
A Analysis of the conservatism term553

With the goal of understanding the behavior of our training procedure, we theoretically analyze the554

solution obtained by Eq. 2 for the simpler cases when Q is represented as a table, and when the555

objective in Eq. 2 can be minimized exactly. We derive the minimizer of the objective in Eq. 2 by556

differentiating J with respect to Q:557

8s, a, k, dJ

dQ(s, a)
= 0

⇡�(a|s)
�
Q(s, a)� B⇤Qk(s, a)

�
+ ↵⇡̃�(a|s)Q(s, a) = 0

Q(s, a) (⇡�(a|s) + ↵⇡̃�(a|s)) = ⇡�(a|s)B⇤Qk(s, a)

Qk+1(s, a) =
⇡�(a|s)

⇡�(a|s) + ↵⇡̃�(a|s)| {z }
:=m(s,a)

·B⇤Qk(s, a) (3)

Eq. 3 implies that training with the objective in Eq. 2 performs weighted Bellman backup: unlike the558

standard Bellman backup, training with Eq. 2 multiplies large Q-value targets by a weight m(s, a).559

This weight m(s, a) takes values between 0 and 1, with larger values close to 1 for in-distribution560

actions where (s, a) 2 D, and very small values close to 0 for out-of-distribution actions a at any561

state s (i.e., actions where ⇡�(a|s) is small). Thus, the Bellman backup induced via Eq. 3 should562

effectively prevent over-estimation of Q-values for unseen actions.563

B Q-Transformer Architecture & System564

In this section, we describe the architecture of Q-Transformer as well as the important implementa-565

tion and system details that make it an effective Q-learning algorithm for real robots.566

B.1 Transformer sequence model architecture567

Our neural network architecture is shown in Figure 3. The architecture is derived from RT-1 de-568

sign [1], adapted to accommodate the Q-Transformer framework, and consists of a Transformer569

backbone that reads in images via a convolutional encoder followed by tokenization. Since we ap-570

ply Q-Transformer to a multi-task robotic manipulation problem where each task is specified by571

a natural language instruction, we first embed the natural language instruction into an embedding572

vector via the Universal Sentence Encoder [66]. The embedding vector and images from the robot573

camera are then converted into a sequence of input tokens via a FiLM EfficientNet [67, 68]. In the574

standard RT-1 architecture [1], the robot action space is discretized and the Transformer sequence575

model outputs the logits for the discrete action bins per dimension and per time step. In this work,576

we extend the network architecture to use Q-learning by applying a sigmoid activation to the out-577

put values for each action, and interpreting the resulting output after the sigmoid as Q-values. This578

representation is particularly suitable for tasks with sparse per-episode rewards R 2 [0, 1], since the579

Q-values may be interpreted as probabilities of task success and should always lie in the range [0, 1].580

Note that unlike the standard softmax, this interpretation of Q-values does not prescribe normalizing581

across actions (i.e., each action output can take on any value in [0, 1]).582

Since our robotic system, described in Section B.3, has 8-dimensional actions, we end up with 8583

dimensions per time step and discretize each one into N = 256 value bins. Our reward function is a584

sparse reward that assigns value 1.0 at the last step of an episode if the episode is successful and 0.0585

otherwise. We use a discount rate � = 0.98. As is common in deep RL, we use a target network to586

estimate target Q-values Qk, using an exponential moving average of model weights with ⌧ = 0.01.587

B.2 Conservative Q-learning implementation588

The conservatism penalty in Section 4.2 requires estimating expectations under ⇡�(a|s) and589

⇡̃�(a|s) / (1�⇡�(a|s)), with the latter being especially non-trivial to estimate. We employ a simple590

and crude approximation that we found to work well in practice, replacing ⇡�(a|s) with the empir-591

ical distribution corresponding, for each sampled state-action tuple (sj , aj) 2 D, to a Dirac delta592

centered on aj , such that ⇡�(a|sj) = �(a = aj). This results in a simple expression for ⇡̃�(a|sj)593
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corresponding to the uniform distribution over all other actions, such that ⇡̃�(a|sj) / �(a 6= aj).594

After discretizing the actions, there are N � 1 bins per dimension to exhaustively iterate over when595

computing the conservatism term in Eq. 2, which is the same as taking the average over targets for596

all unseen action values. In our experiments, we find that simply setting the conservatism weight to597

↵ = 1.0 worked best, without additional tuning.598

B.3 Robot system overview599

The robot that we use in this work is a mobile manipulator with a 7-DOF arm with a 2 jaw parallel600

gripper, attached to a mobile base with a head-mounted RGB camera, illustrated in Figure 1. The601

RGB camera provides a 640 ⇥ 512 RGB image, which is downsampled to 320 ⇥ 256 before being602

consumed by the Q-Transformer. See Figure 4 for images from the robot camera view. The learned603

policy is set up to control the arm and the gripper of the robot. Our action space consists of 8604

dimensions: 3D position, 3D orientation, gripper closure command, and an additional dimension605

indicating that the episode should be terminated, which the policy must trigger to receive a positive606

reward upon successful task completion. Position and orientation are relative to the current pose,607

while the gripper command is the absolute close fraction, ranging from fully open to fully closed.608

Orientation is represented via axis-angles, and all actions except whether to terminate are continuous609

actions discretized over their full action range in 256 bins. The termination action is binary, but we610

pad it to be the same size as the other action dimensions to avoid any issues with unequal weights.611

The policy operates at 3 Hz, with actions executed asynchronously [73].612

C Pseudo-code613

Algorithm 1 shows the loss computation for training each action dimension of the Q-Transformer.614

We first use Eq. 1 to compute the maximum Q-values over the next action dimensions. Then we615

compute the Q-target for the given dataset action by using the Bellman update with an additional616

maximization over the Monte-Carlo return and predicted maximum Q-value at the next time step.617

The TD-error is then computed using the Mean-Squared Error. Finally, we set a target of 0 for618

all discretized action bins except the dataset action and add the averaged Mean-Squared Error over619

these dimensions to the TD-Error, which results in the total loss L.620
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Algorithm 1 Temporal difference error and loss computation for one action dimension i at timestep
t, ait.
Input Sequence of state in time window of size w, st�w:t.
Input Language embedding of task instruction l.
Input The state at timestep t+ 1, st+1.
Input Dataset action up to dimension i, {Dajt}ij=0.
Output The loss to optimize Q-Transformer.

Qtarg  Compute maximum Q-values of the next action dimension using Eq. 1

// Compute the maximum between Q-target and Monte Carlo return.

Qtarg  max(MC, Qtarg)

// Compute the temporal difference error.

TDError =
1

2

�
Q-Transformer(l, st�w:t, {aj}ij=1)�Qtarg

�2

// Compute the conservative regularizer.

// The sum is over all action bins not equal to the tokenized

dataset action.

// N is the number of discretization bin.

Reg =
1

2(N � 1)

P

a 6=Dai
t

�
Q-Transformer(l, st�w:t, {aj}i�1

j=1 [ {a})
�2

// Compute the loss function

L = TDError + Reg

Return L as the loss function to optimize Q-Transformer with.

D Q-Transformer value function with a language planner experiments621

Recently, the SayCan algorithm [8] was proposed as a way to combine large language models622

(LLMs) with learned policies and value functions to solve long-horizon tasks. In this framework,623

the value function for each available skill is used to determine the “affordance” of the current state624

for that skill, and a large language model then selects from among the available affordances to take625

a step toward performing some temporally extended task. For example, if the robot is commanded626

to bring all the items on a table, the LLM might propose a variety of semantically meaningful items,627

and select from among them based on the item grasping skill that currently has a high value (cor-628

responding to items that the robot thinks it can grasp). SayCan uses QT-Opt in combination with629

sim-to-real transfer to train Q-functions for these affordances. In the following set of experiments,630

we demonstrate that the Q-Transformer outperforms QT-Opt for affordance estimation without us-631

ing any sim-to-real transfer, entirely using the real world dataset that we employ in the preceding632

experiments.633

Model Precision Recall F1

QT-Opt (sim-to-real) 0.61 0.68 0.64
Q-T w/ relabel 0.76 0.89 0.82

Q-T w/o relabel 0.58 0.93 0.71

Table 1: Affordance estimation comparison: precision,
recall and F1 score when using Q-values to determine
if a task is feasible. Q-Transformer (Q-T) with multi-
task relabeling consistently produces better affordance
estimates.

We first benchmark Q-Transformer on the634

problem of correctly estimating task affor-635

dances from the RT-1 dataset [1]. In addi-636

tion to the standard training on demonstra-637

tions and autonomous data, we introduce638

a training with relabeling, which we found639

particularly useful for affordance estima-640

tion. During relabeling, we sample a ran-641

dom alternate task for a given episode. We642

relabel the task name of the episode to the643

newly sampled task, and set reward to 0.0.644

This ensures that the boundaries between645

tasks are more clearly learned during train-646
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Figure 7: Qualitative comparisons of Q-values from QT-Opt (sim-to-real) and Q-Transformer. Q-
Transformer outputs sharper Q-values for objects close to the robot, which can be grasped faster and
more easily than far objects.

ing. Table 1 shows comparison of performance of our model with and without relabeling as well as647

the sim-to-real QT-Opt model used in SayCan [8]. Both of our models outperform the QT-Opt model648

on F1 score, with the relabeled model outperforming it by a large margin. This demonstrates that our649

Q-function can be effectively used for affordance estimation, even without training with sim-to-real650

transfer. Visualization of the Q-values produced by our Q-function can be found in Figure 7.651

Method Success Rate
Affordance Execution Planning Execution

Q-T w/ relabel Q-T 93 93

QT-Opt (sim-to-real) RT-1 87 67

Table 2: Performance on SayCan style long-horizon
tasks: SayCan queries Q(s, a) in planning to pick a
language instruction, then runs a policy to execute the
plan. Q-Transformer outperforms RT-1 with QT-Opt in
both planning and execution.

We then use Q-Transformer in a long hori-652

zon SayCan style evaluation, replacing653

both the sim-to-real QT-Opt model for af-654

fordance estimation, and the RT-1 policy655

for low-level robotic control. During this656

evaluation, a PaLM language model [74]657

is used to propose task candidates given a658

user query. Q-values are then used to pick659

the task candidate with the highest affor-660

dance score, which is then executed on the661

robot using the execution policy. The Q-662

Transformer used for affordance estima-663

tion is trained with relabeling. The Q-664

Transformer used for low-level control is665

trained without relabeling, since we found relabeling episodes at the task level did not improve ex-666

ecution performance. SayCan with Q-Transformer is better at both planning the sequence of tasks667

and executing those plans, as illustrated in Table 2.668

E Real robotic manipulation tasks used in our evaluation669

We include the complete list of evaluation tasks in our real robot experiments below.670

Drawer pick and place: pick 7up can from top drawer and place on counter, place 7up can into top671

drawer, pick brown chip bag from top drawer and place on counter, place brown chip bag into top672

drawer, pick orange can from top drawer and place on counter, place orange can into top drawer, pick673

coke can from middle drawer and place on counter, place coke can into middle drawer, pick orange674
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from middle drawer and place on counter, place orange into middle drawer, pick green rice chip bag675

from middle drawer and place on counter, place green rice chip bag into middle drawer, pick blue676

plastic bottle from bottom drawer and place on counter, place blue plastic bottle into bottom drawer,677

pick water bottle from bottom drawer and place on counter, place water bottle into bottom drawer,678

pick rxbar blueberry from bottom drawer and place on counter, place rxbar blueberry into bottom679

drawer.680

Open and close drawer: open top drawer, close top drawer, open middle drawer, close middle681

drawer, open bottom drawer, close bottom drawer.682

Move object near target: move 7up can near apple, move 7up can near blue chip bag, move apple683

near blue chip bag, move apple near 7up can, move blue chip bag near 7up can, move blue chip bag684

near apple, move blue plastic bottle near pepsi can, move blue plastic bottle near orange, move pepsi685

can near orange, move pepsi can near blue plastic bottle, move orange near blue plastic bottle, move686

orange near pepsi can, move redbull can near rxbar blueberry, move redbull can near water bottle,687

move rxbar blueberry near water bottle, move rxbar blueberry near redbull can, move water bottle688

near redbull can, move water bottle near rxbar blueberry, move brown chip bag near coke can, move689

brown chip bag near green can, move coke can near green can, move coke can near brown chip690

bag, move green can near brown chip bag, move green can near coke can, move green jalapeno chip691

bag near green rice chip bag, move green jalapeno chip bag near orange can, move green rice chip692

bag near orange can, move green rice chip bag near green jalapeno chip bag, move orange can near693

green jalapeno chip bag, move orange can near green rice chip bag, move redbull can near sponge,694

move sponge near water bottle, move sponge near redbull can, move water bottle near sponge, move695

7up can near blue blastic bottle, move 7up can near green can, move blue plastic bottle near green696

can, move blue plastic bottle near 7up can, move green can near 7up can, move green can near697

blue plastic bottle, move apple near brown chip bag, move apple near green jalapeno chip bag, move698

brown chip bag near green jalapeno chip bag, move brown chip bag near apple, move green jalapeno699

chip bag near apple, move green jalapeno chip bag near brown chip bag.700
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