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Appendix

TABLE OF CONTENTS

• Appendix A details the broader impact of our work.
• Appendix B gives a more detailed treatment to additional related work.
• Appendix C justifies the usage of HULC as a LLP.
• Appendix D presents experiment details, HP settings and corresponding experiment results.
• Appendix F presents the derivation for the trajectory based denoising training objective.
• Appendix G presents the proof for Theorem 3.1.
• Appendix H presents an example figure of the denoising process for the Diffuser-2D model.
• Appendix I presents the task distributions of the MT-LHC benchmark results given in

Table 1.
• Appendix J offers more samples with higher resolution of the representation failures of

Diffuser-1D and Diffuser-2D, first referenced in Figure 3.
• Appendix K presents a comparison between the TSNE visualizations of a ground-truth

encoded trajectory and one gneerated from Diffuser-1D.
• Appendix L presents a TSNE visualization of the discrete latent plan space within HULC.

We clarify that this is not the latent goal space that our model does generation in.
• Appendix M contains our LCD’s model card.

Please refer to our website https://language-control-diffusion.github.io/
website/ for more qualitative results in video format. We release our code and models at
https://github.com/language-control-diffusion/code.
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A BROADER IMPACT

In this paper, we present research on diffusion-based models for reinforcement learning. While our
work has the potential to advance the field, we recognize the importance of being transparent about
the potential societal impact and harmful consequences of our research.

Safety: Our research focuses on the development of diffusion models for reinforcement learning, and
we do not anticipate any direct application of our technology that could harm, injure, or kill people.

Discrimination: We recognize the potential for LCD to be used in ways that could discriminate
against or negatively impact people. As such, we encourage future work to take steps to mitigate
potential negative impact, especially in the areas of healthcare, education, or credit, and legal cases.

Surveillance: LCD did not involve the collection or analysis of bulk surveillance data.

Deception and Harassment: We recognize the potential for our technology to be used for deceptive
interactions that could cause harm, such as theft, fraud, or harassment. We encourage researchers to
communicate potential risks and take steps to prevent such use of LCD.

Environment: Our research required the usage of GPUs, which may be potentially energy intensive
and environmentally costly. However, we seek to minimize the usage of GPUs through LCD’s
efficiency and the impact of our work could be beneficial to the environment.

Human Rights: We prohibit the usage of LCD that facilitates illegal activity, and we strongly
discourage LCD to be used to deny people their rights to privacy, speech, health, liberty, security,
legal personhood, or freedom of conscience or religion.

Bias and Fairness: We recognize the potential for biases in the performance of LCD. We encourage
researchers building off this work to examine for any biases and take steps to address them, including
considering the impact of gender, race, sexuality, or other protected characteristics.

In summary, we recognize the potential societal impact and harmful consequences of our research
and encourage researchers to consider these factors when developing and applying new technologies
on top of LCD. By doing so, we can help ensure that our work has a positive impact on society while
minimizing any potential negative consequences.
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B ADDITIONAL RELATED WORK

Here we gives a more detailed treatment to additional related work.

B.1 TEXT-TO-CONTROL MODELS

Modern text to control models often still struggle with long-horizon language commands and
misinterpret the language instruction. Hu et al. (2019) attempt to solve a long-horizon Real-Time
Strategy (RTS) game with a hierarchical method utilizing language as the communication interface
between the high level and low level policy, whilst Harrison et al. (2017) consider training a language
encoder-decoder for policy shaping, Hanjie et al. (2021) utilize an attention module conditioned on
textual entities for strong generalization and better language grounding. Zhong et al. (2022) propose
a model-based objective to deal with sparse reward settings with language descriptions and Mu
et al. (2022) also tackle the sparse reward settings through the usage of intrinsic motivation with
bonuses added on novel language descriptions. However, only Hu et al. (2019) consider the long-
horizon setting, and they do not consider a high-dimensional state space. Jang et al. (2022) carefully
examine the importance of diverse and massive data collection in enabling task generalization through
language and propose a FiLM conditioned CNN-MLP model (Perez et al., 2018). Much work has
attempted the usage of more data and compute for control (Brohan et al., 2022; Jaegle et al., 2021;
Reed et al., 2022). However, none of these methods consider the usage of diffusion models as the
medium between language and RL.

B.2 DIFFUSION MODELS

One driver of this recent success in generative modeling is the usage of classifier-free guidance,
which is amenable to the RL framework through the usage of language as a reward function. The
language command is a condition for optimal action generation, which draws direct connection to
control as inference (Levine, 2018). Given the success of denoising diffusion probabilistic models
(Ho et al., 2020) in text-to-image synthesis (Sohl-Dickstein et al., 2015a), the diffusion model has
been further explored in both discrete and continuous data domains, including image and video
synthesis (Ho et al., 2022b;c), text generation (Li et al., 2022b), and time series (Rasul et al., 2021).
To expound further on Janner et al. (2022)’s Diffuser, they diffuse the state and actions jointly for
imitation learning and goal-conditioned reinforcement learning through constraints specified through
classifier guidance, and utilize Diffuser for solving long-horizon and task compositional problems in
planning. Instead of predicting the whole trajectory for each state, (Wang et al., 2022b) apply the
diffusion model to sample a single action at a time conditioned by state. However, neither of these
works considers control from pixels, or utilizing language for generalization.
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C REASONING FOR USAGE OF HULC AS LOW LEVEL POLICY (LLP)

We justify the usage of using a hierarchical model as our LLP here. We would like to clarify that we
use a hierarchical approach for our low-level policy for two main reasons. First, we aim to leverage
the strongest existing baseline to maximize our chances of creating a SOTA model. Second, we
encountered issues replicating the results for the GCBC flat policy from its original paper (Mees
et al., 2022b), making it less favorable for our approach. It is also important to note that there is, in
principle, no reason why LCD cannot work with a flat policy, and this would be a straightforward
addition for future work. One successful instantatiation of a direct text to video generation model is
(Dai et al., 2023). However, they again avoid the issue of directly generating low level actions by
using a low-level controller or an inverse dynamics model which we are able to directly solve for.

D HYPER-PARAMETER SETTINGS AND TRAINING DETAILS

For all methods we proposed in Table 1, Table 2, ??, and Table 5, we obtain the mean and standard
deviation of each method across 3 seeds. Each seed contains the individual training process and
evaluates the policy for 1000 episodes.

Baselines are run with either 8 Titan RTX or 8 A10 GPUs following the original author guidelines,
whilst our experiments are run with a single RTX or A10. In total this project used around 9000 hours
of compute.

D.1 HP AND TRAINING DETAILS FOR METHODS IN TABLE 1 AND ??.

Model Module Hyperparameter Value

HULC
Trainer

Max Epochs 30
β for KL Loss 0.01
λ for Contrastive Loss 3
Optimizer Adam
Learning Rate 2e-4

Model Transformer Hidden Size 2048
Language Embedding Size 384

LCD

Gaussian Diffusion

Action Dimension 32
Action Weight 10
Loss Type L2
Observation Dimension 32
Diffusion Steps 20
Model Dimension 64

Trainer

EMA Decay 0.995
Label Frequency 200000
Sample Frequency 1000
Batch Size 512
Learning Rate 2e-4
Train Steps 250k
Number of Steps Per Epoch 10000
Normalizer Gaussian Normalizer
Frame Offset 0

Table 5: Hyperparameters for our methods in Table 1 and ??.
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E HYPER-PARAMETERS FOR TABLE 4

E.1 HYPERPARAMETERS

We control all other evaluation parameters not listed in Table E.1 to be the same as in our prior
experiments for the MLP and Diffusion high-level policy. These hyperparameters can be found in
Appendix D.

Hyperparameter Value

Transformer Number of gradient steps 100 K
Mini-batch size 512
Transformer hidden dim 4096
Transformer hidden layers 3
Final Hidden Activation ReLU
Final Hidden Dim 4096
Number of heads 8
Dropout 0.1
Learning Rate 2e− 4
Layer Norm 32

Table 6: Hyperparameters for our methods in Table 4.

E.2 GRIDSEARCH

We gridsearch over the following parameters and pick the best performing combination from the
following:

• Num of transformer layers: [4, 8, 24]
• Width of transformer layers: [2048, 4096, 8192]
• Learning rate: [2e-5, 2e-4, 4e-4]
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F TRAINING OBJECTIVE DERIVATION

To model this, we turn to diffusion models (Weng, 2021), whom we borrow much of the following
derivation from. Inspired by non-equilibrium thermodynamics, the common forms of diffusion
models (Sohl-Dickstein et al., 2015b; Ho et al., 2020; Song et al., 2020a) propose modeling the data
distribution p(τ ) as a random process that steadily adds increasingly varied amounts of Gaussian
noise to samples from p(τ ) until the distribution converges to the standard normal. We denote the
forward process as f(τ t|τ t−1), with a sequence of variances (β0, β1...βT ). We define αt := 1− βt
and ᾱt :=

∏t
s=1 αs.

f(τ 1:T |τ 0) =

T∏
t=1

f(τ t|τ t−1), where f(τ t|τ t−1) = N (τ t;
√

1− βtτ t−1, βtI). (6)

One can tractably reverse this process when conditioned on τ0, which allows for the construction of
a sum of the typical variational lower bounds for learning the backward process’ density function
(Sohl-Dickstein et al., 2015b). Since the backwards density also follows a Gaussian, it suffices to
predict µθ and Σθ which parameterize the backwards distribution:

pθ (τ t−1 | τ t) = N (τ t−1;µθ (τ t, t) ,Σθ (τ t, t)) . (7)

In practice, Σθ is often fixed to constants, but can also be learned through reparameterization.
Following (Ho et al., 2020) we consider learning only µθ, which can be computed just as a function of
τ t and ϵθ(τ t, t). One can derive that τ t =

√
ᾱtτ 0+

√
1− ᾱtϵ for ϵ ∼ N (0, I), through a successive

reparameterization of (6) until arriving at f(τ t|τ 0). Therefore to sample from p(τ ), we need only to
learn ϵθ, which is done by regressing to the ground truth ϵ given by the tractable backwards density.
Assuming we have ϵθ, we can then follow a Markov chain of updates that eventually converges to
the original data distribution, in a procedure reminiscent of Stochastic Gradient Langevin Dynamics
(Welling & Teh, 2011):

τ t−1 =
1√

1− βt

(
τ t −

βt√
1− ᾱt

ϵθ (τ t, t)

)
+ σtz, where z ∼ N (0, I). (8)

To learn ϵθ, we can minimize the following variational lower bound on the negative log-likelihood:

LCE = −Eq(τ0) log pθ(τ 0)

= −Eq(τ0) log
(∫

pθ(τ 0:T )dτ 1:T

)
= −Eq(τ0) log

(∫
q(τ 1:T |τ 0)

pθ(τ 0:T )

q(τ 1:T |τ 0)
dτ 1:T

)
= −Eq(τ0) log

(
Eq(τ1:T |τ0)

pθ(τ 0:T )

q(τ 1:T |τ 0)

)
≤ −Eq(τ0:T ) log

pθ(τ 0:T )

q(τ 1:T |τ 0)

= Eq(τ0:T )

[
log

q(τ 1:T |τ 0)

pθ(τ 0:T )

]
= LVLB.

LVLB = LT + LT−1 + · · ·+ L0

where LT = DKL(q(τT |τ 0) ∥ pθ(τT ))

Lt = DKL(q(τ t|τ t+1, τ 0) ∥ pθ(τ t|τ t+1))

for 1 ≤ t ≤ T − 1 and
L0 = − log pθ(τ 0|τ 1).

(9)

Which enables us to find a tractable parameterization for training, as the KL between two Gaussians
is analytically computable.
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Lt = Eτ0,ϵ

[ 1

2∥Σθ(τ t, t)∥22
∥µ̃t(τ t, τ 0)− µθ(τ t, t)∥2

]
= Eτ0,ϵ

[ 1

2∥Σθ∥22
∥ 1
√
αt

(
τ t −

1− αt√
1− ᾱt

ϵt

)
− 1

√
αt

(
τ t −

1− αt√
1− ᾱt

ϵθ(τ t, t)
)
∥2
]

= Eτ0,ϵ

[ (1− αt)
2

2αt(1− ᾱt)∥Σθ∥22
∥ϵt − ϵθ(τ t, t)∥2

]
= Eτ0,ϵ

[ (1− αt)
2

2αt(1− ᾱt)∥Σθ∥22
∥ϵt − ϵθ(

√
ᾱtτ 0 +

√
1− ᾱtϵt, t)∥2

]
.

(10)

After removing the coefficient at the beginning of this objective following (Ho et al., 2020), we arrive
at the objective used in the practical algorithm Algorithm 1:

Eτ0,ϵ[∥ϵt − ϵθ(
√
ᾱtτ 0 +

√
1− ᾱtϵt, t)∥2]. (11)

Furthermore, thanks to the connection between noise conditioned score networks and diffusion
models (Song et al., 2020b; Ho et al., 2020), we are able to state that ϵθ ∝ −∇ log p(τ ):

sθ(τ t, t) ≈ ∇τ t log p(τ t)

= Eq(τ0)[∇τ t
p(τ t|τ 0)]

= Eq(τ0)

[
− ϵθ(τ t, t)√

1− ᾱt

]
= −ϵθ(τ t, t)√

1− ᾱt
.

(12)

Therefore, by using a variant of ϵθ conditioned on language to denoise our latent plans, we can
effectively model −∇τPβ(τ | R) with our diffusion model, iteratively guiding our generated
trajectory towards the optimal trajectories conditioned on language.
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G PROOF OF 3.1

Proof. The proof is fairly straightforward, and can be shown by translating our definition of subopti-
mality into the framework utilized by (Nachum et al., 2019). We are then able to leverage their first
theorem bounding suboptimality by the Total Variation (TV) between transition distributions to show
our result, as TV is bounded by the Lipschitz constant multiplied by the domain of the function.

(Nachum et al., 2019) first define a low level policy generator Ψ which maps from S × Ã to Π.
Using the high level policy to sample a goal gt ∼ πhi(g|st), they use Ψ to translate this to a policy
πt = Ψ(st, gt), which samples actions at+k ∼ πt(a|st+k, k) from k ∈ [0, c − 1]. The process is
repeated from st+c. Furthermore, they define an inverse goal generator φ(s, a), which infers the goal
g that would cause Ψ to yield an action ã = Ψ(s, g). The following can then be shown:

Theorem G.1. If there exists φ : S ×A→ Ã such that,

sup
s∈S,a∈A

DTV(P (s
′|s, a)||P (s′|s,Ψ(s, φ(s, a)))) ≤ ϵ, (13)

then SubOpt′(Ψ) ≤ Cϵ, where C = 2γ
(1−γ)2Rmax.

Note that their SubOpt′ is different from ours; whilst we defined in terms of the encoder E and
action generator ϕ, they define it in terms of Ψ. Note, however, that the two are equivalent when
the temporal stride c = 1, as Ψ becomes πlo = ϕ ◦ E . It is essential to note that when using a goal
conditioned imitation learning objective, as we do in this paper, πlo becomes equivalent to an inverse
dynamics model IDM(s, E(s)) = a and that φ(s, a) becomes equivalent to E(s′). This is the key to
our proof, as the second term in the total variation of G.1 reduces to

P (s′|s,Ψ(s, φ(s, a))))

= P (s′|s,Ψ(s, E(s′)))
= P (s′|s, a+ ϵ)).

(14)

Since we have that the transition dynamics are Lipschitz:∫
A,S

|P (s′|s, a)− P (s′|s, a+ ϵ))| dν

≤
∫
A,S

Kf |a− (a+ ϵ)| dν

= Kf ϵ

∫
A,S

dν

= Kf ϵ dom(P (s′|s, a))

(15)

Which we can then plug into 13 to obtain the desired C = 2γ
(1−γ)2RmaxKfdom(P (s′|s, a)).
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H DIFFUSER-2D

Here we give details for our strongest Diffusion-based ablation, which uses Stable Diffusion’s VAE
for generating latent plans, which outputs a latent 2D feature map, with height and width 1/8 of the
original image. Plans are sampled with a temporal stride of 7, such that each trajectory covers a
total of 63 timesteps with t = 0, 7, 14...63. Overall, generation quality tends to be higher and more
temporally coherent than that of the 1D model, but low level details still not precise enough for
control from pixels. For examples of model outputs, please refer to subsection J.2.

Figure 4: An overview of our Denoising process. In Figure 4 and Figure 5, we give an example of the denoising
process of one of our ablations, the Diffuser-2D model. This model utilizes the 2D autoencoder of (Rombach
et al., 2022) with (Janner et al., 2022).

Figure 5: Diffusion Loss Comparison. Here we give study how varying the Diffusion model’s size changes
the performance of the model. As can be seen, scaling the model from 64 hidden dimensions to 128 strictly
increases generation quality, and would likely follow scaling laws observed in (Kaplan et al., 2020).

23



Under review as a conference paper at ICLR 2024

I TASK DISTRIBUTION

Figure 6: The Evaluation Task Distribution. We visualize the distribution of all the tasks considered in our
experiments in Figure 6. Note the long-tailedness of this distribution, and how it skews evaluation scores upwards
if one can solve the relatively easier tasks that occur most frequently, such as Open Drawer, Move Slider Right,
and Move Slider Left. These tasks only deal with static objects, meaning there is very little generalization that is
needed in order to solve these tasks when compared to other block tasks involving randomized block positions.
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J REPRESENTATION FAILURES

J.1 DIFFUSER-1D (BETA-TC VAE LATENT REPRESENTATION) FAILURES

We give a few failure cases of decoded latent plans, where the latent space is given by a trained from
scratch β-TC VAE on the CALVIN D-D dataset. The top row of each plan comes from the static
camera view, whilst the bottom one comes from the gripper camera view (a camera located at the
tool center point of the robot arm). The VAE is trained by concatenating the images in the channel
dimension, and compressing to 128 latent dimensions. Plans are sampled with a temporal stride of 9,
such that each trajectory covers a total of 63 timesteps with t = 0, 9, 18...63. Interestingly, we found
that replanning during rollout did not work, precluding the possibility of success on CALVIN with
our implementation of this method.

(a) An example of the Close Drawer Task. Notice the flickering block on the top
right of the table. Also not the entangled red and blue blocks at the top left of the
table.

(b) An example of the Lift Blue Block Slider Task. The gripper view is temporally
incoherent, red and blue blocks in slider are entangled.

(c) An example of the Lift Red Block Drawer task. Two blocks begin to appear
on the table at the end of generation. The red block is also not clearly generated
in the first frame.

(d) An example of the Push Blue Block Right task. The blue block on the table
becomes red by the end of the static view, whereas the opposite happens in the
gripper view.

J.2 DIFFUSER-2D (STABLE DIFFUSION LATENT REPRESENTATION) FAILURES

We additionally give some failure cases for Diffuser-2D. For more information on the training of this
model, please refer to Appendix H. We also found that replanning during rollout did not work with
this model.
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(a) An example of the Lift Red Block Drawer Task. Note the pink block that
disappears.

(b) An example of the Lift Blue Block Drawer Task. The gripper arm is entangled
with the block.

(c) An example of the Lift Pink Block Slider Task. Note the entangled red/blue
blocks.

(d) An example of the Close Drawer Task. Note the entangled pink/blue blocks.
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K TSNE COMPARISON BETWEEN GROUD TRUTH (GT) TRAJECTORY AND
DIFFUSER-1D (DM) TRAJECTORY

In order to better understand whether the representation failures found in Appendix J are a result of
the underlying encoder or the diffusion model, we visualize the TSNE embeddings of an encoded
successful trajectory from the dataset, which we refer to as a Ground Truth trajectory, and the TSNE
embeddings of generated trajectories from Diffuser-1D (DM) in Figure 9. If we observe that the
DM’s embedddings are fairly close to the GT-VAE’s, then we can reasonably presume that the VAE
is the failure mode, whereas if the trajectories are wildly different this would imply that the DM
is failing to model the VAE’s latent distribution properly. Here, all samples other than 6 appear to
fairly close, so we suspect that the failure case lies in the underlying latent distribution and not the
DM’s modeling capabilities. This is further backed by LCD, as we show that by using the proper
underlying latent space with a LLP leads to success.

(a) Sample 1 (b) Sample 2 (c) Sample 3

(d) Sample 4 (e) Sample 5 (f) Sample 6

(g) Sample 7 (h) Sample 8 (i) All

Figure 9: TSNE visualization of GT-VAE trajectory vs. Diffuser-1D trajectory, where the purple and light blue
color range is the ground truth VAE, and the copper color range is Diffuser-1D. All states are normalized, and all
trajectories are taken from the task “lift pink block table”.
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L HULC LATENT PLAN TSNE

We give TSNE embeddings of several Latent Plans generated during inference by HULC below.

Figure 10: TSNE of Latent Plan. We give a TSNE embedding of the latent plan space of HULC in Figure 10.
The latent plan space is the communication layer between the high level policy and low level policy of the
HULC model, which corresponds to the intermediate layer between the lower level and lowest level policy in
our method. We clarify that this is not the latent goal space that our model does generation in. Our method
performs latent generation in the earlier layer from the output of the goal encoder, which corresponds to 32
latent dimensions.
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M MODEL CARD FOR LANGUAGE CONTROL DIFFUSION

A hierarchical diffusion model for long horizon language conditioned planning.

M.1 MODEL DETAILS

M.1.1 MODEL DESCRIPTION

A hierarchical diffusion model for long horizon language conditioned planning.

M.2 USES

M.2.1 DIRECT USE

Creating real world robots, controlling agents in video games, solving extended reasoning problems
from camera input

M.2.2 DOWNSTREAM USE

Could be deconstructed so as to extract the high level policy for usage, or built upon further by
instantiating a multi-level hierarchical policy

M.2.3 OUT-OF-SCOPE USE

Discrimination in real-world decision making, military usage

M.3 BIAS, RISKS, AND LIMITATIONS

Significant research has explored bias and fairness issues with language models (see, e.g., Sheng
et al. (2021) and Bender et al. (2021)). Predictions generated by the model may include disturbing
and harmful stereotypes across protected classes; identity characteristics; and sensitive, social, and
occupational groups.

M.4 TRAINING DETAILS

M.4.1 TRAINING DATA

http://calvin.cs.uni-freiburg.de/

M.5 ENVIRONMENTAL IMPACT

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in
Lacoste et al. (2019).

• Hardware Type: NVIDIA Titan RTX, NVIDIA A10

• Hours used: 9000

• Cloud Provider: AWS

• Compute Region: us-west-2

• Carbon Emitted: 1088.64 kg

M.6 TECHNICAL SPECIFICATIONS

M.6.1 MODEL ARCHITECTURE AND OBJECTIVE

Temporal U-Net, Diffusion objective
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M.6.2 COMPUTE INFRASTRUCTURE

Hardware Nvidia Titan RTX , Nvidia A10

Software Pytorch
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