
8 Appendix

8.1 A Graph Networks

We can represent popular tree search algorithms such as MCTS and Alpha Zero as Graph Networks.
The following details how these search algorithms can be represented within the Graph Network
framework, along with a set of readout functions (which readout information about updated nodes).

8.1.1 MCTS

Nodes are initialized with 2 dimensional embedding features. The first dimension is used to store the
total reward experienced from this state, and the second dimension stores the total visits. Together,
these statistics can be used to calculate the mean reward from a state. These can then be used to
choose between actions by reading the mean reward for the resulting node of each action (accounting
for the immediate reward for moving to this state).

8.1.2 Graph Network

ϕe(ek, vrk , vsk , u) = vsk + [ekr · vsk [2], 0]T (11)

ρe→v(E′
i) =

∑
k:rk=i

(e′k) (12)

ϕv(e′i, vi, u) = [Vrollout(vi), 1]
T + e′i (13)

8.1.3 Readout Functions

sexp(a|vi) =
vn(a,vi)[1]

vn(a,vi)[2]
+ ek(a,vi)r + c ·

√
ln
∑

a∈A(vn(a,vi)[2])

vn(a,vi)[2]
(14)

s(a|vi) =
vn(a,vi)[2]∑

a∈A(vn(a,vi)[2])
(15)

πexp = argmax(sexp(a|vi)) (16)

π = argmax(s(a|vi)) (17)

8.1.4 Details

We use [j] to define the dimension j of an embedding. We define vn(a,vi) to be the node ID reached
when taking action a from the node vi. Likewise, k(a, vi) defines the edge ID for the edge representing
the action taken from the node vi.

Note, for the exploration term to be able to compute estimated action values we need at least one
visit for each action, so all actions are taken at least once, before this score function which trades off
between exploration and exploitation is used. Note that this is one form of MCTS where the final
action chosen is based on the most visited action, however others exist, such as using a readout of the
highest action value.

Since UCB, upon which MCTS is based is designed to trade off exploitation and exploration when
action values are between 0 and 1, in order to use this for general environments where this is not
the case, scaling needs to be used. We leave the scaling of action values out of the equations for
simplicity but a common method used in MuZero [26] is to scale rewards based on the maximum and
minimum action values seen in the current search tree so far.

13

8.1.5 Alpha Zero

The Graph Network and readout functions for Alpha Zero are very similar to MCTS with a few small
but important differences. Firstly, instead of using a rollout function to estimate the value of a node,
a value function is used (based on the state information at that node). The exploration function is
also biased with a model free policy (mapping states to actions directly). Lastly, a slightly different
exploration function is often used [26]. Nodes are initialised with three dimensional embedding
features. The last dimension we use for the storage of the model free policy for a state.

8.1.6 Graph Network

ϕe(ek, vrk , vsk , u) = [vsk [1], vsk [2], 0] + [ekr · vsk [2], 0, 0]T (18)

ρe→v(E′
i) =

∑
k:rk=i

(e′k) (19)

ϕv(e′i, vi, u) = [VNN (vis), 1, πmf (a|vis)]T + e′i (20)

8.1.7 Readout Functions

exp(a|vi) =
√∑

a∈A(vn(a,vi)[2])

1 + vn(a,vi)[2]
· (c1 + ln(

∑
a∈A(vn(a,vi)[2]) + c2 + 1

c2
)) (21)

sexp(a|vi) =
vn(a,vi)[1]

max(1, vn(a,vi)[2])
+ vi[3] · exp(a|vi) (22)

s(a|vi) =
vn(a,vi)[2]∑

a∈A(vn(a,vi)[2])
(23)

πexp = argmax(sexp(a|vi)) (24)

π(a|vi) =
s(a|vi)1/T∑

a∈A s(a|vi)1/T
(25)

8.1.8 Details

T is a temperature parameter that controls the level of greediness of the policy and is often adjusted
during training. Like MCTS action values here also require scaling. However, Alpha Zero implemen-
tations usually do not require that all actions must be taken to ascertain an action value estimate, and
instead actions that are not taken are initialised to 0. Therefore, if the model free policy determines
an action is very unlikely, it may not even be explored once.

8.2 B Model Architectures

Here, we expand on the details of the GNN block and readout functions that make up the GNN policy.

8.2.1 Graph Network Block

Three neural network architectures were used as part of the GN block (fe, fm, fs).

For the state embedding Network fe , in Sokoban and Cartpole the same architecture was used. A 3
layer feedforward neural network with ReLu activation and the following layer architecture was used:
[64,64,32]. In the Travelling Salesman problem, the encoder architecture from Kool et al[19] was
used. We remove the decoder architecture, as we only require an embedding of the state such that the
value can be predicted. Firstly, the graph is encoded using a GNN (we reduce the number of layers to
1 for computational reasons). A global graph embedding called the context hc is calculated (mean of
all the graph embeddings), which is updated using Multi-head attention following Kool et al. This

14

embedding then is used for the state embedding. All state embedding functions embed states to a
dimension = 32. For the Message Network fm a single layer (size 32) feedforward neural network
was used with ReLu activation. For the Attention Network fa a single layer feedforward neural
network (size 32) with no bias and no activation was used. The GRUCell architecture implemented
in pytorch was used with input size = 32 and hidden size = 32.

8.2.2 Readout Functions

There are 3 neural network functions that make up the readout equations (fv, fr1 , fr2). For the
value readout fv we use a budget conditional value function. First we scale the budget between
the maximum and minimum budget used during training and project it to 32 dimensions using a
single layer neural network with ReLu activations. Concatenating with the tree encoding [budget
embedding, tree encoding] we apply a single layer neural network to output a value prediction. For
the first readout function fr1 a three layer neural network with architecture [32,32,1] for the first
two layers ReLu activations were used. For the second readout function fr2 ,this corresponds to
the part of the policy that directly maps states to action logits. For Cartpole and Sokoban here we
embed states with the same embedding function as in the GN block followed by a single layer neural
network mapping the embeddings to a dimension equal to the number of actions. For the travelling
salesman problem we utilised the full encoder-decoder architecture in Kool et al. with a single layer
GNN in the encoder function.

8.3 C Experiments

8.3.1 C.1 Environments

8.3.2 Cartpole with Noise

The Cartpole implementation by OpenAI was used, with the specific version being ’CartPole-v1’.
This implementation was then modified to add noise to each state in the environment. Within one
phase of planning, the noise stays constant for each state. To each state variable, Gaussian noise with
µ = 0 and σ = 0, 2, 10 was added. This makes utilising state information more difficult and policies
have to rely on planning.

8.3.3 Sokoban

The publicly available implementation of Sokoban [25] was used in this paper. Environment specifi-
cations used to generate problems to solve were

• room dimension = (6,6)
• maximum environment steps = 20
• number of boxes = 2.

These specifications were chosen as they are the hardest level of problems where a model free
policy trained using PPO out of the box can learn to improve performance in a computationally
feasible number of environment transitions. To solve harder levels problem specific architectures or
Reinforcement Learning methods are required, which was not the focus of this paper.

8.3.4 Travelling Salesman Problem

We implemented the Travelling Salesman Problem using the OpenAI gym environment. Each state
consists of the coordinates of the cities in the problem defined on a unit square with coordinates
x, y,∈ [0, 1], the current location of the agent, the location the agent needs to return to and the
remaining cities to visit. At each step, the agent receives a reward equal to -distance travelled. At each
action step, the agent has to choose a new city to visit. In this paper, we focus on solving problems of
size 10.

8.3.5 C.2 Training

In this paper, we implement a standard version of Proximal Policy Iteration consisting of two phases.
Trajectory collection and model training. For the trajectory collection phase the most recently updated

15

policy is used to take actions in the environment using a specific search budget or range of budgets
specified. This is performed by 20 separate cpu workers, each collecting 5000

20 transitions. Once
5000 transitions are collected we switch to model updating. For each tree (generalisation from state),
action pair, an advantage estimation Ât is calculated using Generalized Advantage estimation. The
policy and value losses are defined by the following equations. Note that states are replaced with tree
variables Tt to indicate that policies and value functions make decisions on trees instead of states (st).

rt(θ) =
πθ(at|Tt)

πθold(at|Tt)
(26)

Lossπ(θ) = Et[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)] (27)

The value function loss is as follows, with the value targets being the reward to go.

Lossv(θv) = (Vθv (Tt)− V targ
t)2 (28)

The policy and value function are then updated for 40 iterations.

When training according to GNN Dropout the policy is executed with a dropout variable d indicating
a probability for messages to be deleted. In this work, we only consider using dropout of d = 1. With
this dropout policy, we can then define the loss function.

dt(θ, d) =
πθ(at|Tt, d)

πθold(at|Tt)
(29)

Lossdropout(θ, d) = Et[min(dt(θ, d)Ât, clip(dt(θ, d), 1− ϵ, 1 + ϵ)Ât)] (30)

In standard PPO at the first iteration the policy update is on policy, with future updates progressively
becoming more and more off-policy. This dropout update is a more significant off-policy update
compared to the standard PPO update since at the first update the dropout policy is not necessary
close to the full policy. For Cartpole with Noise the difference between the performance in these
two policies lead to unstable updates, however in the two practical problems (Sokoban and TSP) this
problem was not as severe.

Overall the GNN policy is trained with the following loss

Loss = Lossπ + Lossv (31)

The GNN Dropout policy is trained with the following Loss

Loss = Lossπ + Lossv + Lossdropout(θ, d) (32)

The following hyperparameters were used for PPO

• steps per epoch = 5000
• gamma = 0.9
• clip ratio = 0.2
• policy learning rate = 1e-3
• value function learning rate = 5e-3
• update iterations per epoch = 40
• lambda = 0.97
• max episode length = 1000

After each epoch the GNN policies and baselines were evaluated on a fixed number of games to
measure performance during learning. The number of games used for evaluation were 10,40,100 for
Cartpole, Sokoban and Travelling Salesman Problem respectively.

16

8.3.6 C.3 Baselines

8.3.7 Model Free

The model free policy is just a specific instance of the GNN policy with budget = 0.

8.3.8 MCTS

MCTS was performed using the Graph Network functions specified in section A and was implemented
using Deep Graph Library. At each leaf node, a rollout is performed using a random policy in order
to estimate the value of the node. In order for the exploration explotation trade specified by UCB to
be utilized the action values need to be scaled between 0 and 1. We used the method of scaling from
MuZero [26].

Q(sk−1, ak) =
Q(sk−1, ak)−mins,a∈TreeQ(s, a)

maxs,a∈TreeQ(s, a)−mins,a∈TreeQ(s, a)
(33)

Where k is the current time step in the environment. We set the exploration term c at the theoretical
motivated value of c =

√
2. Note that we count random rollout environment transitions as part of the

search budget.

8.3.9 Alpha Zero

The architecture for processing search trees by Alpha Zero follows the method in Schrittwieser et al.
[26] , detailed in Appendix A. There are slight differences to how we train Alpha Zero, which often
involes the use of complex replay buffer strategies. We train Alpha Zero using the same framework
as Proximal Policy iteration. A period of trajectory collection followed by a model training. The only
difference in the model training compared to GNN is that Alpha Zero uses a different policy loss
function. It only updates a model free policy rather than the overall search policy directly.

The value loss error is kept the same as

Lossv(θv) = (Vθv (st)− V targ
t)2. (34)

However, the policy loss is the following

Loss(θ) = KL(π(a|Tt), πmf (a|st)). (35)

This trains the model free policy in a supervised fashion towards the better tree policy. The tree
policy gets implicitly updated by its components (πmf and the value function) being updated, which
improves the overall search policy.

In some implementations a replay buffer is used for Alpha Zero which we do not utilise for any of
the implementations tested in this paper. This ensures a level playing field between GNN training and
Alpha Zero training, reduces the overfitting required for each problem that would require different
replay buffer parameters.

The hyperparameters c1 and c2 used as part of the exploration policy were set the same as commonly
used values in the literature [26].

• c1 = 1.25

• c2 = 19652

Alpha Zero also suffers from problems where if the model free policy becomes too deterministic then
search is limited and the most visited action also ends up being the model free output, leading to a
vicious cycle that destroys learning. This is something that can make Alpha Zero hard to train in
practice. However, we utilise the current popular method to mitigate this of adding Dirichlet noise to
the model free policy for the root node.

πmfroot = 0.75 ∗ πmf + 0.25 ∗Dirichlet(0.3) (36)

Additionally, at test time, Alpha Zero is run greedily.

17

8.4 D Ablations

One important aspect discussed in the paper was the importance of generalisation for the GNN policy.
We find that the ability to generalise to different sizes of search trees is different between problems
and can have a severe effect on the GNN policy. As shown in Sokoban see Figure 4 the GNN policy
slightly outperforms the GNN model free policy. We see that the performance of the GNN on budget
0 is actually fairly weak for this problem and this is likely holding back the GNN policy since rollouts
will not be particularly high quality.

Figure 4: Results for Sokoban, highlighting performance of GNN on budget 0 during training

Figure 5: Results for Travelling Salesman Problem, highlighting performance of GNN on budget 0
during training

On the other hand, for the Travelling Salesman Problem, we see that the GNN with dropout learns a
very strong policy on budget 0 and an even stronger GNN policy. This shows that for certain environ-
ments, the dropout method is very effective for ensuring generalisation. It may be counterintuitive
that the GNN on budget 0 outperforms the model free policy, however this is possible as updating on
budget 0 while acting with a higher budget has the benefit of being able to use the tree based value
function which provide more accurate advantage estimations.

18

	Introduction
	Background
	Markov Decision Processes
	Search in MDPs
	Graph Networks
	Graphs
	Graph Network Block
	GN Block Computation

	Planning Methods as Graph Networks
	Search Tree Graph Representation
	GN Block Sequential Computation
	Planning Algorithms

	Parameterized Graph Network for Planning
	Architecture
	Parameterized Graph Network
	Readout Equations

	Expansion
	Enforcing Generalization
	Training
	Implementation

	Experiments
	Cartpole
	Sokoban
	Travelling Salesman Problem

	Results
	Cartpole
	Practical Planning Problems
	Sokoban
	Travelling Salesman Problem

	Related Work
	Heuristic Search Methods with Learnt Components
	Learnt Search Methods
	Graph Neural Network Architectures
	Combining Learning and Search in Combinatorial Optimization

	Conclusion
	Appendix
	A Graph Networks
	MCTS
	Graph Network
	Readout Functions
	Details
	Alpha Zero
	Graph Network
	Readout Functions
	Details

	B Model Architectures
	Graph Network Block
	Readout Functions

	C Experiments
	C.1 Environments
	Cartpole with Noise
	Sokoban
	Travelling Salesman Problem
	C.2 Training
	C.3 Baselines
	Model Free
	MCTS
	Alpha Zero

	D Ablations

