
Under review as a conference paper at ICLR 2024

APPENDIX

Table of Contents
List of Tables 14

List of Figures 15

A Detailed Algorithm 15

B Further Discussion on Combining LBC and LDM 15
B.1 the difference and the compatibility between LBC and LDM 15

C Alleviating Manifold Overfitting by Noise Injection 16
C.1 Modeling Expert Distribution . 16
C.2 Guide Policy Learning . 16

D Comparing to Data Augmentation 17

E Environment & Task Details 17
E.1 MAZE . 17
E.2 FETCHPICK . 18
E.3 HANDROTATE . 18
E.4 CHEETAH . 18
E.5 WALKER . 18
E.6 ANTREACH . 19

F Model Architecture 19
F.1 Model Architecture of BC, Implicit BC, Diffusion Policy, and DBC 19
F.2 Model Architecture of EBM, VAE, and GAN 20

G Training and Inference Details 20
G.1 Computation Resource . 20
G.2 Hyperparamters . 21
G.3 Inference Details . 21
G.4 Comparing Different Generative Models . 22

H Generalization Experiments in FETCHPICK 23

I Qualitative Results and Additional Analysis 24
I.1 Qualitative Results . 24

J On the Theoretical Motivation for Guiding Policy Learning with Diffusion Model 25

K Limitations 27

L Broader Impacts 27

LIST OF TABLES

5 Model Architectures. 19

6 Hyperparameters. 21

14

Under review as a conference paper at ICLR 2024

LIST OF FIGURES

7 Qualitative Results . 24

8 Visualized Gradient Field . 26

A DETAILED ALGORITHM

Our proposed framework DBC is detailed in Algorithm 1. The algorithm consists of two parts. (1)
Learning a diffusion model: The diffusion model ϕ learns to model the distribution of concatenated
state-action pairs sampled from the demonstration dataset D. It learns to reverse the diffusion process
(i.e., denoise) by optimizing Ldiff. (2) Learning a policy with the learned diffusion model: We
propose a diffusion model objective LDM for policy learning and jointly optimize it with the BC
objective LBC. Specifically, LDM is computed based on processing a sampled state-action pair (s, a)
and a state-action pair (s, â) with the action â predicted by the policy π with Ldiff.

Algorithm 1 Diffusion Model-Augmented Behavioral Cloning (DBC)
Input: Expert’s Demonstration Dataset D
Output: Policy π.

1: // Learning a diffusion model ϕ
2: Randomly initialize a diffusion model ϕ
3: for each diffusion model iteration do
4: Sample (s, a) from D
5: Sample noise level n from {0, ..., N}
6: Update ϕ using Ldiff from Eq. 2
7: end for
8: // Learning a policy π with the learned diffusion model ϕ
9: Randomly initialize a policy π

10: for each policy iteration do
11: Sample (s, a) from D
12: Predict an action â using π from s: â ∼ π(s)
13: Compute the BC loss LBC using Eq. 1
14: Sample noise level n from {0, ..., N}
15: Compute the agent diffusion loss Lagent

diff with (s, â) using Eq. 3
16: Compute the expert diffusion loss Lexpert

diff with (s, a) using Eq. 4
17: Compute the diffusion model loss LDM using Eq. 5
18: Update π using the total loss Ltotal from Eq. 6
19: end for
20: return π

B FURTHER DISCUSSION ON COMBINING LBC AND LDM

B.1 THE DIFFERENCE AND THE COMPATIBILITY BETWEEN LBC AND LDM

Since we propose to combine LDM and LBC as illustrated in Section 4.3, in the following paragraph,
we will explain the difference between them and the compatibility of combing them. From a
theoretical perspective, the joint probability p(s, a), which is modeled by minimizing LDM, can be
represented as the product of the marginal state probability and the conditional action probability
using the Bayes Rules, i.e., p(s, a) = p(s)p(a|s). In short, LDM takes p(s) into account to model the
joint distribution while LBC optimizes p(a|s) directly.

Observing that despite their difference, when π converges to πE , both LBC and LDM converge to 0,
indicating that these two losses are not conflicting. Moreover, our experimental results show that
optimizing a combination of these two losses leads to the best performance, compared to solely
optimizing each of them. Table 1 shows that DBC (LBC + LDM) outperforms BC (LBC) and Table 2
shows that optimizing LBC + LDM outperforms solely optimizing LDM.

15

Under review as a conference paper at ICLR 2024

(a) (b) (c)

Figure 5: Training Loss Curve. The LBC loss curve and LDM loss curve of three different training
conditions: (a) update with LBC solely, (b) update with LDM, and (c) our proposed DBC

Table 4: Expert distribution modeling with diffusion models trained with different noise levels.

Noise level 0 0.002 0.005 0.01 0.02 0.05 0.1

MSE Distance 0.0213 0.0217 0.0248 0.0218 0.0235 0.0330 0.0507

As shown in Figure 5, even BC only optimizes LBC, LDM also reduces. However, LDM of BC
converges to a higher value (0.0056), compared to only optimizing LDM, where DM-only achieves a
LDM value of 0.00020. On the other hand, our proposed DBC can effectively optimize both LBC and
LDM, demonstrating the compatibility of the two losses, which justifies the proposed combination of
the two losses.

C ALLEVIATING MANIFOLD OVERFITTING BY NOISE INJECTION

In section Section 5.4, we show that while our diffusion model loss can enhance the generalization
ability of the derived policy, the diffusion models may suffer from manifold overfitting during training
and, therefore, need to cooperate with the BC objective. Another branch of machine learning research
dealing with overfitting problems is noise injection. As shown in Feng et al. (2021), noise injection
regularization has shown promising results that resolve the overfitting problem on image generation
tasks. In this section, we evaluate if noise injection can resolve the manifold overfitting directly.

C.1 MODELING EXPERT DISTRIBUTION

We first verify if noisy injection can help diffusion models capture the expert distribution of the spiral
dataset, where the diffusion models fail as shown in Section 5.4. We extensively evaluate diffusion
models trained with various levels of noise added to the expert actions. Then, we calculate the average
MSE distance between expert actions and the reconstruction of the trained diffusion models, which
indicates how well diffusion models capture the expert distribution. We report the result in Table 4.

We observe that applying a noise level of less than 0.02 results in similar MSE distances compared to
the result without noise injection (0.0213). The above result indicates that noise injection does not
bring an advantage to expert distribution modeling regarding the MSE distance, and the discrepancy
between the learned and expert distributions still exists.

C.2 GUIDE POLICY LEARNING

In order to examine if the noise-injected diffusion model is better guidance for policy, we further in-
vestigate the performance of using the learned diffusion models to guide policy learning. Specifically,
we train policies to optimize the diffusion model loss LDM provided by either the diffusion model
learning from a noise level of 0 or the diffusion model learning from a noise level of 0.01, dubbed
πDM-0.01.

16

Under review as a conference paper at ICLR 2024

Expert Action

(a)

Expert Actions with Injected Noise

(b)

Predicted Action

(c)

πBC
πDM−0.01

πexpert

(d)

Figure 6: Comparing Modeling Conditional Probability and Joint Probability. (a) Expert
actions. (b) Expert actions with injected noise. (c) Generated actions by the diffusion model. (d)
Rollout trajectories.

We evaluate the performance of the policies by rolling out each policy and calculating the distance
between the end location of the policy and the expert end location. A policy rollout is considered
successful if the distance is not greater than 0.1.

In Figure 6, we visualize the expert actions, noise-injected expert actions, generated actions by the
diffusion model trained with 0.01 noise level, and the rollout trajectories of the derived policy. The
result suggests that the diffusion model learning from expert distribution added with a preferable
magnitude noise can better guide policy learning, achieving a success rate of 32%, outperforming
the original diffusion model that suffers more from the manifold overfitting with a success rate of
12%. Yet, directly learning to model the conditional probability (i.e., πBC) achieves a much higher
success rate of 85%. This result verifies the advantage of modeling the conditional probability on
this task, which motivates us to incorporate LBC in our proposed learning objective instead of solely
optimizing LDM.

D COMPARING TO DATA AUGMENTATION

To further explore the usage of diffusion models for improving behavioral cloning, we evaluate a
straightforward idea: can diffusion models generate informative samples that enhance the performance
of BC?

We leverage the diffusion model learning from an expert dataset to generate state-action pairs as
a data augmentation method. Specifically, we use 18525 state-action pairs from the Maze dataset
to train a diffusion model and then generate 18525 samples with the trained diffusion model. We
combine the real and generated state-action pairs and then learn a BC policy. The policy with data
augmentation performs 2.06% better than the one without data augmentation, where the improvement
is with a standard deviation, justifying the effectiveness of using the diffusion model as a loss source
instead of using it for data augmentation.

E ENVIRONMENT & TASK DETAILS

E.1 MAZE

Description. A point-maze agent in a 2D maze learns to navigate from its start location to a goal
location by iteratively predicting its x and y acceleration. The 6D states include the agent’s two-
dimensional current location and velocity, and the goal location. The start and the goal locations are
randomized when an episode is initialized.

Evaluation. We evaluate the agents with 100 episodes and three random seeds and compare our
method with the baselines regarding the average success rate and episode lengths, representing the
effectiveness and efficiency of the policy learned by different methods. An episode terminates when
the maximum episode length of 400 is reached.

Expert Dataset. The expert dataset consists of the 100 demonstrations with 18, 525 transitions
provided by Lee et al. (2021).

17

Under review as a conference paper at ICLR 2024

E.2 FETCHPICK

Description. FETCHPICK requires a 7-DoF robot arm to pick up an object from the table and move it
to a target location. Following the environment setups of Lee et al. (2021), a 16D state representation
consists of the angles of the robot joints, the robot arm poses relative to the object, and goal locations.
The first three dimensions of the action indicate the desired relative position at the next time step.
The fourth dimension of action specifies the distance between the two fingers of the gripper.

Evaluation. We evaluate the agents with 100 episodes and three random seeds and compare our
method with the baselines regarding the average success rate and episode lengths. An episode
terminates when the agent completes the task or the maximum episode length is reached, which is set
to 50 for FETCHPICK.

Expert Dataset. The expert dataset of FETCHPICK consists of 303 trajectories (10k transitions)
provided by Lee et al. (2021).

E.3 HANDROTATE

Description. HANDROTATE Plappert et al. (2018) requires a 24-DoF Shadow Dexterous Hand to
in-hand rotate a block to a target orientation. The 68D state representation consists of the joint
angles and velocities of the hand, object poses, and the target rotation. The 20D action indicates the
position control of the 20 joints, which can be controlled independently. HANDROTATE is extremely
challenging due to its high dimensional state and action spaces. We adapt the experimental setup
used in Plappert et al. (2018) and Lee et al. (2021), where the rotation is restricted to the z-axis and
the possible initial and target z rotations are set within [− π

12 ,
π
12] and [π3 ,

2π
3], respectively.

Evaluation. We evaluate the agents with 100 episodes and three random seeds and compare our
method with the baselines regarding the average success rate and episode lengths. An episode
terminates when the agent completes the goal or the maximum episode length of 50 is reached.

Expert Dataset. To collect expert demonstrations, we train a SAC Haarnoja et al. (2018) policy
using dense rewards for 10M environment steps. The dense reward given at each time step t is
R(st, at) = dt − dt+1, where dt and dt+1 represent the angles (in radian) between current and the
desired block orientations before and after taking the actions. Following the training stage, the SAC
expert policy achieves a success rate of 59.48%. Subsequently, we collect 515 successful trajectories
(10k transitions) from this policy to form our expert dataset for HANDROTATE.

E.4 CHEETAH

Description. The CHEETAH is a 2D robot with 17 states, indicating the status of each joint. The goal
of this task is to exert torque on the joints to control the robot to walk toward x direction.

Evaluation. We evaluate each learned policy with 30 episodes and three random seeds and compare
our method with the baselines regarding the average returns of episodes. The return of an episode is
accumulated from all the time steps of an episode. An episode terminates when the agent is unhealthy
(i.e., ill conditions predefined in the environment) or the maximum episode length (1000) is reached.

Expert Dataset. The expert dataset consists of 5 trajectories with 5k state-action pairs provided
by Kostrikov (2018).

E.5 WALKER

Description. WALKER requires an agent to walk toward x-coordinate as fast as possible while
maintaining its balance. The 17D state consists of angles of joints, angular velocities of joints, and
velocities of the x and z-coordinate of the top. The 6D action specifies the torques to be applied on
each joint of the walker avatar.

Evaluation. We evaluate each learned policy with 30 episodes and three random seeds and compare
our method with the baselines regarding the average returns of episodes. The return of an episode is
accumulated from all the time steps of an episode. An episode terminates when the agent is unhealthy
(i.e., ill conditions predefined in the environment) or the maximum episode length (1000) is reached.

18

Under review as a conference paper at ICLR 2024

Table 5: Model Architectures. We report the architectures used for all the methods on all the tasks.

Method Models Component MAZE FETCHPICK HANDROTATE CHEETAH WALKER ANTREACH

BC Policy π

Layers 4 3 3 3 3 3
Input Dim. 6 16 68 17 17 42

Hidden Dim. 256 750 1024 256 256 1024
Output Dim. 2 4 20 6 6 8

Implicit BC Policy π

Layers 2 2 2 2 2 2
Input Dim. 8 20 88 23 23 50

Hidden Dim. 1024 1024 512 1024 1024 1200
Output Dim. 1 1 1 1 1 1

Diffusion Policy Policy π

Layers 5 5 5 5 5 5
Input Dim. 8 20 88 23 23 42

Hidden Dim. 256 1200 2048 1024 1024 1200
Output Dim. 2 4 20 6 6 8

DBC

DM ϕ

Layers 5 5 5 5 5 5
Input Dim. 8 20 88 23 23 50

Hidden Dim. 128 1024 2048 1024 1024 1024
Output Dim. 8 20 88 23 23 50

Policy π

Layers 4 3 3 3 3 3
Input Dim. 6 16 68 17 17 42

Hidden Dim. 256 750 512 1024 1024 1024
Output Dim. 2 4 20 6 6 8

Expert Dataset. The expert dataset consists of 5 trajectories with 5k state-action pairs provided
by Kostrikov (2018).

E.6 ANTREACH

Description. The ANTREACH is a 3D robot with four legs, each consisting of two links. The goal of
this task is to control the four legs to move the ant toward the goal.

Evaluation. We evaluate the agents with 100 episodes and three random seeds and compare our
method with the baselines regarding the average success rate and episode lengths. An episode
terminates when the agent completes the goal or the maximum episode length of 60 is reached.

Expert Dataset. We use the demonstrations provided by Lee et al. (2021), which contains 500
trajectories with 25k state-action pairs in this environment.

F MODEL ARCHITECTURE

This section describes the model architectures used for all the experiments. Section F.1 presents the
model architectures of BC, Implicit BC, Diffusion Policy, and our proposed framework DBC. Section
F.2 details the model architectures of the EBM, VAE, and GAN used for the experiment comparing
different generative models.

F.1 MODEL ARCHITECTURE OF BC, IMPLICIT BC, DIFFUSION POLICY, AND DBC

We compare our DBC with three baselines (BC, Implicit BC, and Diffusion Policy) on various tasks
in Section 5.3. We detail the model architectures for all the methods on all the tasks in Table 5.
Note that all the models, the policy of BC, the energy-based model of Implicit BC, the conditional
diffusion model of Diffusion Policy, the policy and the diffusion model of DBC, are parameterized
by a multilayer perceptron (MLP). We report the implementation details for each method as follows.

BC. The non-linear activation function is a hyperbolic tangent for all the BC policies. We experiment
with BC policies with more parameters, which tend to severely overfit to expert datasets, resulting in
worse performance.

Implicit BC. The non-linear activation function is ReLU for all energy-based models of Implicit BC.
We empirically find that Implicit BC prefers shallow architectures in our tasks, so we set the number
of layers to 2 for the energy-based models.

19

Under review as a conference paper at ICLR 2024

Diffusion Policy. The non-linear activation function is ReLU for all the policies of Diffusion Policy.
We empirically find that Diffusion Policy performs better with a deeper architecture. Therefore, we
set the number of layers to 5 for the policy. In most cases, we use a Diffusion Policy with more
parameters than the total parameters of DBC consisting of the policy and the diffusion model.

DBC. The non-linear activation function is ReLU for the diffusion models and is a hyperbolic tangent
for the policies. We apply batch normalization and dropout layers with a 0.2 ratio for the diffusion
models on FETCHPICK.

F.2 MODEL ARCHITECTURE OF EBM, VAE, AND GAN

We compare different generative models (i.e., EBM, VAE, and GAN) on MAZE in Section 5.5, and
we report the model architectures used for the experiment in this section.

Energy-Based Model. An energy-based model (EBM) consists of 5 linear layers with ReLU
activation. The EBM takes a concatenated state-action pair with a dimension of 8 as input; the output
is a 1-dimensional vector representing the estimated energy values of the state-action pair. The size
of the hidden dimensions is 128.

Variational Autoencoder. The architecture of a variational autoencoder consists of an encoder
and a decoder. The inputs of the encoder are a concatenated state-action pair, and the outputs
are the predicted mean and variance, which parameterize a Gaussian distribution. We apply the
reparameterization trick (Kingma and Welling, 2014), sample features from the predicted Gaussian
distribution, and use the decoder to produce the reconstructed state-action pair. The encoder and the
decoder both consist of 5 linear layers with LeakyReLU Xu et al. (2020) activation. The size of the
hidden dimensions is 128. That said, the encoder maps an 8-dimensional state-action pair to two
128-dimensional vectors (i.e., mean and variance), and the decoder maps a sampled 128-dimensional
vector back to an 8-dimensional reconstructed state-action pair.

Generative Adversarial Network. The architecture of the generative adversarial network consists of
a generator and a discriminator. The generator is the policy model that predicts an action from a given
state, whose input dimension is 6 and output dimension is 2. On the other hand, the discriminator
learns to distinguish the expert state-action pairs (s, a) from the state-action pairs produced by the
generator (s, â). Therefore, the input dimension of the discriminator is 8, and the output is a scalar
representing the probability of the state-action pair being "real." The generator and the discriminator
both consist of three linear layers with ReLU activation, and the size of the hidden dimensions is 256.

G TRAINING AND INFERENCE DETAILS

We describe the details of training and performing inference in this section, including computation
resources and hyperparameters.

G.1 COMPUTATION RESOURCE

We conducted all the experiments on the following three workstations:

• M1: ASUS WS880T workstation with an Intel Xeon W-2255 (10C/20T, 19.25M, 4.5GHz) 48-
Lane CPU, 64GB memory, an NVIDIA RTX 3080 Ti GPU, and an NVIDIA RTX 3090 Ti
GPU

• M2: ASUS WS880T workstation with an Intel Xeon W-2255 (10C/20T, 19.25M, 4.5GHz) 48-
Lane CPU, 64GB memory, an NVIDIA RTX 3080 Ti GPU, and an NVIDIA RTX 3090 Ti
GPU

• M3: ASUS WS880T workstation with an Intel Xeon W-2255 (10C/20T, 19.25M, 4.5GHz)
48-Lane CPU, 64GB memory, and two NVIDIA RTX 3080 Ti GPUs

20

Under review as a conference paper at ICLR 2024

Table 6: Hyperparameters. This table reports the hyperparameters used for all the methods on all
the tasks. Note that our proposed framework (DBC) consists of two learning modules, the diffusion
model and the policy, and therefore their hyperparameters are reported separately.

Method Hyperparameter MAZE FETCHPICK HANDROTATE CHEETAH WALKER ANTREACH

BC
Learning Rate 5e-4 1e-5 5e-6 1e-4 1e-4 1e-2

Batch Size 128 128 128 128 128 128
Epochs 2000 5000 5000 1000 1000 28000

Implicit BC
Learning Rate 1e-4 5e-6 1e-4 1e-4 1e-4 1e-4

Batch Size 128 512 128 128 128 128
Epochs 10000 15000 15000 10000 10000 28000

Diffusion Policy
Learning Rate 2e-4 1e-5 1e-5 1e-4 1e-4 1e-5

Batch Size 128 128 128 128 128 128
Epochs 20000 15000 30000 10000 10000 20000

DBC (Ours)

Diffusion Model Learning rate 1e-4 1e-4 3e-5 2e-4 2e-4 2e-4
Diffusion Model Batch Size 128 128 128 128 128 1024
Diffusion Model # Epochs 8000 10000 10000 8000 8000 20000

Policy Learning Rate 5e-4 1e-5 1e-4 1e-4 1e-4 0.008
Policy Batch Size 128 128 128 128 128 128
Policy # Epochs 2000 5000 5000 2000 2000 8000

λ 30 0.1 10 0.05 0.05 1

G.2 HYPERPARAMTERS

We report the hyperparameters used for all the methods on all the tasks in Table 6. We use the Adam
optimizer Kingma and Ba (2015) for all the methods on all the tasks and use linear learning rate
decay for all policy models.

G.3 INFERENCE DETAILS

This section describes how each method infers an action â given a state s.

BC & DBC. The policy models of BC and DBC can directly predict an action given a state, i.e.,
â ∼ π(s), and are therefore more efficient during inference as described in Section 5.3.

Implicit BC. The energy-based model (EBM) of Implicit BC learns to predict an estimated energy
value for a state-action pair during training. To generate a predicted â given a state s during inference,
it requires a procedure to sample and optimize actions. We follow Florence et al. (2022) and
implement a derivative-free optimization algorithm to perform inference.

The algorithm first randomly samples Ns vectors from the action space as candidates. The EBM then
produces the estimated energy value of each candidate action and applies the Softmax function on
the estimated energy values to produce a Ns-dimensional probability. Then, it samples candidate
actions according to the above probability and adds noise to them to generate another Ns candidates
for the next iteration. The above procedure iterates Niter times. Finally, the action with maximum
probability in the last iteration is selected as the predicted action â. In our experiments, Ns is set to
1000 and Niter is set to 3.

Diffusion Policy. Diffusion Policy learns a conditional diffusion model as a policy and produces an
action from sampled noise vectors conditioning on the given state during inference. We follow Pearce
et al. (2023); Chi et al. (2023) and adopt Denoising Diffusion Probabilistic Models (DDPMs) J Ho
(2020) for the diffusion models. Once learned, the diffusion policy π can "denoise" a noise sampled
from a Gaussian distribution N (0, 1) given a state s and yield a predicted action â using the following
equation:

an−1 =
1

√
αn

(an − 1− αn√
1− ᾱn

π(s, an, n)) + σnz, (7)

where αn, ᾱn, and σn are schedule parameters, n is the current time step of the reverse diffusion
process, and z ∼ N (0, 1) is a random vector. The above denoising process iterates N times to
produce a predicted action a0 from a sampled noise aN ∼ N (0, 1). The number of total diffusion
steps N is 100 in our experiment, which is the same for the diffusion model in DBC.

21

Under review as a conference paper at ICLR 2024

G.4 COMPARING DIFFERENT GENERATIVE MODELS

Our proposed framework employs a diffusion model (DM) to model the joint probability of expert
state-action pairs and utilizes it to guide policy learning. To justify our choice of generative models, we
explore using other popular generative models to replace the diffusion model in MAZE. Specifically,
we consider energy-based models (EBMs) (Du and Mordatch, 2019; Song and Kingma, 2021),
variational autoencoders (VAEs) (Kingma and Welling, 2014), and generative adversarial networks
(GANs) Goodfellow et al. (2014). Each generative model learns to model the joint distribution of
expert state-action pairs. For fair comparisons, all the policy models learning from learned generative
models consists of 3 linear layers with ReLU activation, where the hidden dimension is 256. All the
policies are trained for 2000 epochs using the Adam optimizer (Kingma and Ba, 2015), and a linear
learning rate decay is applied for EBMs and VAEs.

G.4.1 ENERGY-BASED MODEL

Model Learning. Energy-based models (EBMs) learn to model the joint distribution of the expert
state-action pairs by predicting an estimated energy value for a state-action pair (s, a). The EBM
aims to assign low energy value to the real expert state-action pairs while high energy otherwise.
Therefore, the predicted energy value can be used to evaluate how well a state-action pair (s, a) fits
the distribution of the expert state-action pair distribution.

To train the EBM, we generate Nneg random actions as negative samples for each expert state-action
pair as proposed in Florence et al. (2022). The objective of the EBM Eϕ is the InfoNCE loss Oord
et al. (2018):

LInfoNCE =
e−Eϕ(s,a)

e−Eϕ(s,a) +Σ
Nneg

i=1 e−Eϕ(s,ãi)
, (8)

where (s, a) indicates an expert state-action pair, ãi indicates the sampled random action, and Nneg

is set to 64 in our experiments. The EBM learns to separate the expert state-action pairs from the
negative samples by optimizing the above InfoNCE loss.

The EBM is trained for 8000 epochs with the Adam optimizer (Kingma and Ba, 2015), with a batch
size of 128 and an initial learning rate of 0.0005. We apply learning rate decay by 0.99 for every 100
epoch.

Guiding Policy Learning. To guide a policy π to learn, we design an EBM loss LEBM = Eϕ(s, â),
where â indicates the predicted action produced by the policy. The above EBM loss regularizes the
policy to generate actions with low energy values, which encourage the predicted state-action pair
(s, â) to fit the modeled expert state-action pair distribution. The policy learning from this EBM loss
LEBM achieves a success rate of 49.09% in MAZE as reported in Table 2.

We also experiment with combining this EBM loss LEBM with the LBC loss. The policy optimizes
LBC + λEBMLEBM, where λEBM is set to 0.1. Optimizing this combined loss yields a success rate of
80.00% in MAZE as reported in Table 2.

G.4.2 VARIATIONAL AUTOENCODER

Model Learning. Variational autoencoders (VAEs) model the joint distribution of the expert data
by learning to reconstruct expert state-action pairs (s, a). Once the VAE is learned, how well a
state-action pair fits the expert distribution can be reflected in the reconstruction loss.

The objective of training a VAE is as follows:

Lvae = ||x̂− x||2 +DKL(N (µx, σx)||N (0, 1)), (9)

where x is the latent variable, i.e., the concatenated state-action pair x = [s, a], and x̂ is the
reconstruction of x, i.e., the reconstructed state-action pair. The first term is the reconstruction loss,
while the second term encourages aligning the data distribution with a normal distribution N (0, 1),
where µx and σx are the predicted mean and standard deviation given x.

The VAE is trained for 100k update iterations with the Adam optimizer (Kingma and Ba, 2015), with
a batch size of 128 and an initial learning rate of 0.0001. We apply learning rate decay by 0.5 for
every 5k epoch.

22

Under review as a conference paper at ICLR 2024

Table 7: FETCHPICK Generalization Experimental Result. We report the performance of our
proposed framework DBC and the baselines regarding the mean and the standard deviation of
the success rate with different levels of noise injected into the initial state and goal locations in
FETCHPICK, evaluated over three random seeds.

Method Noise Level
1 1.25 1.5 1.75 2

BC 92.40% ± 8.49% 91.57% ± 5.83% 85.50% ± 6.28% 77.62% ± 7.07% 67.41% ± 8.20%
Implicit BC 83.08% ± 3.11% 69.39% ± 7.30% 51.64% ± 4.20% 36.51% ± 4.65% 23.58% ± 2.97%

Diffusion Policy 90.04% ± 3.47% 83.87% ± 3.42% 72.34% ± 6.80% 64.10% ± 7.14% 58.15% ± 8.15%
DBC (Ours) 99.53% ± 0.53% 96.89% ± 1.70% 91.46% ± 3.30% 83.30% ± 4.82% 73.52% ± 6.81%

Guiding Policy Learning. To guide a policy π to learn, we design a VAE loss LVAE = max(Lagent
vae −

Lexpert
vae , 0), similar to Eq. 5. This loss forces the policy to predict an action, together with the state,

that can be well reconstructed with the learned VAE. The policy learning from this VAE loss LVAE
achieves a success rate of 48.47% in MAZE as reported in Table 2.

We also experiment with combining this VAE loss LVAE with the LBC loss. The policy optimizes
LBC + λVAELVAE, where λVAE is set to 1. Optimizing this combined loss yields a success rate of
82.31% in MAZE as reported in Table 2.

G.4.3 GENERATIVE ADVERSARIAL NETWORK

Adversarial Model Learning & Policy Learning. Generative adversarial networks (GANs) model
the joint distribution of expert data with a generator and a discriminator. The generator aims to
synthesize a predicted action â given a state s. On the other hand, the discriminator aims to identify
expert the state-action pair (s, a) from the predicted one (s, â). Therefore, a learned discriminator
can evaluate how well a state-action pair fits the expert distribution.

While it is possible to learn a GAN separately and utilize the discriminator to guide policy learning,
we let the policy π be the generator directly and optimize the policy with the discriminator iteratively.
We hypothesize that a learned discriminator may be too selective for a policy training from scratch,
so we learn the policy π with the discriminator D to improve the policy and the discriminator
simultaneously.

The objective of training the discriminator D is as follows:

Ldisc = BCE(D(s, a), 1) +BCE(D(s, â), 0) = −log(D(s, a))− log(1−D(s, â)), (10)

where â = π(s) is the predicted action, and BCE is the binary cross entropy loss. The binary label
(0, 1) indicates whether or not the state-action pair sampled from the expert data. The generator and
the discriminator are both updated by Adam optimizers using a 0.00005 learning rate.

To learn a policy (i.e., generator), we design the following GAN loss:

LGAN = BCE(D(s, â), 1) = −log(D(s, â)). (11)

The above GAN loss guides the policy to generate state-action pairs that fit the joint distribution of
the expert data. The policy learning from this GAN loss LGAN achieves a success rate of 50.29% in
MAZE as reported in Table 2.

We also experiment with combining this GAN loss LGAN with the LBC loss. The policy optimizes
LBC + λGANLGAN, where λGAN is set to 0.2. Optimizing this combined loss yields a success rate of
71.64% in MAZE as reported in Table 2.

H GENERALIZATION EXPERIMENTS IN FETCHPICK

This section further investigates the generalization capabilities of the policies learned by our proposed
framework and the baselines. To this end, we evaluate the policies by injecting different noise levels
to both the initial state and goal location in FETCHPICK. Specifically, we parameterize the noise by
scaling the 2D sampling regions for the block and goal locations in both environments. We expect all
the methods to perform worse with higher noise levels, while the performance drop of the methods

23

Under review as a conference paper at ICLR 2024

Maze FetchPick CheetahHandRotate Walker

DBC

(Ours)

Diffusion

Policy

Implicit

BC

BC

AntReach

Figure 7: Qualitative Results. Rendered videos of the policies learned by our pro-
posed framework and the baselines can be found at https://sites.google.com/view/
diffusion-behavioral-cloning.

with better generalization ability is less significant. In this experiment, we set the coefficient λ of
DBC to 0.1 in FETCHPICK. The results are presented in Table 7 for FETCHPICK.

Overall Performance. Our proposed framework DBC consistently outperforms all the baselines
with different noise levels, indicating the superiority of DBC when different levels of generalization
are required.

Performance Drop with Increased Noise Level. In FETCHPICK, DBC experiences a performance
drop of 26.1% when the noise level increase from 1 to 2. However, BC and Implicit BC demonstrate
a performance drop of 27.0% and 71.6%, respectively. Notably, Diffusion Policy initially performs
poorly at a noise level of 1 but demonstrates its robustness with a performance drop of only 35.3%
when the noise level increases to 2. This demonstrates that our proposed framework not only
generalizes better but also exhibits greater robustness to noise compared to the baselines.

I QUALITATIVE RESULTS AND ADDITIONAL ANALYSIS

This section provides more detailed analyses of our proposed framework and the baselines. We
present the qualitative results in Section I.1. Then, we analyze the learning progress and the episode
length of goal-directed tasks during inference in Section ?? and Section ??, respectively.

I.1 QUALITATIVE RESULTS

Rendered videos of the policies learned by our proposed framework and the baselines can be
found at https://sites.google.com/view/diffusion-behavioral-cloning. A
screenshot of the rendered videos on the web page is presented in Figure 7.

24

https://sites.google.com/view/diffusion-behavioral-cloning
https://sites.google.com/view/diffusion-behavioral-cloning
https://sites.google.com/view/diffusion-behavioral-cloning

Under review as a conference paper at ICLR 2024

J ON THE THEORETICAL MOTIVATION FOR GUIDING POLICY LEARNING
WITH DIFFUSION MODEL

This section further elaborates on the technical motivation for leveraging diffusion models for
imitation learning. Specifically, we aim to learn a diffusion model to model the joint distribution of
expert state-action pairs. Then, we propose to utilize this learned diffusion model to augment a BC
policy that aims to imitate expert behaviors.

We consider the distribution of expert state-action pairs as the real data distribution qx in learning a
diffusion model. Following this setup, x0 represents an original expert state-action pair (s, a) and
q(xn|xn−1) represents the forward diffusion process, which gradually adds Gaussian noise to the
data in each timestep n = 1, ..., N until xN becomes an isotropic gaussian distribution. On the other
hand, the reverse diffusion process is defined as ϕ(xn−1|xn) := N (xn−1;µθ(xn, n),Σθ(xn, n)),
where θ denotes the learnable parameters of the diffusion model ϕ, as illustrated in Figure 1.

Our key idea is to use the proposed diffusion model loss LDM in Eq. 5 as an estimate of how well a
predicted state-action pair (s, â) fits the expert state-action pair distribution, as described in Section
4.2.2. In the following derivation, we will show that by optimizing this diffusion model loss LDM, we
maximize the lower bound of the agent data’s probability under the derived expert distribution and
hence bring the agent policy π closer to the expert policy πE , which is the goal of imitation learning.

As depicted in Luo (2022), one can conceptualize diffusion models, including DDPM (J Ho, 2020)
adopted in this work, as a hierarchical variational autoencoder (Kingma and Welling, 2014), which
maximizes the likelihood p(x) of observed data points x. Therefore, similar to hierarchical variational
autoencoders, diffusion models can optimize the Evidence Lower Bound (ELBO) by minimizing the
KL divergence DKL(q(xn−1|xn, x0)||ϕ(xn−1|xn)). Consequently, this can be viewed as minimizing
the KL divergence to fit the distribution of the predicted state-action pairs (s, â) to the distribution of
expert state-action pairs.

According to Bayes’ theorem and the properties of Markov chains, the forward diffusion process
q(xn−1|xn, x0) follows:

q(xn−1|xn, x0) ∼ N (xn−1;

√
αn(1− ᾱn−1)xn +

√
ᾱn−1(1− αn)x0

1− ᾱn︸ ︷︷ ︸µq(xn, x0),

(1− αn)(1− ᾱn−1)

1− ᾱn︸ ︷︷ ︸Σq(n)).

The variation term Σq(n) in the above equation can be written as σ2
q (n)I , where σ2

q (n) =
(1− αn)(1− ᾱn−1)

1− ᾱn
. Therefore, minimizing the KL divergence is equivalent to minimizing the gap

between the mean values of the two distributions:
argmin

θ
DKL(q(xn−1|xn, x0)||ϕ(xn−1|xn))

= argmin
θ

DKL(N (xn−1;µq,Σq(n))||N (xn−1;µθ,Σq(n)))

= argmin
θ

1

2σ2
q (n)

[||µθ − µq||22],

where µq represents the denoising transition mean and µθ represents the approximated denoising
transition mean by the model.

Different implementations adopt different forms to model µθ. Specifically, for DDPMs adopted in
this work, the true denoising transition mean µq(xn, x0) derived above can be rewritten as:

µq(xn, x0) =
1

√
αn

(xn − 1− αn√
1− ᾱn

ϵ0),

which is referenced from Eq. 11 in J Ho (2020). Hence, we can set our approximate denoising
transition mean µθ in the same form as the true denoising transition mean:

µθ(xn, n) =
1

√
αn

(xn − 1− αn√
1− ᾱn

ϵ̂θ(xn, n)), (12)

25

Under review as a conference paper at ICLR 2024

(a) Maze Layout (b) Learned Gradient Field

Figure 8: Visualized Gradient Field. (a) Maze Layout: The layout of the medium maze used for
MAZE. (b) Learned Gradient Field: We visualize the MAZE expert demonstration as a distribution
of points by their first two dimensions in gray. The points that cluster densely have a high probability,
and vice versa. Once a diffusion model is well-trained, it can move randomly sampled points to the
area with high probability by predicting gradients (blue arrows). Accordingly, the estimate p(s, a) of
joint distribution modeling can serve as guidance for policy learning, as proposed in this work.

as illustrated in Popov et al. (2022). Song et al. (2021) further show that the entire diffusion model
formulation can be revised to view continuous stochastic differential equations (SDEs) as a forward
diffusion. It points out that the reverse process is also an SDE, which can be computed by estimating
a score function ∇x log pt(x) at each denoising time step. The idea of representing a distribution
by modeling its score function is introduced in Song and Ermon (2019). The fundamental concept
is to model the gradient of the log probability density function ∇x log pt(x), a quantity commonly
referred to as the (Stein) score function. Such score-based models are not required to have a tractable
normalizing constant and can be directly acquired through score matching. The measure of this score
function determines the optimal path to take in the space of the data distribution to maximize the log
probability under the derived real distribution.

As shown in Figure 8b, we visualized the learned gradient field of a diffusion model, which learns to
model the expert state-action pairs in MAZE. Once trained, this diffusion model can guide a policy
with predicted gradients (blue arrows) to move to areas with high probability, as proposed in our
work.

Essentially, by moving in the opposite direction of the source noise, which is added to a data point xt

to corrupt it, the data point is “denoised”; hence the log probability is maximized. This is supported
by the fact that modeling the score function is the same as modeling the negative of the source noise.
This perspective of the diffusion model is dubbed diffusion SDE. Moreover, Popov et al. (2022)
prove that Eq. 12 is diffusion SDE’s maximum likelihood SDE solver. Hence, the corresponding
divergence optimization problem can be rewritten as:

argmin
θ

DKL(q(xn−1|xn, x0)||ϕ(xn−1|xn))

= argmin
θ

1

2σ2
q (n)

(1− αn)
2

(1− ᾱn)αn
[||ϵ̂θ(xn, n)− ϵ0||22],

where ϵθ is a function approximator aim to predict ϵ from x. As the coefficients can be omitted during
optimization, we yield the learning objective Ldiff as stated in in Eq. 2:

Ldiff(s, a, ϕ) = En∼N,(s,a)∼D{||ϵ̂(s, a, n)− ϵ(n)||2} = En∼N,(s,a)∼D{||ϕ(s, a, ϵ(n))− ϵ(n)||2}.

The above derivation motivates our proposed framework that augments a BC policy by using the
diffusion model to provide guidance that captures the joint probability of expert state-action pairs.
Based on the above derivation, minimizing the proposed diffusion model loss (i.e., learning to denoise)
is equivalent to finding the optimal path to take in the data space to maximize the log probability. To
be more accurate, when the learner policy predicts an action that obtains a lower Ldiff, it means that
the predicted action â, together with the given state s, fits better with the expert distribution.

26

Under review as a conference paper at ICLR 2024

Accordingly, by minimizing our proposed diffusion loss, the policy is encouraged to imitate the
expert policy. To further alleviate the impact of rarely-seen state-action pairs (s, a), we propose
to compute the above diffusion loss for both expert data (s, a) and predicted data (s, â) and yield
Lexpert

diff and Lagent
diff , respectively. Therefore, we propose to augment BC with this objective: LDM =

E(s,a)∼D,â∼π(s){max(Lagent
diff − Lexpert

diff , 0)}.

K LIMITATIONS

This section discusses the limitations of our proposed framework.

• Since this work aims to learn from demonstrations without interacting with environments, our
proposed framework in its current form is only designed to learn from expert trajectories and
cannot learn from trajectories produced by the learner policy. Extending our method to incorporate
agent data can potentially allow for improvement when interacting environments are possible,
which is left for future work.

• The key insight of our work is to allow the learner policy to benefit from both modeling the
conditional and joint probability of expert state-action distributions. To this end, we propose to
optimize both the BC loss and the proposed diffusion model loss. To balance the importance of
the two losses, we introduce a coefficient λ as an additional hyperparameter. While the ablation
study conducted in MAZE shows that the performance of our proposed framework is robust to
λ, this can potentially increase the difficulty of searching for optimal hyperparameters when
applying our proposed framework to a new application.

L BROADER IMPACTS

This work proposes Diffusion Model-Augmented Behavioral Cloning, a novel imitation learning
framework that aims to increase the ability of autonomous learning agents (e.g., robots, game AI
agents) to acquire skills by imitating demonstrations provided by experts (e.g., humans). However, it
is crucial to acknowledge that our proposed framework, by design, inherits any biases exhibited by
the expert demonstrators. These biases can manifest as sub-optimal, unsafe, or even discriminatory
behaviors. To address this concern, ongoing research endeavors to mitigate bias and promote
fairness in machine learning hold promise in alleviating these issues. Moreover, research works
that enhance learning agents’ ability to imitate experts, such as this work, can pose a threat to job
security. Nevertheless, in sum, we firmly believe that our proposed framework can offer tremendous
advantages in terms of enhancing the quality of human life and automating laborious, arduous, or
perilous tasks that pose risks to humans, which far outweigh the challenges and potential issues.

27

	
	List of Tables
	List of Figures
	Detailed Algorithm
	Further Discussion on Combining LBC and LDM
	the difference and the compatibility between LBC and LDM

	Alleviating Manifold Overfitting by Noise Injection
	Modeling Expert Distribution
	Guide Policy Learning

	Comparing to Data Augmentation
	Environment & Task Details
	Maze
	FetchPick
	HandRotate
	Cheetah
	Walker
	AntReach

	Model Architecture
	Model Architecture of BC, Implicit BC, Diffusion Policy, and DBC
	Model Architecture of EBM, VAE, and GAN

	Training and Inference Details
	Computation Resource
	Hyperparamters
	Inference Details
	Comparing Different Generative Models
	Energy-Based Model
	Variational Autoencoder
	Generative Adversarial Network

	Generalization Experiments in FetchPick
	Qualitative Results and Additional Analysis
	Qualitative Results

	On the Theoretical Motivation for Guiding Policy Learning with Diffusion Model
	Limitations
	Broader Impacts

