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RCA: Region Conditioned Adaptation for Visual Abductive
Reasoning

Anonymous Author(s)
ABSTRACT
Vision foundational models (e.g., CLIP) show strong generalization
on various downstream visual perception tasks. However, their
ability to reason beyond mere perception is limited, as they are
only pre-trained on image-text pairs that hold semantically equiv-
alent meanings. To tackle this, we propose a simple yet effective
Region Conditioned Adaptation (RCA), a hybrid parameter-efficient
fine-tuning method that equips the frozen CLIP with the ability to
infer hypotheses from local visual cues. Specifically, the RCA con-
tains two novel modules: regional prompt generator and Adapter+.
The prior encodes “local hints” and “global contexts” into visual
prompts separately at fine and coarse-grained levels. The latter en-
hances the vanilla adapters with a newly designed Map Adapter,
that directly steers the focus of attention map with trainable query
and key projections. Finally, we train the RCA with a new Dual-
Contrastive Loss to regress the visual feature simultaneously to-
ward features of literal description (a.k.a. clue text) and plausible
hypothesis (abductive inference text).The loss enables CLIP tomain-
tain both perception and reasoning abilities. Experiments on the
Sherlock visual abductive reasoning benchmark show that the RCA
significantly outstands previous SOTAs, ranking the 1st on the
leaderboards (e.g., HumanAcc: RCA 31.74 vsCPT-CLIP 29.58, higher
=better). We also validate the RCA is generalizable to local percep-
tion benchmarks like RefCOCO. We would open-source our codes
for future research.

CCS CONCEPTS
• Computing methodologies→ Activity recognition and un-
derstanding.

KEYWORDS
Visual Reasoning; Region Prompt; Adapter Tuning
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1 INTRODUCTION
Visual reasoning refers to the ability to understand, interpret, and
rationalize predictions derived from visual inputs. This ability is
essential for creating AI systems capable of interacting with the
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(a) The Task of Visual Abductive Reasoning

(b) Region Condtioned Adaptation (RCA)

Figure 1: Task of Visual Abductive Reasoning (VAR) and Re-
gion Conditioned Adaptation (RCA). (a). VAR aims to make
the most likely hypotheses from (incomplete) observations;
(b). Our region-conditioned adaptationmodule learns to rea-
son from visual details while keeping CLIP’s original abil-
ity to align the image with its text description. It allows our
model to learn hypotheses that are consistent with the con-
text and learns the causal associations between hypotheses
and vision-linguistic observations.

environment [4, 7, 18, 31, 36, 58]. In this regard, abductive reason-
ing [25] has been a topic of interest in AI for a long time due to
its various applications in detecting faults in systems, automated
medical diagnosis, and legal reasoning.

Recently, a novel multimodal visual reasoning problem known
as Visual Abductive Reasoning (VAR) has been introduced [18],
highlighting the significance of integrating both visual and textual
modalities to infer logical conclusions from observed image data.
Visual abductive reasoning refers to making inferences based on
visual information (usually an incomplete set of observations) to
arrive at the most plausible (often simplest) explanation or hypoth-
esis for a given observation. For example, in VAR, as shown in Fig-
ure 1a, the model is expected to make the inference “the woman
recently ordered the drink” from the given regional visual hints,
which show only the “glass bottle” and surrounding contexts (
“restaurant scene” and “waitress”). Visual abductive reasoning is
challenging because it requires a deep understanding of the ob-
served image and the domain (or the context) of the scene depicted
in the image. Furthermore, VAR demands the ability to generate
hypotheses consistent with the observed visual data and the do-
main rules. It involves not only recognizing patterns in the images

1
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but also applying domain knowledge, learning to reason about un-
seen/unknown aspects of the context, and learning the causal rela-
tionship between inferences and observations.

Current vision and multimodal foundational models have supe-
rior capability in visual understanding and language-based reason-
ing. However, they are not explicitly modeled to tackle visual ab-
ductive reasoning. Interestingly,most of the existing vision-language
models are trained in a data-driven manner using image-text con-
trastive learning [29, 38], image-to-text matching [29] and image-
based language generation [29, 33]. However, in visual abduction,
there is only a causal association between visual observations and
inferences and current models are not trained to tackle this aspect.

Authors in [18] adapted vision foundationmodels such as CLIP [38]
with visual prompts and vision-to-inference based contrastive learn-
ing for visual abductive reasoning. Their idea is that if one fine-
tunes the CLIP model with vision-to-inference contrastive learn-
ing, then the model can learn the domain knowledge explicitly as
well as the backward reasoning, i.e., the inference can be made us-
ing the observations. However, fine-tuning the entire foundational
model is not ideal as that may change the learned representations
of the foundational model. Furthermore, direct optimisation of the
contrastive loss either using vision-to-inference or vision-to-text-
evidencemay not allow themodel to learn the association between
inferences and the observations more effectively.

We also leverage the CLIP model for the VAR task as shown
in Figure 1b. However, we resort to parameter-efficient tuning of
the CLIP model as a solution. Specifically, we train a few newly
added adaptor parameters of vision and text Transformers of the
CLIPmodel using both vision-to-evidence and vision-to-inference
contrastive losses jointly. Our novel adaptor learns new atten-
tion maps using low-rank projection matrices, allowing us to learn
the semantic associations between the hypothesis and the observa-
tions without destroying the semantic knowledge encapsulated in
CLIP’s vision and text Transformer modules. The optimization of
both losses allows us to learn the cause-and-effect relation between
the hypothesis (i.e., inference) and observations (i.e., visual and tex-
tual evidence). While vision-to-evidence contrastive loss helps to
reduce the semantic gap between vision and text modalities us-
ing few adaptor parameters, the joint optimization of vision-to-
inference and vision-to-evidence contrastive losses helps to learn
the causal association between hypothesis and observations (i.e.,
observations are a result of hypothesis). Furthermore, using newly
designed regional prompts, our model attends to the relevant vi-
sual cues for hypothesis generation. It helps the CLIP vision Trans-
former to attend to subtle visual cues without modifying the CLIP
vision model and the parameters (–see Figure 1b). These regional
prompt tokens are further appended to image context tokens to
capture context information.This allows themodel to learn context-
based domain-level rules and knowledge. For example, during learn-
ing our model may learn rules such as “if it rains, the road can
get wet” or “in restaurants, there are people, and they order drinks”.
This provides the foundational model with relevant visual hints to
align textual evidence with vision, associate the hypothesis with
multimodal evidence during learning, and learn domain/context-
specific knowledge.

Experiments on the Sherlock VAR benchmark show that our
model surpasses previous state-of-the-art results, ranking the 1st
on the leaderboard1. Our contributions are summarised below.
Region Conditioned Adaptation (RCA). Our RCA is the first
hybrid Parameter-Efficient Fine-Tuning (PEFT) method within the
“prompts + adapter” paradigm. It guides frozen vision foundation
models to make inferences based on visual observations.
Fine-Grained Region Prompts. We have designed a new visual
prompt that encodes regional hints at a fine-grained level within
the CLIP model. Our tests confirm that emphasizing local evidence
improves visual abductive reasoning.
Enhanced Adapter+ Tuning. We present a new Map Adapter
that adjusts the attention map using extra query/key projection
weights. Our newMAP adapter is orthogonal to the original adapter [47],
and they are jointly used to form the Adapter+.
Dual-Contrastive Loss.We show that joint optimization of vision-
to-inference and vision-to-evidence contrastive losses helps to learn
the causal association between hypothesis and observations, which
aids visual abductive reasoning.

2 RELATEDWORKS
Our proposed region conditioned adaptation is relevant founda-
tion models, abductive reasoning, parameter-efficient fine-tuning,
and fine-grained visual representation learning. We will discuss re-
lated works according to the areas below.

FoundationModels. Scaling upmodels’ complexities and train-
ing data improves the attention-based [14, 16, 35, 37] foundation
models’ [6, 11, 22, 38, 49, 52] perception capacity, making it pro-
ficient in many tasks including zero or few-shot learning. Specifi-
cally, Large Language Models (LLM), such as BERT [11], and GPT
[6] are trained on large-scale datasets and they generalize to many
downstreamNLP tasks. Following this trend, several vision-language
foundational models are also developed e.g. CLIP [38], ALIGN [22]
and BLIP [30]. The main idea behind the vision foundation models
is to learn transferable visual representation with noisy text su-
pervision through a two-tower structure. We follow the current
baseline of visual abductive reasoning and adopt the CLIP model
as the backbone for visual inference.

Abductive Reasoning Tasks. Humans make plausible infer-
ences or hypotheses from incomplete observations every day [10].
To teach AI models to attain the same capability, researchers pro-
posed several new tasks, like ART [3] for NLP, Sherlock [18] for vi-
sion, and VideoVAR [31], VideoABC [58] for video. Specifically, the
ART [3] generates the most likely hypothesis (text) to explain what
has happened between the two observations (texts). For Sherlock,
VideoVAR, and VideoABC, the observations are represented by re-
gional or whole images, while inference is text or middle frames.
There are similar tasks, like Visual Commonsense Reasoning (VCR)
[53] and Visual7W [64]. Abductive reasoning differs from them in
having non-definitely correct, plausible inferences as humans do.

Parameter-Efficient Fine-Tuning (PEFT). Transferring foun-
dational models to downstream tasks promotes the development
of PEFTs [40]. Representative PEFTs include Prompt, Adapter, and

1https://leaderboard.allenai.org/sherlock/submissions/public
2
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(a) RCA (b) Adapter+ (c) Dual-Contrastive Loss

Figure 2: Region Conditioned Adaptationwith Dual-Contrastive Loss for Visual Abductive Reasoning. (a)RCA simultaneously
generates region prompt and contextual tokens by intaking a combo-image 𝑰 , then tunes the frozen CLIP with Adapter+ on
top of reasoning dataset; (b) Adapter+ includes two standard adapters and a novel Map Adapter, which separately adjust token
features and the attentionmap; (c) Dual-Contrastive Loss simultaneously guide the visual content minimize semantic (to clue)
and causal (to inference) gaps. (Note: Best viewed in color.)
LoRA tuning. Specifically, prompt tuning [6, 28, 34, 45, 61] en-
hances the distinctiveness of inputs by prepending additional to-
kens, which may be either trainable or fixed. The vision-language
prompt tuning can further be divided into textual [12, 13, 62, 63]
or visual prompt [2, 23] tuning, depending on the placement of
prompt tokens in visual or textual encoders. Certain special visual
prompts, such as the Merlot [54], CPT [48], and CiP [42], guide
the model to focus on specified areas by overlaying these regions
with translucent colours or red circles. In adapter tuning, train-
able Multi-Layer Perceptron (mini MLP) [19, 43, 47] or Tiny At-
tention modules [57] are usually inserted into the foundational
model, with only the new additions being fine-tuned. LoRA [20] up-
date parameters using low-rank projections. Our RCA is a hybrid
“prompt+adapter” tuning to equip the vision foundational models
with local reasoning ability, an approach that has not been studied
before.

Fine-Grained Visual Representation. Our work is also rel-
evant to learning fine-grained visual representation [1, 41, 46, 55,
56, 60] and object detection [5, 17, 21, 24, 59]. Specifically, GLIP
[56] and RegionCLIP [60] pre-train foundation models for object
detection, supervised by region-text pairs. The former and latter
mimic the process of R-CNN[15] and Faster-RCNN [39], generat-
ing an object’s vector by either encoding the cropped image or RoI
pooling. Similarly, UNITER [8] and LXMERT [44] also rely on RoI
pooling to generate regional vectors for vanilla vision-language
tasks. Besides, the InternImage [46] learns the foundation model
with Deformable-CNN for object detection. Other works, such as
Object-VLAD [55] for event detection and CLIPTER [1] for scene
text recognition, also studied fine-grained modeling. Specifically,
the Object-VLAD aggregates densely collected local features with
VLAD to generate video representation. The CLIPTER introduces
extra cross-attention and the gated fusion module to combine local

and global features. In contrast, our RCA only adjusts the frozen
CLIP with an add-on Adapter to tackle new inputs.

3 OUR VAR MODEL
3.1 Problem Definition
Problem: Hessel et al.[18] defines a Visual Abductive Reasoning
benchmark named “Sherlock” that requires a model to predict the
hypothesis fromvisual observations in “Observation→Hypothesis”
form. Specifically, visual observation refers to a pre-specified re-
gion 𝒓 of an image 𝒊 and is accompanied by a clue sentence 𝒄 . No-
tably, the clue is a straightforward description of real visual con-
tent and is only available during training. On the other hand, the
hypothesis is defined by an inference sentence 𝒉. With this, a VAR
model calculates a score 𝒔, which reflects the probability of deduc-
ing inference 𝒉 from the region 𝒓 . Equation (1) shows this scoring
function F and the parameters 𝜃 ; we call F the VAR model.

𝑠 = F (𝒉, 𝒊, 𝒓 |𝜃 ) (1)

A good VAR model should generate a larger matching score when
an inference 𝒉 and observation { 𝒊, 𝒓} are causally related, and a
smaller value for wrong or non-related inferences.

3.2 Method overview
We introduce the Region Conditioned Adapter Tuning (RCA
in Figure 2a), which enhances the vision foundation models to fo-
cus on specific visual cues for deducing inference. The RCA consists
of two main parts: a Regional Prompt Generator (RPG in §3.3) for
targeting specific visual areas and an Adapter+ module (§3.4) to
transfer the frozen CLIP model for reasoning tasks. Finally, we
replace Multi-Task Learning [18] with a new Dual-Contrastive

3
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(a) R-CTX (b) R-CPT (c) R-CiR

Figure 3: Three Types of Fine-Grained Region Prompts
generated by the RPG. In RPG, we assemble the combo-
image I𝑰 from region 𝒓 and context, colorful, or circle-
prompted image 𝒊. (a) R-CTX:Region+Context; (b) R-CPT:Re-
gion+Colorful Prompt; (c) R-CiP: Region+Circle Prompt.

Loss (§3.5) to bring the visual features closer to both literal de-
scription (“clue”) and hypothesis (“Inference”). We will elaborate
on each section below.

3.3 Regional Prompt Generator
In visual abductive reasoning, it is important to collect all relevant
visual cues from the image and the region 𝒓 . Therefore, we use pre-
specified observation 𝒓 as a “prompt” to guide the visual reason-
ing process directly. Our Regional Prompt Generator (RPG) creates
three detailed prompts focusing on specific regions.These prompts
harness local features (i.e., region), surrounding context, and exist-
ing visual prompts, as shown in Figure 3a-3c. All three types of
prompts go through the same process, with the only difference in
being whether colors or circles [42] are drawn on the input images.
To explain how it works, we’ll use the “Region+Context” (R-CTX)
as an example.

To prepare prompt and contextual tokens, we pop out patch-
embedding layer F𝑝𝑟𝑜 𝑗 and positional encoding PE from the CLIP
vision tower Fvis. We further resize region 𝒓 and full image 𝒊 into
squares of the same size, then merge them vertically (or horizon-
tally) into a combined image, i.e., combo-image 𝑰 (eq. (2)). We
apply patch-embedding on the combo image and add it to the up-
sampled PE𝑖𝑛𝑡𝑒𝑟 embedding to get visual tokens 𝒛0 (eq. (3)). As the
PE𝑖𝑛𝑡𝑒𝑟 is twice the size of PE, we initialize it by inflating PE us-
ing bilinear interpolation. Notably, 𝒛0, generated from the combo-
image, already includes both regional prompt and global contex-
tual tokens. The 𝒛0 is further fed into the remaining attention and
MLP layers (denoted by F̂vis) to get visual representation 𝑓𝑰 (eq. (4)).
We unfreeze patch-embeddingF𝑝𝑟𝑜 𝑗 and positional encoding PE𝑖𝑛𝑡𝑒𝑟
to generate learnable soft prompts.

𝑰 = 𝐶𝑜𝑛𝑐𝑎𝑡

( [
𝒓
𝒊

] )
(2)

𝒛0 = F𝑝𝑟𝑜 𝑗 (𝑰 ) + PE𝑖𝑛𝑡𝑒𝑟 (3)

𝑓𝑰 = F̂vis (𝒛0) (4)

For the “Region +Colorful Prompt” and “Region +Circle Prompt”
(R-CPT & R-CiR), we create the combo-image 𝑰 ′ from the squared
region 𝒓 and a modified image 𝒊′. In this image 𝒊′, we either color
the pixels inside the region with a translucent pink rectangle or
outline them with a red circle [42]. The rest of the process remains
similar to the “Region+Context” prompt.

Mixed Prompts: During training, we randomly choose from
the three types of prompts (R-CTX, R-CPT, and R-CiR) with equal
chance. During testing, we take the average of the visual represen-
tations created by these three prompts. This strategy regulates the
training process and allows us to obtain better generalizability.

3.4 Adapter+ Tuning
Adapter tuning adjusts a parameter-frozen foundational model for
downstream tasks by fine-tuning a few newly implanted modules
(parameters). This strategy is widely used in NLP [47] and com-
puter vision [38] prior works. Current adapters, like mini MLP [47]
and tiny attention modules [57], focus mainly on refining visual
features. However, they don’t consider the need to adjust the origi-
nal attentionmaps of the basemodels. In some inference tasks such
as visual abductive reasoning, it is beneficial to adapt the atten-
tion maps as well, especially to learn context-based domain knowl-
edge and finer visual details. To tackle this, we augment the vanilla
adapter with a new Map Adapter , which precisely adapts atten-
tion maps in Transformers. This results in the improved Adapter+.

TheAdapter+ pipeline is illustrated in Figure 2b.We first include
two basic adapters, referred to as Adapter (A&M). They are placed
after the MSHA module and parallel to the MLP module in the 𝑙-
th encoder of a CLIP tower (e.g., Fvis or Ftxt). These adapters are
shallow and contain only two fully-connected layers to downgrade
and upgrade feature dimension (R𝐷 ⇆ R𝑑 , 𝑑 < 𝐷) with a GELU
activation in between (Equation 5-7). The light red font indicates
the parameters in the modules are tuned.

𝒛′𝑙 = MHSA (𝒛𝑙−1) , 𝑙 = 1, 2, · · · , 𝐿 (5)
𝒛′′𝑙 = Adapter_A

(
𝒛′𝑙

)
+ 𝒛𝑙−1, (6)

𝒛𝑙 = MLP
(
𝒛′′𝑙

)
+ Adapter_M

(
𝒛′′𝑙

)
+ 𝒛′′𝑙 , (7)

TheMap Adapter further refines the MSHA module by adding
a small, modified attention map, labeled as 𝑸𝑲

𝑇 (refer to eq. (8)).
This additive map helps to adjust the original attention map dy-
namically, improving the model’s ability to focus on relevant in-
formation. To ensure that the original attention map isn’t altered
too much, we use simpler 𝐷 → 𝑑 projections for generating the
query and key (see eq. (9)). Here, 𝑑 is smaller than 𝐷 .

𝒛′𝑙 = Softmax
(
𝑸𝑲𝑇 + 𝑸𝑲

𝑇

√
𝐷

)
𝑽 , (8)

𝑸,𝑲 = 𝒛𝑙−1 × �̂�𝑞, �̂�𝑘 , �̂�𝑞,𝑘 ∈ R𝐷×𝑑 (9)

𝑸,𝑲 , 𝑽 = 𝒛𝑙−1 ×𝑾𝑞,𝑾𝑘 ,𝑾 𝑣,𝑾𝑞,𝑘,𝑣 ∈ R𝐷×𝐷 (10)

We compared the enhanced Adapter+ with min MLP and Tiny
Adapter counterparts (see §4.4) and found that our tuning method
consistently performs better.

4
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3.5 Dual-Contrastive Loss
As an observation contains three modalities, such as visual 𝑰 , clue
sentence 𝒄 , and inference sentence 𝒉, we comprehensively study
their mutual influences by deploying contrastive loss between dif-
ferent modalities pairs. Specifically, as shown in Fig. 4, we deploy
dual, triple, and single contrastive loss in the training phase and
screen out that the Dual-Contrastive Loss works best (Fig. 2c). We
first elaborate on the Dual-Contrastive Loss and then compare it
with the other counterparts.

(a) Dual (b) Triple (c) Single1 (d) Single2 (e) MTL

Figure 4: Training Losses: Dual (a), Triple (b) and Single (c)-
(e) contrastive loss for learning to match visual 𝑰 to texts 𝒄
and 𝒉. Solid and dashed lines represent the presence or ab-
sence of contrastive loss during training.

Dual-Contrastive Loss: Both the clue 𝒄 and inference 𝒉 are
positively relevant to visual 𝑰 . More specifically, the former is lit-
erally equivalent, while the latter is causally related to the visual
hints. Although their relations are in different forms, we can still
deploy aDual-Contrastive Loss, including one for “vision-clue” pair
and the other for “vision-inference” pair (Fig. 4a), to regress visual
features toward two textual targets. We use CLIP text tower Ftxt
to extract features for clue 𝒄 and inference 𝒉. We use Equation (4)
to extract visual feature 𝑓𝑰 for the observation 𝑰 . The mathematical
process is present in Equations (11)-(12).

𝑙𝑜𝑠𝑠dual = L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 (𝑓𝑰 , 𝑓𝒄 ) + L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 (𝑓𝑰 , 𝑓𝒉) (11)
𝑓𝒄 = Ftxt (𝒄) , 𝑓𝒉 = Ftxt (𝒉) (12)

Other Loss Variants.The rest loss functions include theTriple
and Single contrastive loss. Particularly, compared with dual con-
trastive loss, the triple one newly adds the “inference-clue” pair
(e.g., Fig. 4b and Eq. 13).

𝑙𝑜𝑠𝑠triple = L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 (𝑓𝑰 , 𝑓𝒄 ) +L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 (𝑓𝑰 , 𝑓𝒉)
+L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 (𝑓𝒄 , 𝑓𝒉) (13)

We later observed that: additional inference-clue loss in triple
contrastive hurts overall performance, as the two texts (i.e., clue
and inference) are not literally equivalent. For example, the clue
sentence “the road is wet”≠ inference sentence “it has rained be-
fore”. Therefore, we can only let the two texts learn toward the
same third-party feature (e.g., the visual) instead of artificially forc-
ing them to be equivalent.

For the single contrastive loss, we have three options, namely
vision-inference (Fig. 4c), vision-clue (Fig. 4d), multi-task learning
(MTL in Fig.4e). Notably, we use an identical textual encoder for
clue and inference during testing, since we only learn a single con-
trastive loss between a pair of modalities during training.

These three options can be expressed in one unified form (Eq.
14), by thresholding a random probability 𝑝 with different values
T. Specifically, when T = 1.0 or 0 or 0.5, the single contrastive

loss become the vision-clue, vision-inference and multi-task learn-
ing loss [18].

𝑙𝑜𝑠𝑠𝑠𝑖𝑛𝑔𝑙𝑒 = L𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 (𝑓𝑰 , 𝑓𝑡𝑥𝑡 ) , 𝑓𝑡𝑥𝑡 =

{
Ftxt (𝒉), 𝑝 > T

Ftxt (𝒄 ), 𝑝 < T
(14)

With the single contrastive loss, we find that only minimizing
the gap between a pair, such as vision-clue (or vision-inference) will
also shorten the gap between the other pair vision-inference (or
vision-clue), indicating retrieval and abductive reasoning tasks are
positively correlated. We give detailed analysis in §4.4.

4 EXPERIMENTS
We comprehensively study the RCA and Dual-Contrastive Loss on
the Sherlock benchmark [18]. We also tested the RCA’s adaptabil-
ity on the RefCOCO [51], which focuses on grounding expression
to regions. We present details below.

4.1 Datasets
The Sherlock dataset [18] contains 103K images collected from
the Visual Genome [27] and Visual Common Sense Reasoning [53]
datasets. These images are split into 90K training, 6.6K validation,
and 6.6K testing sets. Each image is re-annotated with an average
of 3.5 observation-inference pairs, forming 363K samples. Particu-
larly, a sample includes a bounding box 𝒓 and two texts (i.e., clue 𝒄
+ inference 𝒉). Notably, the validation set can be evaluated offline
with officially provided scripts, while the testing set needs to be
submitted to the evaluation server of leaderboard.

Three types of evaluation metrics, from retrieval, localization,
and comparision aspects, are adopted for this benchmark. Specif-
ically, retrieval metrics include 𝑖𝑚𝑔 ⇆ 𝑡𝑒𝑥𝑡 mean rank, P@1𝑖→𝑡 .
For localization, accuracies of grounding candidate regions to the
inferences are adopted. Comparison metric calculates the accor-
dance between machine and human predictions.

The RefCOCO dataset [51] origins from the MSCOCO dataset
[32].We test the generalization of the RCAon the Referring Expres-
sion Comprehension (REC task) using Accuracy@0.5. This task
aims to link a distinctive sentence to a specific object box when
multiple similar objects are present. This dataset contains 3 splits:
RefCOCO, RefCOCO+, and RefCOCOg.TheRefCOCOandRefCOCOg
allow for relational expressions of position (left/right), while Ref-
COCO+has only expression on appearance. Specifically, RefCOCO/+/g
contains 19.9/19.9/26.7K images, respectively, covering 50.0/49.8/54.8K
object instances with corresponding 142/141/85K referring expres-
sions. Since REC requires bounding box proposals for the “text-to-
region” grounding, we adopt the YoloV8 to generate candidate pro-
posals as inputs for our RCA.

4.2 Implementations
We implement the RCA and Dual Contrastive Loss on top of the
OpenCLIP [9, 38] PyTorch toolkit2, and fix the training & testing
recipe to be the same for all ablations unless otherwise stated.

Training. We resize 𝒓 and 𝒊 into 224×224 (336 for high resolu-
tion) square images and then concatenate them into combo-image
𝑰 of size 448×224.We initialize CLIP fromOpenAI pre-trainedweight

2https://github.com/mlfoundations/open_clip
5
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Table 1: Comparison with state-of-the-art methods using the Sherlock Testing Leaderboard.
The up arrow ↑ (or down arrow ↓) indicates the higher (or lower), the better.

Test-Set Parameters Retrieval Localization Comparison
Model Backbone Tuned (M↓) im→txt (↓) txt→im (↓) P@1𝑖→𝑡 (↑) GT/Auto-Box (↑) Human Acc (↑)
LXMERT [44] from [18]

F-RCNN
NA 51.10 48.80 14.90 69.50 / 30.30 21.10

UNITER [8] from [18] NA 40.40 40.00 19.80 73.00 / 33.30 22.90
CPT [48] from [18] RN50×64 NA 16.35 17.72 33.44 87.22 / 40.60 27.12
CPT [48] from [18] 149.62 19.85 21.64 30.56 85.33 / 38.60 21.31
CPT [48] (our impl) 149.77 19.46 21.14 31.19 85.00 / 38.84 23.09
Full Fine-Tuning (R-CTX) 149.77 15.63 18.20 33.76 86.19 / 40.78 27.32
Our RCA (R-CTX) ViT-B-16 42.26 15.59 18.04 33.83 86.36 / 40.79 26.39↰

Mixed Prompts 42.26 14.39 16.91 34.84 87.73 / 41.64 26.11↰

Dual-Contrast Loss 42.26 13.92 16.58 35.42 88.08 / 42.32 27.51

CPT [48] (our impl) 428.53 13.08 14.91 37.21 87.85 / 41.99 29.58
Our RCA (R-CTX) ViT-L-14 89.63 11.36 13.87 38.55 88.68 / 42.30 31.72↰

Mixed Prompts (336) 89.63 10.48 12.95 39.68 89.66 / 43.61 31.23↰

Dual-Contrast Loss 89.63 10.14 12.65 40.36 89.72 / 44.73 31.74

and tuning for 10 epochs with a cosine learning lr schedule. We
train with a global batch size=3200, lr=2e-4 using ViT-B-16 back-
bone (batch=400, lr=2e-5 for ViT-L-14-336) on 2×80GBA100GPUs.

Testing. We apply the same preprocess for region 𝒓 and full
image 𝒊 to prepare combo-image 𝑰 as the training phase. Given a
set of visuals {𝒓 , 𝒊} × 𝐾 and inferences {𝒉} × 𝐾 , we first calculate
the 𝐾 ×𝐾 matrix of vision-inference similarity and report retrieval,
localization and comparison metrics based on the matrix.

4.3 Comparision with the State-of-the-Art
We compare RCA with the SOTAs on the Sherlock test set. These
results are evaluated and published on the official leaderboards.

As shown in Table 1, our RCA ranks the 1st on the Sherlock
Leaderboard regarding most of the evaluation metrics. It signif-
icantly outperforms SOTA competitors. For example, our model
achieves a “Human Acc” score of 31.74, compared to 29.58, 22.90,
and 21.10 for CPT-CLIP, UNITER, and LXMERT models. We note
that models built on the CLIP model, including ours and CPT-CLIP,
performmuch better than traditionalmodels like UNITER and LXMERT.
This suggests that large-scale pre-trained knowledge is beneficial
for tasks requiring abductive reasoning. We further validate that
our RCA performs well with fine-grained regional evidence as a
prompt for visual reasoning tasks. Our model achieves a Human
Acc score of 26.39/31.74 (↑3.30/2.16), compared to 23.09/29.58 for
CPT-CLIP when using different backbones. Lastly, our new “Dual-
Contrastive Loss” feature further enhances the performance of the
RCA. In summary, our model with Dual-Contrastive Loss outper-
forms current state-of-the-art methods.

4.4 Ablation Study
This section comprehensively studies various factors that influence
the performance of RCAon the validation set.We useMixed Prompts,
Dual-Contrastive Loss and ViT-B-16 as default settings, except in
the comparison of different prompts and losses. More ablations are
in supplementary.

Impacts of Integrating Adapters. We analyze how our model
performs when we remove certain components, specifically the
vanilla (A&M) and Map Adapters, one at a time. The results in Ta-
ble 2 show that performance decreases with fewer adapters. Specif-
ically, using all three types of adapters produces the best results un-
der most evaluation metrics. “Adapter (M)” is the best choice when
limited to using just one type of adapter. If we can use two types,
the best combination is “Adapter (M) + Map Adapter”, suggesting
that the Map Adapter complements the vanilla adapter well.

Effects of Fine-Grained Regional Prompts. We also explore
how adding fine-grained regional prompts influences the perfor-
mance of existing prompting techniques, such as colorful (CPT in
[48]) and circle prompts (CiP in [42]). In Table 3, the terms “Region
Only” and “Context” refer to feeding either just the regional box
part or the entire image into the CLIP vision tower, respectively.

We observe that adding fine-grained tokens based on regional
cues significantly improves the performance of all coarse-grained
prompts, including “Context”, “CPT”, and “CiP” across all metrics.
This basically verifies that “global context + local cues” comple-
ment each other well for abductive reasoning. Moreover, we test
the Mixed Prompt mode described in §3.3 and observe a stable per-
formance for most metrics.

Dual-Contrastive Loss vs Single/Triple counterparts. We
test different types of contrastive losses using our RCA model. In
Table 4, the Dual-Contrastive loss performs better than the Multi-
Task Learning and the other single & triple counterparts under
most metrics. In terms of localization, the Dual-Contrastive loss
is slightly lower than its MTL counterparts but still shows a very
competing performance.

We further look into the individual contrastive loss value be-
tweenmodality pairs on the validation set to understand howmodal-
ities mutually influence each other. Specifically, we first report
the loss value between each pair before the training phase (i.e.,
No Train or Zero-Shot reasoning), then re-calculate them after the
model is trained with different losses (Fig 5).

We observe that the gaps of vision-clue and vision-inference are
positively correlated. Specifically, when we minimize one of the
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Table 2: Impacts of integrating adapters. We compare the single, dual, and triple adapters.

Val-Set Adapter Types Parameters Retrieval Localization Comparison
Adapters Adapter_M Adapter_A Map Adapter Tuned (M↓) im→txt (↓) txt→im (↓) P@1𝑖→𝑡 (↑) GT/Auto-Box (↑) Human Acc (↑)

↰

×1 ✓ 32.00 19.35 22.56 30.46 85.77 / 39.27 22.89↰

×1 ✓ 32.01 18.52 21.53 31.40 85.85 / 39.29 23.63↰

×1 ✓ 32.01 14.79 17.14 34.82 87.82 / 42.32 26.66

↰

×2 ✓ ✓ 37.13 16.41 18.98 33.11 86.96 / 40.28 24.99↰

×2 ✓ ✓ 37.14 14.75 16.76 35.14 87.89 / 41.08 26.78↰

×2 ✓ ✓ 37.13 14.51 16.54 35.15 88.06 / 41.34 26.41
RCA

↰

×3 ✓ ✓ ✓ 42.26 14.26 16.44 35.46 88.23 / 41.91 26.80

Table 3: Impacts of Fine-Grained Regional Prompts.
Val-Set Retrieval Localization Comparison
Prompt Type im→txt (↓) txt→im (↓) P@1𝑖→𝑡 (↑) GT/Auto-Box (↑) Human Acc (↑)
Region Only 22.76 22.62 30.44 86.10 / 41.86 23.66
Context 45.28 54.57 18.12 NA 21.99↰

+ Region (R-CTX) 15.24 (-30.04) 17.22 (-37.35) 34.29 (+15.88) 87.23 / 41.11 26.69 (+4.70)
CPT [48] 17.99 19.71 31.94 86.22 / 39.98 25.53↰

+ Region (R-CPT) 14.30 (-3.69) 16.17 (-3.54) 35.57 (+3.63) 87.91 / 42.18 (+1.69 / 2.22) 26.21 (+0.68)
CiP [42] 18.08 19.89 31.71 85.85 / 39.99 24.11↰

+ Region (R-CiP) 14.27 (-3.81) 16.25 (-3.64) 35.61 (+3.90) 87.90 / 42.62 (+2.05 / 2.63) 26.51 (+2.40)
Mixed Prompts (RPA) 14.26 16.44 35.46 88.23 / 41.91 26.80

Table 4: Comparison of Different Losses on Sherlock Val Set.
Val-Set Retrieval Localization Comparison
Loss Type P@1𝑖→𝑡 (↑) GT/Auto-Box (↑) Human Acc (↑)
Single2 Loss 25.29 82.52 / 30.23 21.64
Single1 Loss 34.57 87.96 / 41.60 25.64
MTL [18] 34.82 87.63 / 42.33 26.07
Triple-Loss 35.40 88.22 / 41.91 25.31
Dual-Loss 35.46 88.23 / 41.91 26.80

(a) NoTrain (b) Single1 (c) Single2

(d) MTL (e) Triple (f) Dual

Figure 5: Contrastive Losses between Modality Pair on Sher-
lock Validation Set. We used a model trained with (a) No
Training, (b-c) Single, (d) MTL, (e) Triple, and Dual (f) losses.
The Green/Red implies the decreasing/increasing of loss val-
ues, compared with No Training. Solid and dashed lines de-
notes the presence or absence of contrastive loss during
training.

gaps in training, the other one will also become smaller (e.g., Fig.

5b-5c). Whereas, the gap of inference-clue seems not to correlate to
gaps of vision-clue and -inference, as the former is slightly closer or
even larger afterminimizing either of the latter gaps (e.g., red/black
value in Fig 5b-5d, and 5f). If we enforce the model to close the
inference-clue gap during training, the vision-clue and -inference
gap would become larger (Triple vs Dual, Fig. 5e vs 5f). The reason
is that the clue and inference sentences are not literally equivalent
and better to be bridged by an extra rational process.

Influence of BottleneckDimension𝑑 inAdapters.We study
the influence of different bottleneck dimensions in the RCA, rang-
ing in 𝑑 = { 𝐷32 ,

𝐷
16 ,

𝐷
8 ,

𝐷
4 ,

𝐷
2 , 𝐷}. Notably, a higher 𝑑 basically in-

troduced more tuned parameters and larger FLOPs, as shown in
Figure 6a. For the retrieval metrics, such as mean 𝑖𝑚𝑔 ⇆ 𝑡𝑥𝑡 rank,
a lower value indicates better performance, whereas the rest are
the opposite. We observe from Fig. 6a-6d that an optimal choice
is 𝑑 = 𝐷

4 , indicating that adjusts the frozen foundational model
with either a very heavy 𝐷 or lightweight 𝐷

32 would result in sub-
optimal performance. Notably, human accordance is influenced by
the human’s subjective judgement and has a different trend. Over-
all, we fix 𝑑 = 𝐷

4 for all following experiments.
Influence of Adapting CLIP Vision/Text Tower. The CLIP

follows a two-tower design, each tower separately for visual/textual
embedding; thereby, we can independently insert adapters into vi-
sual and textual towers to assess their contributions. We test in-
serting Adapter+ into the “Only Text” tower, “Only Vision” tower,
and both towers. As shown in Table 5, adapting both CLIP vision
and text towers performs the best at the cost of the most tuned pa-
rameters among the three options. Notably, both “Only Vision” and
“Only Text” has a large margin in performance compared with the
“Vision + Text”, indicating the adaptions on two towers are comple-
mentary.
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Figure 6: Performance of different 𝑑 in adapters. Best viewed in color.
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Table 5: Influence of Adapting CLIP Vision/Text Tower.

Val-Set Parameters Retrieval Localization Comparison
Towers Tuned (M↓) P@1𝑖→𝑡 (↑) GT/Auto-Box (↑) Human Acc (↑)

Only Text 31.62 25.72 77.71 / 34.08 20.67
Only Vision 37.53 31.79 86.93 / 40.38 24.02
Vision+Text 42.26 35.46 88.23 / 41.91 26.80

(a) Visualization 1

(b) Visualization 2

Figure 7: Qualitative results obtained by rpa. The machine
retrieves the top-5 most likely inferences according to the
box region. Red sentence indicates that the machine finds
the same inference as a human expert.

5 QUALITATIVE RESULTS OF RCA
We present two qualitative examples obtained by the RCA in Fig-
ure 7 and more examples in supplementary. Specifically, a human
expert gives a possible inference from given a regional cue spec-
ified by the box, and the machine retrieves the top-5 most likely
inferences. The sentence indicates the correct match with the hu-
man’s performance. We observe from Example 1 & 2 that the ma-
chine manages to deduct human-like inference such as “He is try-
ing to on board” from an observation of “a man under an airplane”
and “prevent the sunshine” from “a wearing hat”.

6 GENERALIZATION ON REFCOCO
We also tested the generalization of the RCA on the RefCOCO
dataset using a two-stage pipeline in Table 6. Specifically, we em-
ployed YoloV8 as the object detector to propose candidate object

boxes. Then, we utilized the RCA to align textual sentences with
the object box with the highest matching score. We evaluated the
RCA using a single-prompt mode, such as “R-CTX”, “R-CPT”, to
observe their respective effects.
Table 6: Comparsion on the RefCOCO+/g. We test with RCA
ViT-L14 (336). higher=better

Model
RefCOCO (↑) RefCOCO+ (↑) RefCOCOg (↑)

val testA testB val testA testB val test
MAttNet [50] 76.65 81.14 69.99 65.33 71.62 56.02 66.58 67.27
UNITER𝐿 [8] 81.41 87.04 74.17 75.90 81.45 66.70 74.86 75.77
MDETR [26] 86.75 89.58 81.41 79.52 84.09 70.62 81.64 80.89

RCA (R-CTX) 73.31 81.95 60.84 75.81 86.47 61.98 76.35 75.43
RCA (R-CPT) 74.04 82.80 62.81 76.40 86.34 63.12 76.59 75.47

The RCA performs better than two-stage models like MattNet
on the RefCOCO+/g sets, emphasizing appearance descriptions (e.g.,
“a person with a yellow tie”). However, it lags behind MattNet on
RefCOCO, which focuses on positional descriptions (e.g., “left per-
son”). This discrepancy arises because MattNet explicitly encodes
appearance, location, and relation information, while RCA only en-
codes appearance. Although RCA is adaptable to the ReferringCom-
prehension task, it falls behind one-stage end-to-end models like
MDETR.The advantage of MDETR has comes from its design to si-
multaneously regress box coordinates and establish visual-linguistic
alignment, especially for visual grounding. In contrast, our RCA
have to rely on third-party proposals from YoloV8.

7 CONCLUSION
We propose a new Region Conditioned Adaptation (RCA) with
a Dual-Contrastive Loss for Visual Abductive Reasoning. Specifi-
cally, ourmethod validates that curating fine-grained regional prompts
is feasible for CLIP tuning, getting back local details, and bene-
fiting abductive reasoning. We also reveal the positive relation-
ships between the VAR and Vanilla Visual Retrieval tasks, unify-
ing their training processes with the Dual-Contrastive Loss. Exten-
sive experiments show that the RCA and the new loss are robust
and effective for abductive reasoning and surpass previous SOTAs.
The success of the two factors also paves future ways for explor-
ing Multi-Grained, Chain-of-Thoughts Prompts, Visual Referring
Prompt, and other multiple relationships modeling on the VAR.
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