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1 OMITTED PROOFS

1.1 ASSUMPTIONS

Assumption 1. φ maps to a compact set in Rd, and is uniformly bounded, with ||φ|| ≤ φmax.

Assumption 2. The density ratio is bounded from above:

sup
z

PD′(z)

PD(z)
≤ ρmax.

1.2 OFF-DISTRIBUTION STABILITY AND GENERALISATION

Lemma 1. If an algorithm A is ε-uniformly off-distribution stable for distributions D and D′ with
shared support, then:

G(A,D,D′) ≤ ε.

Proof.

EA,D∼D[Remp(A(D))] =EA,D

 1

|D|

|D|∑
i=1

l(A(D), xi)


=EA,D∼D,D̂∼ D

 1

|D|

|D|∑
i=1

l(A(D1:i−1 ∪ x̂i ∪Di+1:|D|), x̂i)

 = V

=V + EA,D,D′∼D′

 1

|D|

|D|∑
i=1

l(A(D), x′i)

− EA,D,D′∼D′

 1

|D|

|D|∑
i=1

l(A(D), x′i)


=EA,D [Ex′ l(A(D), x′)] + V − EA,D,D′∼D′

 1

|D|

|D|∑
i=1

l(A(D), x′i)


Because we are taking the mean of a sample mean for the last two term s, we can remove the
dependency on the second data set as follows. With Dxi/x̂i := D1:i−1 ∪ x̂i ∪Di+1:|D|, we have:

V =EA,D

 1

|D|

 |D|∑
i=1

ED̂[l(A(Dxi/x̂i), x̂i)]


=EA,D

 1

|D|

 |D|∑
i=1

Ex̂[l(A(Dxi/x̂), x̂)]

 = EA,D,x̂

 1

|D|

|D|∑
i=1

l(A(Dxi/x̂), x̂)


and

EA,D,D′∼D′

 1

|D|

|D|∑
i=1

l(A(D), x′i)

 = EA,D,x′∼D′ [l(A(D), x′)]
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Assuming equal support for D and D′, this allows us to combine our expectations using a density
ratio:

V − EA,D,D′∼D′

 1

|D|

|D|∑
i=1

l(A(D), x′i)

 =EA,D,x̂∼D

 1

|D|

|D|∑
i=1

l(A(Dxi/x̂), x̂)

− EA,D,x̂∼D
[
PD′(x̂)

PD(x̂)
l(A(D), x̂)

]

=EA,D,x̂∼D

 1

|D|

|D|∑
i=1

l(A(Dxi/x̂), x̂)− PD′(x̂)

PD(x̂)
l(A(D), x̂)


Since the datasets differ at most at one point, we bound with suprema over datasets differing at most
by one point, as well as the test point, giving us the desired results:∣∣∣∣∣∣EA,D,x̂∼D

 1

|D|

|D|∑
i=1

l(A(Dxi/x̂), x̂)− PD′(x̂)

PD(x̂)
l(A(D), x̂)

∣∣∣∣∣∣ ≤
sup

D,x,x′,z

∣∣∣∣EA [l(A(D ∪ x), z)− PD′(ẑ)

PD(ẑ)
l(A(D ∪ x′), z)

]∣∣∣∣
1.3 EXPANSIVITY OF UPDATE RULE

Lemma 2. Under Assumption 1, and the additional projection step, the update rule G(ŵ)X is
η-expansive, with:

η ≤ 1 + α (1 + γ)φ2max. (1)

Proof. Starting from the definition of our update rule we have:

‖G(û)X0:k
−G(v̂)X0:k

‖ =

∥∥∥∥∥û− α
[
φ(s, a)

0

](
φ(s, a)>u− r − γ

∑
a′

π(a′|s′)φ(s′, a′)>ū

)

−v̂ + α

[
φ(s, a)

0

](
φ(s, a)>v − r − γ

∑
a′

π(a′|s′)φ(s′, a′)>v̄

)∥∥∥∥∥
=

∥∥∥∥∥û− v̂ + α

(
φ̂(s, a)φ̂(s, a)>

[
v − u
0

]
+ γφ̂(s, a)

(∑
a′

π(a′|s′)φ̂(s′, a′)>

)[
ū− v̄
0

])∥∥∥∥∥
≤‖û− v̂‖+ α

(∥∥φ(s, a)φ(s, a)>
∥∥ ‖v − u‖+ γ

∥∥∥∥∥φ(s, a)

(∑
a′

π(a′|s′)φ(s′, a′)>

)∥∥∥∥∥ ‖ū− v̄‖
)

≤‖û− v̂‖+ α
(
φ2max ‖v̂ − û‖+ γφ2max ‖û− v̂‖

)
The first inequality follows from application of the triangle inequality to separate terms and the
submultiplicativity of the induced matrix norm. The second comes from the fact that the policy
weighted features forms a convex combination and our assumption on the feature map, as well as the
fact that adding additional dimensions with nonzero elements can only increase distances. Dividing
through by ‖û− v̂‖ gives us the desired result.

1.4 LINEAR PARTIALLY FITTED EXPECTED SARSA IS σ-BOUNDED

Lemma 3. Under Assumption 1, for finite integers k and p, and the additional projection step, the
update rule G(w)Xk is σ-bounded, with:

σ ≤ αφmax ((1 + γ)φmaxwmax + rmax)
(
αφ2max + 1

)k
. (2)

Proof. Since our update rule doesn’t modify the target network parameters, these cancel out in the
difference, and are omitted for clarity. Starting from our update rule:

||wk −G(wk)X0:k
|| =

∥∥∥∥∥w − w + αφ(Sk, Ak)

(
φ(Sk, Ak)>wk −Rk − γ

∑
A′

π(S′k, A
′)φ(S′k, A

′)w̄

)∥∥∥∥∥ ,
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by the triangle inequality, submultiplicativity of the induced norm, and the fact that the sum over A′
is a convex combination:

||wk −G(wk)X0:k
|| ≤ αφmax (φmax||wk||+ rmax + γφmaxwmax) ,

unrolling wk, and applying the triangle inequality:

||wk −G(wk)X0:k
|| ≤ αφmax (φmax(‖wk−1‖+ αφmax (φmax||wk−1||+ rmax + γφmaxwmax) + rmax + γφmaxwmax)) ,

≤ αφmax
(
φmax((1 + αφ2max)‖wk−1‖+ αφmaxrmax + γαφ2maxwmax)

+ rmax + γφmaxwmax

)
,

≤ αφmax

(
φmax

(
(1 + αφ2max)kwmax +

k−1∑
i=0

(1 + αφ2max)i(αφmaxr + γαφ2maxwmax)

)

+ rmax + γφmaxwmax

)
,

≤ αφmax ((1 + γ)φmaxwmax + rmax)
(
αφ2max + 1

)k
.

The second last line comes from unrolling all the way to w0, and by the projection step ||w0|| ≤ wmax.
The final line comes from the partial sum of a geometric series:

k−1∑
i=0

(1 + a)i =
(1 + a)k − 1

a
,

and simplifying.

1.5 LINEAR PARTIALLY FITTED EXPECTED SARSA IS UNIFORMLY STABLE

Before proving the main result, first we provide proof of the following lemma:
Lemma 4. Let wt and w′t be the output from running Algorithm 1 on our original dataset, and the
perturbed dataset respectively, with algorithm randomness held constant across both runs. Let ζt
represent the parameter gap in supremum norm at time t: |wt−w′t|∞. Then, under Assumption 1 with
supremum norm, and using supremum norm for the projection step, for every t0 ∈ {1, ..., |D|)}, z ∈
Ω, we have:

EA|MSBE(wT ; z)−MSBE(w′T ; z)| ≤ t0
|D|

((1+γ)dφmaxwmax+rmax)2+M
√
dE[ζT |ζt0 = 0].

(3)
where:

M =
(
d

3
2 (1 + γ)2φ2maxwmax +

√
d2(1 + γ)φmaxrmax

)
Proof. We consider the parameter gap at epoch t0, ζt0 . There are two possibilities: either the
algorithm has not encountered the perturbed data point by t0, in which case we can ensure that the
gap is zero at t0, or the data point has been encountered, for which we assume the worst-case. Let l
here represent the MSBE, then:

EA|l(wT ; z)− l(w′T ; z)| ≤ P (ζt0 6= 0)
(
(1 + γ)dφmaxwmax + rmax

)2
+ P (ζt0 = 0)EA|l(wT ; z)− l(w′T ; z)|ζt0 = 0|.

The probability that the perturbed data point is selected in a batch is K/|D|, and this is done for t0/K
batches. Thus, the probability that the data point is selected at or before step t0 is upper bounded, by
union bound as: t0

|D| . We use this as an upper bound on P (ζt0 6= 0). Then:

EA|l(wT ; z)− l(w′T ; z)| ≤ t0
|D|
(
(1 + γ)dφmaxwmax + rmax

)2
+M

√
dEA[ζT |ζt0 = 0],

which we get from dropping the complementary probability term, M comes from the definition of
MSBE, and the

√
d comes from bounding the 2-norm (induced by the inner products in the MSBE)

with the∞-norm.
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We now move on to proving the main result:
Theorem 1. Under Assumptions 1 (under supremum norm) and 2 and the projection step applied
under supremum norm, for monotonically decreasing αt ≤ c

t , after T = NK updates, Algorithm 1
is ε-uniformly off-distributionally stable, with:

ε ≤ (1− ρmax)((1 + γ)dφmaxwmax + rmax)2 + ρmaxE, (4)

where:

E =
(
(1 + γ)dφmaxwmax + rmax

) 2βc
βc+1

(
1 + 1

βc

|D| − 1

)(
2M
√
dLc

) 1
βc+1

T
βc
βc+1

and:
M =

(
d

3
2 (1 + γ)2φ2maxwmax +

√
d2(1 + γ)φmaxrmax

)
and:

L = φmax ((1 + γ)φmaxwmax + rmax)
(
αφ2max + 1

)K
,

and:
β = (1 + γ)φ2max.

Proof. We let l be the MSBE, and wT , w′T outputs from A(D ∪ x) and A(D ∪ x′) for arbitrary D,
x, x′ after T = Kτ time steps, for natural K, τ . Let z be an arbitrary data point. From the definition
of uniform off-distribution stability, we have:

EA
[
l(wT , z)−

PD′(z)

PD(z)
l(w′T , z)

]
≤ EA

[
|(1− ρmax)l(wT , z) + ρmax

(
l(wT , z)− l(w′T , z)

)
|
]
,

≤ |(1− ρmax)
(
(1 + γ)dφmaxwmax + rmax

)2|+ ρmaxEA
[∣∣l(wT , z)− l(w′T , z)∣∣] .

The first inequality comes from adding and subtracting a cross term, as well as Assumption 2. Since
the features are bounded by Assumption 1, the rewards by MDP definition, and the parameters by the
projection step, we can bound the loss trivially, which, alongside the triangle inequality and linearity
of expectation, gives the second line. This leaves us to bound the loss gap as in previous algorithmic
stability work. We use the same hitting time argument as that of Hardt et al. (2016). From Lemma 4,
we have that:

EA [|l(wT , z)− l(w′T , z)|] ≤
t0

|D| − 1

(
(1+γ)dφmaxwmax+rmax

)2
+M
√
dEA[ζT |ζt0 = 0]. (5)

Which leaves us needing to bound EA[ζT |ζt0 = 0], after which we can minimise over t0. Our proof
follows identically to that of Hardt et al. (2016) here, where we bound EA[ζT |ζt0 = 0] recursively.
At each step, the algorithm selects a data point, which, with probability 1

|D| is the perturbed point. If
this is the case, the update rules used by the algorithms are different, and the parameters may step in
opposite directions by the maximum step size, L. On the other hand, with probability 1− 1

|D| , the
same data point is selected, and the same update rule is applied, leading parameters to diverge by at
most the expansivity of the update. Since the parameter fixing update is non-expansive in infinity
norm, we can ignore these updates. From Hardt et al. (2016) pp. 13-14, we then have:

EA[ζT |ζt0 = 0] ≤ 2L

β(|D| − 1)

(
T

t0

)βc
Which we plug into (5), and minimise over t0, which leads us to:

t0 =

(
2cM

√
dLT βc(

(1 + γ)φmaxwmax + rmax
)2
) 1
βc

which, when plugged into (5) alongside the previous and simplified, leads to the result.
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