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Overview. In the supplementary material, we first present a detailed summary of the datasets in1

Section 1. Additionally, we provide detailed descriptions of distributions used for BNN training in2

Section 2. We further present the implementation settings, hyperparameters and settings of baseline3

methods in Section 3. We also provide the definitions of uncertainty measures used for comparison4

(Section 4), together with an algorithm of our framework (Algorithm 1).5

1 Additional Information on Datasets6

Table 1 presents a summary of the datasets used for experiments. We totally use seven image datasets7

to evaluate our method, including nature image and medical image.

Table 1: Summary of Datasets
Dataset No. Classes No. Training No. Testing

MNIST 10 60,000 10,000
Fashion-MNIST 10 60,000 10,000
OMNIGLOT 50 13,180 19,280
SVHN 10 73,257 26,032
CIFAR-10 10 60,000 10,000
CIFAR-100 100 60,000 10,000
DRD 2 50 100

8

Diabetes Retinopathy Detection (DRD). For this experiment, we define normal samples as healthy9

(no DR; with label 0), and OOD samples as DR (mild, moderate, severe, or proliferative DR; with10

labels 1–4). We select 50 healthy images to train the encoder, and compute µ1 and Σ1 from these11

samples using the trained encoder. For testing, we select 50 images as in-distribution data and 5012

images as the OOD data. All images are resized to 64×64 for computational convenience. We train13

the encoder with a task to classify whether the input image is left eye or right eye. The examples of14

healthy and DR are presented in Figure 1.15
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Figure 1: Health and unhealthy (DR) samples from the Diabetes Retinopathy Detection (DRD)
dataset [2]

2 Multivariate Gaussian Distribution16

The Multivariate Gaussian is crucial for the approximation of vanilla BNN [5], we provide the17

formal definition and its important properties in this section. The density of a multivariate Gaussian18

distribution is defined as19
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where µ ∈ Rp is a p-dimensional mean vector and Σ ∈ Rp×p is the covariance matrix.20

The KL divergence between two multivariate normal distributions N (µ1,Σ1) and N (µ2,Σ2) is21

given by22
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1
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3 Baseline Methods and Implementation Details23

Implementation Details. We present additional implementation details and hyperparameter settings.24

We first provide the key settings and adaptations applied to the baseline methods for reproducibility.25

We follow the default settings for other fine-grained parameters (e.g., learning rates).26

The proposed method is implemented in Python with Pytorch library on a server equipped with four27

NVIDIA TESLA V100 GPUs. The dropout ratio of each dropout layer is selected as 0.2. All models28

are trained with 100 epochs with possible early stopping. We use the Adam optimizer to optimize the29

model with a learning rate of 5× 10−5 and a weight decay of 1× 10−5. Data augmentations such as30

color jittering and random cropping and flipping are applied as a regularization measure.31

Hyperparameter Settings. The hyperparameter settings for BNN training and ARHT testing are32

• Prior of mean of weights — sample from N (−3, 0.01)33

• s = 534

• n2 = 30035

• λ0 = 0.0136

Additional Settings of Baseline Methods. We further introduce the experimental settings of baseline37

methods:38
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• Deep ensembles [7]: Set the number of ensembles as 5.39

• MCDropout [3]: Set the dropout ratio as 0.2 for both training and inference.40

• Kendall and Gal: Set the number of inference weights samples as 20.41

• Detectron [4]: Set the number of runs as 100.42

• PostNet [1]: Because the original codes operate on the features extracted from the standard43

datasets. Their method cannot be generalized to new datasets (e.g., SVHN) as the data44

processing codes are not provided.45

4 Uncertainty Measures46

We describe the uncertainty measures used in the OOD misclassification task in this section. The47

definitions are well-known and summarized by Malinin and Gales [8],48

• Entropy:49

H[p(µ|D)] = −
∫
SK−1

p(µ|D) ln p(µ|D)dµ,

where SK−1 is the supporting set, and µ is the predictive class probability which is assumed50

to follow Dirichlet distribution.51

• Maximum probability: we take the maximum predicted probability P from all classes as the52

confidence score,53

P = max
c

P (wc|D).

where P (wc|D) is the predictive probability of class c.54

• Differential entropy:55

I[y,µ|D] = −
∫
SK−1

p(µ|D) ln p(µ|D)dµ

• Accuracy: the fraction of correct predictions to the total number of ground truth labels.56

• F-1 score: The F-1 score for each class is defined as57

F-1 score = 2 · precision · recall
precision + recall

where ‘recall’ is the fraction of correct predictions to the total number of ground truths58

in each class and precision is the fraction of correct predictions to the total number of59

predictions in each class.60

• AUROC: the area under the receiver operating curve (ROC) which is the plot of the true61

positive rate (TPR/Recall) against the false positive rate (FPR).62

• AUPR: the area under the precision-recall curve. Note that the AUPR for binary classification63

is sensitive to the distribution of positive and negative classes. Hence, the higher AUPR64

does not necessarily imply a better model performance.65

5 Algorithm66

Algorithm 1 demonstrates the detailed workflow of our proposed uncertainty estimation framework.67
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Algorithm 1 Our proposed uncertainty estimation framework
Input:
The prior distribution of weights of BNN encoder π(θ) ∼ N (0, I);
Training data Dtr = {xi, yi}Ntr

i=1;
Testing data Dte = {xi, yi}Nte

i=1;
Hyperparameters µ0, ρ0, n2;
Initial variational posterior distribution q(θ) ∼ N (µ, log(1 + exp(ρ))) with initial parameters
µ = µ01 and ρ = ρ01
Output: The uncertainty scores

1: for (xi, yi) in Dtr do ▷ Train BNN encoder
2: Draw weight sample θ from q(θ)
3: ŷi = fθ(xi) ▷ Forward propagation
4: Compute task-specific loss Lobj

5: Compute the KL(q∥π) and hence the ELBO
6: Backpropagate the ELBO to update µ and ρ
7: end for
8: Compute µ1 ∈ Rp, Σ1 ∈ Rp×p ▷ Get summary statistics of training
9: for (xi, yi) in Dtr do ▷ OOD Detection

10: Compute µ2 ∈ Rp, Σ2 ∈ Rp×p

11: Compute the pooled sample covariance matrix by Eq. (1)
12: Compute ARHT by Eq. (4) as the uncertainty score
13: Detect OOD samples using the uncertainty score under famil-wise adjusted threshold
14: end for
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