A Broader Impact

Designing appropriate rewards is a challenging task in real-world applications of reinforcement
learning (RL). Often, researchers or algorithm engineers possess prior knowledge, such as rules and
constraints, about the problem they are trying to solve, but are unable to represent this knowledge
precisely with numeric values. Improper reward settings can lead to unexpected behaviors learned by
an RL algorithm, resulting in exploitation of the rewards for higher returns. In this paper, we propose
a potential-based exploration bonus as shaping reward that helps avoid repetitive and tedious tuning
of rewards in RL applications, such as autonomous driving, robot learning control, video games and
online recommendation/ad optimization. Our approach liberates researchers and algorithm engineers
from the laborious task of reward tuning, while also providing insight into the quality of the designed
rewards through the shaping weights learned by our methods.

B Bisimulation Relation and Wasserstein Distances

To delve deeply into the formulation of bisimulation metric, we present a detailed definition of both
bisimulation relation and Wasserstein distances.

B.1 Definition of Bisimulation Relation

Definition 4. (Bisimulation Relations |Givan et al| [2003]) Given an MDP M, an equivalence
relation B between states is a bisimulation relation if, for all states s;,s; € S that are equivalent
under B (denoted s; =p s;) the following conditions hold:

R (si,a) =R (sj,a) Vae A, (11)
P(G|si,a) =P (G| sja) Yaec A VGeSp (12)

where Sp is the partition of S under the relation B (the set of all groups G of equivalent states), and
P(G I S’a) = ZS’GGP (8/ | Sva)

B.2 Wasserstein Distances

Definition 5. (Wasserstein metric |Villani et al.|[2009]) Let d : X x X — [0,00) be a distance
Sfunction and () the set of all joint distributions with marginals (1 and X over the space X ;

P

W@) = (8 B s 01,227 (13)

Definition 6. (Dual formulation of the Wasserstein metric|Villani et al.|[2009]) Let d : X X X —
[0, 00) be a distance function and 1, and A marginals over the space X ;
1
Wip(d) (1, A) = (sup Eg, vy (¢ (21)] + Eayon [¢ (562)]> (14)
p®p<dr
where ¢ ® 1 < dP <= ¢(x) + P(y) < d(z,y)P,V(z,y) € X x X

This dual formulation takes a simple form forp = 1 :

Wi(d)(p,A) = sup Egop [f (21)] = Egyrn [f (22)] (15)
FELip, 4(X)

where Lip; ,(X) denotes 1-Lipschitz functions f : X — Rsuch that |f (z1) — f (v2)| < d (21, 2).
It is notable that the 2-Wasserstein metric W (|| - ||2) (or simply W5) has a closed-form for Gaussians:

Wo (N (i, Z6) N (15, 25)0)% = s — wsll + 1125 — 2515 (16)

where | - || 7 denotes the Frobenius norm. We can observe that for point masses (i.e., ¥;, X; — 0),
the 2-Wasserstein metric is equivalent to the Euclidean distance between the two points.

Lemma 1. (p-Wasserstein Inequality|Villani et al.| [|2009)]) For any two distributions j1, A\, if p < q :

Lemma [T|shows the inequality between p-Wasserstein.

13

C Theorems and Proofs

Theorem 1. Let met be the space of bounded pseudometrics on S, v € [0,1) and 7 a policy that is
continuously improving. Define H : met — met by:

H(d,7)(si,85) = |5, — 5, | + AW (d) (P, Py)

w x (18)
H (- | 8i58i41) = L7 (- | 55, 8541) 11

Then H has a least fixed point d which is an inverse dynamic bisimulation metric.

Proof. Let (X, <) be a partial order. An w-chain of this partial order is an increasing sequence {x, }.
The partial order is said to be an w-complete partial order (w-cpo) if it contains least upper bounds of
all w-chains. It is called an w-cpo with bottom if it additionally contains a least element, L, called
bottom. A function f : X — Y between w-cpos is said to be monotonic if x < 2’ = f(x) < f (/).
It is continuous if for every w-chain {z,,}, f (Unen {Zn}) = Unen {f (z)}. A point z € X is said
to be a prefixed-point of f if f(x) < z. Itis a fixed-point if x = f(z).

Lemma 2. Given a fixed policy 7. Define H™ : met — met by H(d, 7)(si,85) = |1, — 15| +
WW(d)(Pi,’Pfj) + [I7(- | 84, 8i41) — I (- | 85, 841)||1, then H has a least fixed point d*.

Proof. This proof mimics the proof of Theorem 4.5 from |Ferns et al. [2004]. We make use of the
same pointwise ordering on met: d < d' iff d(s,t) < d'(s,t) for all s,t € S, which gives us an
w-cpo with bottom L, which is the everywhere-zero metric. Since Lemma 4.4 from [Ferns et al.
[2004] (wasserstein metric W is continuous) also applies in our definition, it only remains to show
that #(d,) is continuous:

27 <|_| {xn}> (siys5) = Irl, =rl | +9W <|_| {xn}> (P, PL)

neN neN
+ (- | 8i58i41) = L7 (- | 85, 8541) 11
=|ri — r§j| +ysup W (x,,) (77;:_,73;;)

neN
+ 7 | iy sin) = 17 (- | 85, 8541) |11
by continuity of W (19)

= sup(|rf, — 7 |+ W (zn) (PL, PL)
neN

F T] sision) = 17 (- | 85, 8541) 1)

= sup {Hﬁ (zn) (si, Sj)}
neN

- <|_| (M (a:n)}> (si,55)

neN
The rest of the proof follows in the same way as in |Ferns et al.|[2004]. O

Ideally, to prove this theorem we show that # is monotonically increasing and continuous, and apply
Fixed Point Theorem to show the existence of a fixed point that H converges to. Unfortunately,
we can show that H under 7 as ™ monotonically converges to 7* is not also monotonic, unlike the
original bisimulation metric setting |Ferns et al. [2004] and the policy evaluation setting|Castro|[2020].
We start the iterates 7™ from bottom L, denoted as H™(_L). In|Ferns et al. [2004] the max,c 4 can
be thought of as learning a policy between every two pairs of states to maximize their distance, and
therefore this distance can only stay the same or grow over iterations of . In|Castro|[2020], 7 is
fixed, and under a deterministic MDP it can also be shown that distance between states d,, (s;, s;)
will only expand, not contract as n increases. In the policy iteration setting, however, with 7 starting
from initialization 7y and getting updated:

= e, -1 (g 20
mile) = anggax 3 [+ 9V) 20)

14

there is no guarantee that the distance between two states d,,* " (s;, s;) < d7* (s;, s;) under policy
iterations m_1, 7 and distance metric iterations d,,_1,d, for k,n € N, which is required for
monotonicity.

Instead, we show that using the policy improvement theorem which gives us:
V™ (s) > VT=1(s),Vs € S (21

7 will converge to a fixed point using the Fixed Point Theorem, and taking the result of lemmal[2] that
‘H™ has a fixed point for every 7 € 11, we can show that a fixed point inverse dynamic bisimulation
metric will be found with policy iteration. O

Theorem 2. (Value difference bound) Given any two states s;,s; € S in an MDP M, let V™ (s) be
the value function of policy T, we can get:

V™ (si) = V7™ (55)| < dinw(si,55) (22)

where d;y,, is a inverse dynamic bisimulation metric.

Proof. We will use the standard value function update: V7 (s) = RT + 7>, cs Pr (s") V71 ()

n—1
with V' = 0 and our update operator from Theorem E: dr(s,t) = H™ (d%_,) (s,t) with df =0,

and prove this by induction, showing that for alln € Nand s,¢t € S,|V,"(s) — V.7 (¢)| < dF (s, 1).

The base case holds vacuously: 0 = V{7 (s,t) < df(s,t) = 0, so assume true up to n.

Vi (s) = Vil (8)] = ‘R’; Y PI() VT (s) - <R? + Y PV (S’))‘

s’eS s'eS

<|RT —RY|+

¥V () (PI(s)) = PF (S/))‘
s’eS

<IRE = RE|I+ W (dy) (PSP

= |RL — Ry +~YW (dy,) (PT,P;") since W (dy,) is a metric
<R = REI+ W (dy) (PE,PE) + 117 (- | 5,8") = 17 (- | £,)]l
= H" (dy;) (s,1)

=dy 1 (s,t)

(23)

where the second inequality follows from noticing that, by induction, for all s,t € S,V,7(s) —
VT (t) < d,(s,t), and the third inequality shows that the property as value difference bound holds
for both bisimulation metric and inverse dynamic bisimulation metric. [

Theorem 3. The potential function d;y, (s, So) is an approximation of absolute value of optimal
value function V*(s).

Proof. Based on theorem[2] we can get:

dmu(S,So) 2 |Vﬂ(s) - Vﬂ-(80>|
Z [V7(s)| = [V (s0)] 24)
= V()| - C)

where C1 is a constant. Assume that the potential function d;,., (s, so) is defined under policy 7, we
use the closed form induction for the 2-Wasserstein metric W5 (| - ||2) as Equation (16):

. * . s e T 2
iy (st 50) = [V (s0)] = Jim [[rff —rg |+ [l — poll

1/2 1/2
+)= - 5522, (25)
+yllaf —aoll; — V*(st)]

15

The action a belongs to the set of bounded action space A, so the fourth term on the right of
Equation @) is bounded, as the timestep increases, the distribution P™(- | s) converges to the
transition function NV'(u., X.), thus the second term and third term are bounded. So we can get:

T din (50, 50) — [V*(s0)] = Jim [IrF| — [V*(s0)] + s

= Jim [[r7] — | maxr(s, a)| 6
a x (26)
= D2 Pl V)l +Co
st41E€S
<Oy
where C is a constant. Based on equation [24]and equation [26] we can get:
. X o< T ' < T X
Hm [V (se)| = Cr < Hm dipy (51, 50) < lm [V ()] + Co 27)

so the potential function d;,, (s, o) is an approximation of absolute value of optimal value function
V*(s) O

Theorem 4. Suppose that the shaping reward function F takes the form of Equantion (), the optimal
value function of the modified MDP M, the potential function ®(s) and the optimal value function
of original MDP M holds the condition that:

Vi (s,a) = Vi(s,a) — ®(s) (28)
Proof. According to the Bellman equation, the optimal value function of the original MDP M has
the following form:

Vii(s) = max Ey p(is,a)[R(s,a,5") + Vi (s")] (29)

We can obtain the following by subtracting the potential function from both sides:

Vig(s) — @(s) = max By p(|s,a) [R(s,a,s") +~y®(s") — ®(s)

(30)
+y(Viu(s") = 2(s")]
Based on Equantion (IJ), we can get:
Vi (s) = maxBop(jsa) [R(5,0,8") + F (s,0,8") + Ve ()]

= max Eg'p(15.0) [R' (s,a,8") +~vVp (s) Gl

So the value function of the modified MDP M’ is:
Vi (s) 2 Vi(s) — @(s) (32)
O

D Additional Experiments

D.1 Delayed Reward Setting

We provide the full result for the delayed reward setting, where the accumulated reward is given every
10, 20, 30 or 40 steps. Table2|demonstrates that LIBERTY outperforms other methods in 19 out of 24
delayed reward tasks. This suggests that even with sparse rewards, LIBERTY can achieve effective
exploration while maintaining high performance. Since DPBA only receives delayed rewards, its
performance decreases as the delay period increases. In contrast, RIDE and RND can generate
more exploration for the agent at each step, resulting in better performance than DPBA. Moreover,
curiosity-driven methods perform similarly to delayed reward-based methods, despite the lack of
explicit rewards. The result provides further evidence that LIBERTY’s potential-based exploration
bonus encourages efficient exploration in the environment, even in scenarios with only delayed
rewards.

16

Table 2: Full Table of quantitative results comparison between LIBERTY and other baseline methods in different
environments of Mujoco with the delayed reward setting.The best and the runner-up results are (bold) and
(underline)

Methods Delay = 10

HalfCheetah Hopper Walker2d Ant Humanoid =~ Swimmer
ICM 1374 £368 1258 £325 1127 +225 —105+£43 462+54 27+£11
RND 1694 £495 1976 +458 1405 +262 143 +£17 532+£29 32+15
NGU 1180 £ 513 989 +£262 1275+480 —164+35 41378 24+£12
RIDE 2467 £456 1876 £431 1651 £ 325 92 +£31 570 £45 65+ 16
DPBA 1514 £365 2103 +129 1997 +£115 592 £67 518+23 43 £17
LIBERTY 2973 £437 2479 £ 315 2766 =487 292 £ 68 68173 73+21
LIBERTY w/o IL.D. 1783 +£412 1676 £275 1732+£392 131422 505 £37 46+11
Methods Delay = 20

HalfCheetah Hopper Walker2d Ant Humanoid Swimmer
ICM 1185 £287 1097 £275 995+201 —175+23 434+48 23£10
RND 1595 £415 1925+401 1379+193 127+ 12 519£25 29+12
NGU 1198 £492 978 £177 1158 £375 —177+31 416+57 21+£11
RIDE 2285 £402 1621 £382 1724+307 105+ 27 509+21 59+13
DPBA 1337 £315 1783 +89 1543+ 137 381+45 501 +18 32+£15
LIBERTY 2619 £354 2112+£208 2345+414 263+55 617+ 53 67 +18
LIBERTY w/o I.D. 1554 4256 1527 £312 1447+363 103+ 19 497+36 37+ 15
Methods Delay =30

HalfCheetah Hopper Walker2d Ant Humanoid =~ Swimmer
ICM 1017£276 965£213 798+£199 —198+25 417445 19+£11
RND 1483 £393 1773 +£391 1038 £191 99+ 13 501 +£27 24+11
NGU 1113£435 901+£172 1013+366 —181+29 399+45 20=£13
RIDE 1973 £369 1405+ 315 1345+ 305 87+ 21 487+25 41+£15
DPBA 1021 £297 1461 4+91 1179+135 241 £37 453 +£18 2111
LIBERTY 2273 £317 1873 +228 2077 £398 215448 587+63 52+15
LIBERTY w/o ILD. 13054243 1297 £238 1197 + 367 64 + 21 468 £31 25+ 11
Methods Delay =40

HalfCheetah Hopper Walker2d Ant Humanoid =~ Swimmer
ICM 919 + 199 857+ 175 697172 —213+27 403+ 34 13+7
RND 1276 £387 1683 =338 968 £+ 168 71+ 15 483 £ 25 17+£11
NGU 1028 £405 879 £ 155 997 +280 —198+27 38727 11+6
RIDE 1798 £355 1235 +269 1025 4 282 63 + 18 468 £23 32+11
DPBA 883 £+ 275 1382 +£85 1016 £129 105+ 31 405 + 15 9+3
LIBERTY 2039 £315 1612+215 1921+372 142+45 566 +35 31413

LIBERTY w/o I.D. 1231 £253 1213 £207 1012+ 358 58 £13 455 £ 27 17£8

Ant-v2 Walker2d-v2 Swimmer-v2

Hopper-v2 HalfCheetah-v2 Humanoid-v2

8

State Space Coverage (%)

o
DPBA cM RND NGU RIDE LIBERTY DPBA ™ RND NGU RIDE LIBERTY DPBA M RND NGU RIDE LIBERTY

Figure 6: Reward-free exploration results on Ant, Walker2d, Swimmer, Hopper, HalfCheetah and Humanoid.
Error bars represent std, deviations over 10 seeds.

D.2 Reward-free Exploration

We discretize the state-space of all six environments in MuJoCo into bins and compare the number
of bins explored, in terms of coverage percentage. As Figure[6 shows, LIBERTY demonstrates its
robustness across different tasks by achieving the highest number of bins in 5 out of 6 environments.
RIDE and NGU also perform well, closely following LIBERTY. On the other hand, RND outperforms
ICM in all six cases, while DPBA performs the worst among the evaluated methods.

D.3 Episodic Counts for Continuous Control

For the continuous control experiments, we present an additional comparison against the NGU Badia
et al.|[2019] and RIDE Raileanu and Rocktischel|[2020], as shown in Table E, which also employ
episodic counts for their intrinsic reward signals. Exact state counts are poorly informative in
continuous state spaces, as identical states are rare. Therefore, we adopt episodic counts as pseudo-
counts following the procedure presented in NGU for both methods. For NGU, we use inverse-
dynamics features to compute pseudo-counts, while for RIDE, we directly use the states. Figure[7
presents the results, including ablations with respect to episodic count modulation. The analysis
shows a significant drop in the performance of RIDE in all six environments, while NGU without
count consistently underperforms NGU itself. Overall, the episodic count component improves
performance for both NGU and RIDE across all environments. It is worth noting that our method
eliminates the need for episodic count, which greatly improves scalability.

—— NGU ===+ NGU w/o count —— RIDE ===+ RIDE w/o count —— LIBERTY

Ant-v2 Walker2d-v2 Swimmer-v2
3500

1500

3000
1000 2500
2000
1500

1000

500

erage Episode Return

2500
2 2000
<

1500

1000

0 02 0a a6 08 10 00 0z 04 06 oz 10 00 02 04 o6 08 10
Timesteps <6

Figure 7: Episodic Counts for Continuous Control. Comparison between LIBERTY, NGU and RIDE, with
the latter two being tested both with (original methods) and without (ablations) the episodic-count modulation
component. The x-axis represents the number of steps (1e6) in training. The y-axis represents the average
episode return over the last 100 training episodes (standard deviations in shade). All of the experiments were run
using 10 different seeds.

D.4 Improvements Over Benchmarks

To compare the improvements of LIBERTY over different methods, we select three types of agents:
PPO as the baseline agent, DPBA as the PBRS agent, and RIDE as the exploration (via state
difference) agent. We ran each agent for 5 separate runs each for 50 million frames on each game for
both the baseline agents and LIBERTY-augmented agents. We plotted the best results in Figure (8.
The results show that the LIBERTY exploration bonus is effective across different game settings and
significantly improves the performance of different types of agents.

D.5 Scale of Shaping Reward

We consider the additive form of reward shaping, which can be defined as R’ = R + F, where R
is the original reward function, F is the shaping reward function, and R’ is the modified reward
function. The scale of the shaping reward can significantly impact the performance of the trained
policy. Therefore, we conducted a study on the scale parameter A\, where the modified reward function
can be expressed as R’ = R + AF. Note that the default setting in our experiments is A = 1. To
investigate the impact of different scales of shaping rewards on exploration efficiency, we selected
A =10.01, A =0.1, A = 10 and A = 100 as different hyper-parameters to be tested on Atari games.

18

60! 56%

25%

Relative Performance (%)
Relative Performance (%)

19%

,
o I
Pong. Alien

Breakout MsPacman Qbert SpacelnvadersBeamRider UpNDown

n Qbert

(a) Improvements of LIBERTY augmented agents over (b) Improvements of LIBERTY augmented agents over
baseline (PPO) agents PBRS (DPBA) agents

0 36%
23%

Relative Performance (%)

20 16% 17%
% % 1%
3%

—
Pong M ut UpNDown Qbert

(c) Improvements of LIBERTY augmented agents over
exploration (RIDE) agents

Figure 8: In all figures, the columns correspond to different games labeled on the x-axes and the y-axes show
human score normalized improvements.

—— LIBERTY(A=100) ~—— LIBERTY(A=10) ~=—— LIBERTY LIBERTY(A-0.1) ~ —— LIBERTY(A =0.01)
Alien BeamRider Breakout MsPacman

Average Game Score Per Episode

5
“ Frames

Figure 9: Comparison between LIBERTY with different hyper-parameter A in the atari games. The x-axis
represents the number of frames (1e7) in training. The y-axis represents the average game score per episode over

the last 100 training episodes (standard deviations in shade). All of the experiments were run using 10 different
seeds.

Figure|9 demonstrates that the performance of LIBERTY with A = 100 and A = 0.01 significantly
drops. On the other hand, the performance of LIBERTY with A = 0.1 and A = 10 are comparable
and almost at the same level as LIBERTY. These results indicate that too much exploration bonus
(A = 100) or too little exploration bonus (A = 0.01) can destroy the algorithm’s performance.

D.6 Goal-conditioned Tasks

Goal-conditioned reinforcement learning setting is represented by a tuple M = (S, A, P, R, G),
where S is the state space, .4 is the action space, P is the probabilistic transition model, G C S
is the goal space which is a set of assignment of values to states, and R(s,g) = I(s =
g) € R is the sparse deterministic reward function that returns 1 only if the state s match
the goal g. We evaluate LIBERTY in the robot-arm control environment, including three tasks,
FetchPush, FetchPickAndPlace,FetchSlide. As Figure @hows, we can see that our
method LIBERTY still achieves the best performance in the challenging tasks of goal-conditioned
environments compared with other baselines, indicating its scalability and superiority.

19

—— LIBERTY = RIDE =— DPBA =—— NGU =—— ICM =—— RND
FetchPush FetchPickAndPlace FetchSlide

Mean Sucess Rate

Epochs

Figure 10: Comparison between LIBERTY with baseline methods in three goal-conditioned tasks,
FetchPush,FetchPickAndPlace, FetchSlide . The x-axis represents the number of epochs in train-
ing. The y-axis represents the mean success rate (standard deviations in shade). All of the experiments were run
using 10 different seeds.

D.7 Discussion and Ablation Study on ¢; and /> Norms

We choose ¢; norm to measure the discrepancy between actions output by the inverse dynamic module.
The reason behind is that actions are scalar or low dimensional vectors in most RL environments. In
discrete-action environments, such as Breakout, the action space is scalar so there is no difference
between ¢; and /> norm. For the case of continuous-action, such as the 4-dimensional vector action
space in the Fet chReach task where the actions’ value range is [—1, 1], since the action’s value
range is small ,the difference between ¢; and /5 is almost negligible. And we had carried ablation
study on ¢; and £ norms on six mujoco continuous control tasks, as Figure|11|shows, the performance
between ¢; and /5 norm is very closed, so we choose the low computational-cost /; norm.

Ant-v2 Walker2d-v2 Swimmer-v2

1500

1000 _ . 2500 o e 80
q 2000 o

g

o - -
g = —
5 20/
o o0 — 500
s & / 3
2 o
'E« Hopper-v2 HalfCheetah-v2 Humanoid-v2
3000

o |
70 2500 600 e, ——— =]
g
3 2000 2000 500 D

1500 4 1500 - =

1000 /
1000 500 0 R
—— LIBERTY
500 7 o 200 /
/ ~— LIBERTY_L2
. v Zso0 100 -
00 02 04 06 05 10 00 02 04 06 08 10 00 02 04 06 08 10
16 Timesteps 16 16

Figure 11: Comparison between LIBERTY and LIBERTY using /> norm for inverse dynamic module. The
x-axis represents the number of timesteps in training. The y-axis represents the average episode reward(standard
deviations in shade). The experiments were run using 20 different seeds.

= LIBERTY === LIBERTY w/o Inv Dyn.
Breakout MsPacman

Average Game Score Per Episode

* Frames

Figure 12: Comparison between LIBERTY and LIBERTY without inverse dynamic module in the atari games.
The x-axis represents the number of frames (1e7) in training. The y-axis represents the average game score per
episode over the last 100 training episodes (standard deviations in shade). All of the experiments were run using
10 different seeds.

20

D.8 Ablation study of Inverse Dynamic on Atari Games

To investigate the necessity of inverse dynamic, we denote the variant of LIBERTY as "LIBERTY
w/o I.D." which is trained without inverse dynamic. The variant uses the setting of bisimulation
metricCastro| [2020] only as the potential function. As Figure[I2]shows, the performance of LIBERTY
on Atari games without the inverse dynamic module had a significant drop in all eight games, which
further supports the necessity of inverse dynamic module in promoting efficient exploration.

D.9 Results on SuperMarioBros

We present the results of level 1 in SuperMarioBros in Figure The x-axis represents the number
of frames (1e6) in training. The y-axis represents the average episode

reward (standard deviations in shade). The experiments were run SuperMarioBros

using 10 different seeds. We use environment wrappers to preprocess

each frame to resize the input image, and stack observations to ac-
celerate the training speed. We can see that our method LIBERTY
achieves the best performance among all competitive baselines, which
demonstrates the superiority and efficiency of our method. The ex-
planation is that the shaping reward based on state discrepancy and
value difference can be helpful in the exploration stage of training.
Thus, with the assistance of the shaping reward, LIBERTY helps the
agent explore novel states at the start of training, and achieves better o
or comparable performance at the end of training. NGU achieves ° :
the second-best result, because it focus on a long-term exploration.)
The results of RIDE and RND are comparable, followed by ICM. lglgure 13: Results of level 1 on
which suggests that the curiosity-driven methods may fail to explore uperMarioBros.

efficiently compared with our method. DPBA perform the worst which means that the shaping reward
is not always useful.

= = N
8 I 8
8 g 8

Episode Rewards

g

2 3 3 5
Frames :

E Implementation Details

E.1 Baseline Method Comparison

We make a comparison between the benchmarked methods across three key aspects. Firstly, we
consider whether the method includes an episodic count term in the exploration bonus. Secondly, we
evaluate whether it ensures policy invariance from the oringinal MDP. Finally, we examine whether
the method relies on prior knowledge. The results are demonstrated in Table 3]

Algorithm Objective Episodic Count Policy Invariance Prior Knowledge
ICM —logp (¢(sts1) | ¢(st), ar) X X X
RND —logp (d(se41) | Se41) X X X
RIDE l[¢(se+1) = d(se)ll5 / v/ Nep (s141) v X X
NGU ~ o banp(s)/\/Nep (Pri1) 4 X X
PBRS Y DB(s111) — D(s¢) X v v
LIBERTY (ours) Ydinv(St+1,50) — dinv(St, S0) X v al

Table 3: Summary and comparison of several benchmark methods. ¢ = f(s) : features encoder; 6 : model
parameters; brnp(s): the RND bonus; Ne,(s) : episodic (pseudo) count of visits to state s; « : normalized
coefficient; ®(s) : potential function defined by prior knowledge; dinv (s, So): the inverse dynamic bisimulation
metric-based potential function.

E.2 Evaluation Setup

We use the encoder architecture in |[Zhang et al.| [2020] with two more convolutional layers to the
convnet trunk as the potential function network. The encoder has kernels of size 3 x 3 with 32 channels
for all the convolutional layers and set stride to 1 everywhere, except of the first convolutional layer,
which has stride 2, and interpolate with ReLU activations. Finally, we add tanh nonlinearity to the 50
dimensional output of the fully-connected layer. Each deconvolutional layer has kernels of size 3 x 3

21

with 32 channels and stride 1, except of the last layer, where stride is 2 . We use ReL.U activations
after each layer. The forward dynamic model are MLPs with two hidden layers with 200 neurons
each and ReL U activations. The inverse dynamic module has 3 hidden layers with 64 neurons with
ReLU activation functions. The output is a 64 dimensional embedding feature. Adam is chosen as
the optimizer with learning rate a=0.0001.

E.3 Algorithm Details

Algorithm 1 LIBERTY

1: while not converged do

2: fort=1to MAX_STEP_PER_EPISODE do

3 Sample action a; ~ mg (az | st)

4: Step environment sy 41 ~ p (S¢41 | St, ar)

5: Record transition in the buffer: D <— D U {s¢, at, St+1, 41}

6: Sample transitions batch B ~ D from the buffer

7 Permute batch: B = permute (B).

8 Set shaping intrinsic reward F (¢, a, $¢4+1) = Ydiny (St+1, S0) — dinw (St, S0)

9: Train policy 7(6) via policy gradient: Eg[J ()]
10: Train the potential function din,: E 5[()] >Equation (5)
11: Train inverse dynamics: .J () >Equation (3)
12: Train forward dynamics: J(n) = (P(- | s¢,ai;m) — S¢41)?
13: end for

14: end while

E.4 Codebase Used
Our codebase was built atop the following codebases:

* The official NGU codebase (including the implementation of ICM and RND):
https://github.com/opendilab/DI-engine

* The official RIDE codebase: https://github.com/facebookresearch/impact-driven-exploration

E.4.1 Hyperparameters of Benchmarks

22

https://github.com/opendilab/DI-engine
https://github.com/facebookresearch/impact-driven-exploration

Algorithm Hyperparameters
policy module: three 64 -unit FC hidden layers,
relu activation
threshold of probability ratio clipping (¢) : 0.2
update timesteps: 1e6
number of epoches per update: 50
number of minibatches: 4
Base Learner (PPO) batch size: 1024
GAE parameter (\) : 0.95
optimizer: Adam
learning rate: 10~4
policy gradient clip norm: 1.0
discount rate (-y) : 0.999
potential network: two 64-unit FC layers,
tanh activation
DPBA optimizer: Adam
learning rate of potential network: 5 x 10~*
potential network gradient clip norm: 10.0
forward model loss coefficient: 1.0
inverse model loss coefficient: 0.1
ICM entropy cost: 0.005
intrinsic reward coefficient 8: 0.01
proportion of experience used for training predictor: 0.05
predictor Model updates per PPO epoch: 3
RND entropy cost: 0.005
intrinsic reward coefficient 3: 0.01
episodic memory capacity: 2000
action prediction network filter sizes: (3,3)
NGU action prediction network filter strides: (1, 1)
RND clipping factor L: 3
intrinsic reward coefficient 3: 0.1
forward model loss coefficient: 1.0
inverse model loss coefficient: 0.1
RIDE entropy cost: 0.0005
intrinsic reward coefficient 3: 0.1
Table 4: The hyperparameters of the tested benchmark algorithms in the MuJoCo experiment

23

Algorithm Hyperparameters

policy network: two CNN with 3 convolutional layers
and 1 FC layer with 512 hidden units
the 1st convolutional layer has thirty-two 8 x 8 filters with stride 4
the 2nd convolutional layer has sixty-four 4 x 4 filters with stride 2
The 3rd convolutional layer has sixty-four 3 x 3 filters with stride 1
threshold of probability ratio clipping (¢) : 0.5
update timesteps: Se7
number of epoches per update: 50
number of minibatches: 16
Base Learner (PPO) batch size: 2048
GAE parameter (\) : 0.95
optimizer: Adam
learning rate: 7 x 104
policy gradient clip norm: 0.9
discount rate (-y) : 0.999

potential network: 32-unit FC layer + 16-unit FC layer
tanh activation
DPBA optimizer: Adam
learning rate of potential network: 5 x 10~*
potential network gradient clip norm: 1.0

forward model loss coefficient: 0.2

inverse model loss coefficient: 0.08
ICM entropy cost: 1074

intrinsic reward coefficient 3: 0.005

proportion of experience used for training predictor: 0.25
predictor Model updates per PPO epoch: 6
RND entropy cost: 0.005
intrinsic reward coefficient 8: 0.1

episodic memory capacity: 5000
action prediction network filter sizes: (3,3)
NGU action prediction network filter strides: (1, 1)
RND clipping factor L: 5
intrinsic reward coefficient 5: 0.01

forward model loss coefficient: 0.5

inverse model loss coefficient: 0.8
RIDE entropy cost: 0.0005

intrinsic reward coefficient 5: 0.1

Table 5: The hyperparameters of the tested benchmark algorithms in the Atari experiment

24

	Introduction
	Related Work
	Background
	Methodology
	Theoretical Analysis
	Experiments
	Continuous Control
	Atari Games

	Conclusion
	Acknowledgements
	Broader Impact
	Bisimulation Relation and Wasserstein Distances
	Definition of Bisimulation Relation
	Wasserstein Distances

	Theorems and Proofs
	Additional Experiments
	Delayed Reward Setting
	Reward-free Exploration
	Episodic Counts for Continuous Control
	Improvements Over Benchmarks
	Scale of Shaping Reward
	Goal-conditioned Tasks
	Discussion and Ablation Study on 1 and 2 Norms
	Ablation study of Inverse Dynamic on Atari Games
	Results on SuperMarioBros

	Implementation Details
	Baseline Method Comparison
	Evaluation Setup
	Algorithm Details
	Codebase Used
	Hyperparameters of Benchmarks

