

(hTs uj)(u
T
j y)

σ2
j + λ

+
1

λ
yT (hs −

p∑
j=1

uj(u
T
j hs))

=
1

λ

− p∑
j=1

σ2
j (hTs uj)(u

T
j y)

σ2
j + λ

+ yThs


ξ =

p+1∑
j=1

(hTs uj)
2

σ2
j + λ

=

p∑
j=1

(hTs uj)
2

σ2
j + λ

+
1

λ
hTs up+1(uTp+1hs)

=

p∑
j=1

(hTs uj)
2

σ2
j + λ

+
1

λ
hTs (hs −

p∑
j=1

uj(u
T
j hs))

=
1

λ

− p∑
j=1

σ2
j (hTs uj)

2

σ2
j + λ

+ hTs hs

 . (17)

Therefore the ridge estimate can be further simplified as

f̂ =

p∑
i=1

σ2
i

σ2
i + λ

ui(u
T
i y) +

λη

1 + ξ

p+1∑
j=1

uj(u
T
j hs)

σ2
j + λ

=

p∑
i=1

σ2
i

σ2
i + λ

ui(u
T
i y) +

λη

1 + ξ

 p∑
j=1

uj(u
T
j hs)

σ2
j + λ

+
1

λ
(hs −

p∑
i=1

ui(u
T
i hs))


=

p∑
i=1

ui
σ2
i

σ2
i + λ

uTi y −
η

1 + ξ

p∑
i=1

ui
σ2
i (uTi hs)

σ2
i + λ

+
η

1 + ξ
hs (18)

which involves only p summations.

2.2 Regression with multiple Private Variables

Let (xi1, . . . , xip, xis1, ..., xis`, yi) be the i-th observations of p- independent non-private variables
X1, X2, . . . , Xp, and private variables Xs1,..., Xs`, and one dependent variable Y .

2.2.1 Homomorphic encryption of private variables

Let hij = hj(xisj) be the fully homomorphic encription of the private variable xis1, ..., xis` where
(xi1, . . . , xip, h1(xis1), · · · , h`(xis`), yi) for i = 1, ...n.

Using centered inputs as above, regression model without intercept becomes as follows.

y = Xω + ε

=


x11 · · · x1p h1(x1s1) · · · h`(x1s`)

...
. . .

...
...

. . .
...

xi1 · · · xip h1(xis1) · · · h`(xis`)
...

. . .
...

...
. . .

...
xn1 · · · xnp h1(xns1) · · · h`(xns`)


︸ ︷︷ ︸

X



ω1

...
ωp
ωs1

...
ωs`


︸ ︷︷ ︸

ω

+


ε1
ε2
...
εn


︸ ︷︷ ︸

ε

(19)
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2.2.2 Ridge estimate on encrypted variables

The ridge regression solution and the ridge estimate are

ω̂RLS =(XTX + λIp+`)
−1XTy = XT (XXT + λIn)−1y

f̂ =X(XTX + λIp+`)
−1XTy = XXT (XXT + λIn)−1y

=y − λ(XXT + λIn)−1y (20)

where Ip+` is an (p+ `)× (p+ `)-identity matrix andXXT is the n× n matrix.

Note that

XXT =

p∑
i=1

xix
T
i +HsH

T
s = X(−s)X

T
(−s) +HsH

T
s , Hs = (hij) ∈ <n×`. (21)

LetA = X(−s)X
T
(−s) + λIn. Then applying the Sherman-woodbury inversion formula, we have

(XXT + λIn)−1 =(X(−s)X
T
(−s) + λIn +HsH

T
s )−1 = (A+HsH

T
s )−1

=A−1 −A−1Hs(I` +HT
sA
−1Hs)

−1HT
sA
−1 (22)

Using the svd of X(−s) = UΣV T where U ∈ <n×n and V ∈ <p×p are orothogonal matrices and
Σ ∈ <n×p are diagonal matrix with diagonal entries σ1 ≥ .... ≥ σp ≥ σp+1 = · · · = σn = 0, we
have

A−1 = (X(−s)X
T
(−s) + λIn)−1 = (UΣΣTUT + λIn)−1 = U(ΣΣT + λIn)−1UT (23)

and

ξ =HT
sA
−1Hs = HT

s U(ΣΣT + λIn)−1UTHs =

n∑
j=1

1

σ2
j + λ

HT
s uju

T
j Hs

η =HT
sA
−1y = HT

s U(ΣΣT + λIn)−1UTy =

n∑
j=1

1

σ2
j + λ

HT
s uju

T
j y. (24)

Then the ridge estimate is

f̂ =XXT (XXT + λIn)−1y = (XXT + λIn − λIn)(XXT + λIn)−1y

=y − λ(XXT + λIn)−1y = y − λA−1y + λA−1Hs(I` +HT
sA
−1Hs)

−1HT
sA
−1y

=y − λA−1y + λA−1Hs(I` + ξ)−1η

=y − λU(ΣΣT + λIn)−1UTy + λU(ΣΣT + λIn)−1UTHs(I` + ξ)−1η

=y −
n∑
j=1

λuj(u
T
j y)

σ2
j + λ

+ λ

 n∑
j=1

uju
T
j Hs

σ2
j + λ

 (I` + ξ)−1η (25)

where the ui are the columns of U ∈ <n×n and
∑n
j=1 uju

T
j = In.
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2.2.3 Fast Ridge estimate

The above computation involves n sumations. To simplify the computations, we notice that U =
[U1, U2] ∈ <n×n where U1 = [u1, ...,up] ∈ <n×p and U2 = [up+1, ...,un] ∈ <n×(n−p) and
U1 ⊥ U2. Using the reduced SVD and σp+1 = · · · = σn = 0, we have the freedom to choose U2

as long as U1 ⊥ U2 in such a way that the orthogonalization process is applied to the order of h:,k,
k = 1, ..., `.

• uj are orthogonal to h:,k, for all j = p+ k + 1, ..., n

• up+k are the complements of the orthogonal projections of h:,k, onto [U1,up+k−1], k =
1, ..., `, respectively and orthogonal to each other.

That is, for k = 1, ..., `,

ûp+k = (In − P[U1,up+k−1])h:,k =(In −
p+k−1∑
i=1

uiu
T
i )h:,k = h:,k −

p+k−1∑
i=1

ui(u
T
i h:,k)

up+k =ûp+k/‖ûp+k‖. (26)

Then ξ and η can be simplified as

η =

p+∑̀
j=1

1

σ2
j + λ

HT
s uju

T
j y

ξ =

p+∑̀
j=1

1

σ2
j + λ

HT
s uju

T
j Hs. (27)

Therefore the ridge estimate can be further simplified as

f̂ =

p∑
i=1

σ2
i

σ2
i + λ

ui(u
T
i y) + λ

p+∑̀
j=1

uju
T
j Hs

σ2
j + λ

 (I` + ξ)−1η. (28)

3 Details on Scheme and Algorithm

CKKS scheme supports computation of approximate numbers by considering the noise for the
hardness assumption as part of error that occurs during arithmetic. As a result, CKKS solves floating-
point operations efficiently by introducing a bounded loss of precision. Considering that there is
always a numerical error in the computation of a machine, this trade-off is beneficial for the purpose
of machine learning. CKKS provides addition and multiplication operations between a ciphertext and
a ciphertext, and between a ciphertext and plaintext. After each multiplication, rescaling is neededto
manage the magnitude of the error. Since the rescaling reduces the ciphertext modulus, the number
of operation is limited without bootstrapping. Also, CKKS supports SIMD operations by encoding a
complex vector (with size at most N/2) into a ring element. It enables parallel operations, and with
slot-wise rotation operation, the sum of the values in the different slots can be evaluated efficiently.
However, since bigger slot size increases the bootstrapping time, the size of the ciphertext should be
carefully selected. For detailed information of CKKS and its basic operations, we refer to Cheon et al.
[2017].

Using the basic algorithms, InnerProduct and MatVecProduct in our main paper can be evaluated
as Algorithm 1. In the algorithm, the notation of basic operation follows that of Park et al. [2020].

4 Extension to nonlinear models

Our effective Ridge regression method can be extended to nonlinear regression by considering
linear combination of fixed nonlinear basis functions of the input variables. We omit a detailed
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Algorithm 1 Algorithms for inner product and matrix-vector multiplication

1: procedure InnerProduct(u, c). calculate inner product of u and the decryption of ciphertext c
2: c′ ← CMult(u, c)
3: for j in 1, . . . , log2 n do
4: tmp← Rotate(c′,−2j)
5: c′ ← Add(c′, tmp)
6: end for
7: return c′
8: end procedure
9: procedure MatVecProduct(U = (u1 · · ·up), σ = (σ1, · · · , σp), V = (v1 . . .vp), c) .

calculate product of matrixA = UΣV T and the decryption of ciphertext c
10: for i in 1, . . . , p do
11: tmp← InnerProduct(vi, c)
12: tmp← CMult(σjui, tmp)
13: if i=0 then
14: c′ ← tmp
15: else
16: c′ ← Add(c′, tmp)
17: end if
18: end for
19: return c′
20: end procedure

formulation, but in case of one private variable, by replacing xi = (xi1, . . . , xip, xis) with φ(xi) =
(φ1(xi), . . . , φm(xi), xis), the ridge estimate is

f̂ = Φ(ΦTΦ + λIM+1)−1ΦTy = K(K + λIn)−1y (29)

where Φ ∈ Rn×(M+1) whose i-th row is φ(xi). Defining the kernel function as

K(xi,xj) = φ(xi)
Tφ(xj), (30)

the kernel matrix can be easily obtained as

K = ΦΦT =

p∑
i=1

ΦiΦ
T
i + hhT = Φ(−s)Φ

T
(−s) + hhT = K(−s) + hhT (31)

where h is defined the same as in section 2.1. Then all the remaining steps are the same as in section
2.1, withXXT replaced byK.

We validated the nonlinear method on the same datasets as in our main paper. To give nonlinearity to
the teacher model, we trained a neural network which consists of three fully-connected layers as the
teacher model. Each layer reduces the data dimension to 8, 4, 1, respectively, and a sigmoid function
was taken after the last layer. After the first two layers, we used square activation instead of ReLU for
an HE-friendly inference. The step 3 of our method was trained with the kernel Ridge regression
demonstrated above. The results are summarized in Table 1. It is shown that the nonlinear extension
works well with every dataset, achieving at least as high accuracy as our original method. This is
because linear Ridge regression cannot represent the nonlinearity obtained from the nonlinear teacher
model well. In the case of Cancer, it seems that the linear boundary is close to the optimum, so the
same performance is obtained even if nonlinearity is not introduced. Ours-nonlinear will perform
better if we use a more complex teacher model or a dataset where the linear teacher model performs
poorly.
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S. Park, J. Byun, J. Lee, J. H. Cheon, and J. Lee. He-friendly algorithm for privacy-preserving svm
training. IEEE Access, 8:57414–57425, 2020.
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(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] We defer the proofs to

Appendix
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] Include them in
the supplemental material

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [N/A]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [Yes]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [Yes] We used only the publicly available datasets

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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