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Appendix A. Notation Table

Table 4 summarizes the notations used throughout this paper.

Table 4: Notation Table
Notation Description

M Vision-Language Model (VLM)

p1, p2, . . . , pn Pixels in the image with intensities in [0, 255]

R1, R2 Randomly selected regions of image I

P (R1), P (R2) Probability distribution of pixel intensities in regions R1 and R2

E(R1), E(R2) Entropy of regions R1 and R2

∆E Entropy gap between regions R1 and R2

∆Emax Maximum entropy gap

X Random variable representing harmfulness outcomes

X Finite support of random variable X

X̂ Predicted value of X

Pe Probability of error, i.e., Pr(X̂ ̸= X)

H(X|Y1, Y2) Conditional entropy of X given inputs Y1 and Y2
I(X;Y1, Y2) Mutual information between X and the inputs Y1, Y2
Ber(Pe) Bernoulli random variable E with Pr(E = 1) = Pe

H(X) Entropy of subset X ⊆ T

Irot(θ) Region of image after partitioning by a line at angle θ

I⊥rot(θ) Complementary region of image after partitioning at angle θ

P (Irot(θ)) Probability distribution of pixel intensities in Irot(θ)

P (I⊥rot(θ)) Probability distribution of pixel intensities in I⊥rot(θ)

Erot(θ) Entropy of region Irot(θ)

E⊥
rot(θ) Entropy of region I⊥rot(θ)

∆E(θ) Entropy gap between Irot(θ) and I⊥rot(θ)

Appendix B. Additional Algorithms

In this section, we present Algorithm 2, the Maximum Entropy Gap via Rotation Parti-
tioning algorithm for jailbreak detection. Algorithm 2 represents a practical adaptation
of Algorithm 1. Given that performing K trial iterations is undesirable, this version only
requires iterating over angles from 0◦ to 180◦. To streamline the process, each step is simpli-
fied to increments of 30◦, while the remaining steps remain identical to those in Algorithm 1.
The visualization result is shown in Figure 6.

B.1. Experimental Results on Trade-off between Jailbreakability and
Stealthiness

In this section, we examine the linear relationship between the error probability lower bound
Pe and the mutual information I(X;Y1, Y2) in a simple scenario. We begin by selecting a
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Algorithm 2: IEG Algorithm (Implementation based on Rotation Partitioning)

Input: Image I = {p1, p2, . . . , pn} with pixel intensities in [0, 255]
Output: Maximum entropy gap ∆EmaxMaximum entropy gap ∆Emax

Initialize: ∆Emax ← 0
for θ ∈ [0, 180◦] do

Partition I into Irot(θ) and I⊥rot(θ) by a line at angle θ
Calculate probability distribution P (Irot(θ)) for Irot(θ)
Calculate probability distribution P (I⊥rot(θ)) for I

⊥
rot(θ)

Compute entropy Erot(θ) = −
∑

x∈[0,255] P (Irot(θ))(x) logP (Irot(θ))(x)

Compute entropy E⊥
rot(θ) = −

∑
x∈[0,255] P (I⊥rot(θ))(x) logP (I⊥rot(θ))(x)

Compute entropy gap ∆E(θ) = Erot(θ)− E⊥
rot(θ)

if |∆E(θ)| > |∆Emax| then
∆Emax ← ∆E(θ)

end
return ∆Emax

end

Figure 6: Visualization of Algorithm 2

jailbreak alphabet set from an online resource1, which contains over 1,730 words and phrases
considered inappropriate by Google, including curse words, insults, and vulgar language.
This list is often used for profanity filters on websites and platforms.

Next, we compute Eq. (3) from Theorem 2 to quantify the relationship. To illustrate the
results, we choose several values of the entropy H(X), ranging from 2 bits to 10 bits2, and
present the outcome in Figure 7(a). We make two key observations from Figure 7(a). First,
as mutual information increases, the error probability decreases. Second, asH(X) increases,
the error probability rises, indicating that if jailbreak words are uniformly distributed, the
jailbreak success rate tends to decrease. As illustrated in Figure 7(b), the cardinality of

1. https://www.freewebheaders.com/full-list-of-bad-words-banned-by-google/
2. With |X | = 1, 730 and so log |X | ≈ 10.76.

https://www.freewebheaders.com/full-list-of-bad-words-banned-by-google/
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the possible jailbreak alphabet sets varies, indicating that as the number of words on the
blacklist increases, the jailbreak success rate decreases.

(a) Fano’s Inequality curves for different
H(X).

(b) Fano’s Inequality curves for different
|X |.

Figure 7: Fano’s Inequality curves.

Appendix C. Additional experiments

We further evaluate on a recent open-source model, DeepSeek-VL2-Small. Results align
with those on earlier architectures, corroborating the generality of IEG (Table 5).

Proprietary model note. On a held-out set of 100 samples, we observed an attack
success rate of 0 on GPT-5. While this is a small-scale snapshot, it offers an additional
indication that IEG can transfer across model families; a fuller evaluation on proprietary
systems is left for future work.

Appendix D. Proof of Theorems

Proof of Theorem 2: The observations are (Y1, Y2), and the predictor X̂ = M(Y1, Y2) is
a deterministic function of these observations. Thus, X → (Y1, Y2) → X̂ forms a Markov
chain. By the data processing inequality for mutual information, I(X; X̂) ≤ I(X;Y1, Y2).
Since H(X|V ) = H(X)− I(X;V ) for any variable V , this implies:

H(X|X̂) = H(X)− I(X; X̂) ≥ H(X)− I(X;Y1, Y2) = H(X|Y1, Y2)

Fano’s inequality, applied to the estimation of X by X̂, states:

H(Ber(Pe)) + Pe log(|X | − 1) ≥ H(X|X̂)

Combining this with H(X|X̂) ≥ H(X|Y1, Y2), we directly obtain equation Eq. (4).
Equation Eq. (3) is another common form of Fano’s inequality. It can be derived

from H(X|X̂) ≤ H(Ber(Pe)) + Pe log(|X | − 1). Since H(Ber(Pe)) ≤ 1 (for log2), we have
H(X|X̂) ≤ 1 + Pe log(|X | − 1). A slightly looser but common upper bound is H(X|X̂) ≤
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Table 5: Post-defense ASR on DeepSeek-VL2-Small (lower is better). Numbers in paren-
theses denote absolute drops from the no-defense baseline.

Defense Attack ASR

No Defense FigStep 0.06–0.07
MM-SafetyBench 0.05–0.06
HADES 0.08–0.09

JailGuard FigStep 0.02 (0.04–0.05↓)
MM-SafetyBench 0.02 (0.03–0.04↓)
HADES 0.03 (0.05–0.06↓)

AdaShield-A FigStep 0.01 (0.05–0.06↓)
MM-SafetyBench 0.00 (0.05–0.06↓)
HADES 0.00 (0.08–0.09↓)

MLLM-Protector FigStep 0.01 (0.05–0.06↓)
MM-SafetyBench 0.02 (0.03–0.04↓)
HADES 0.01 (0.07–0.08↓)

IEG (Ours) FigStep 0.01 (0.05–0.06↓)
MM-SafetyBench 0.00 (0.05–0.06↓)
HADES 0.00 (0.08–0.09↓)

1 + Pe log |X |. Rearranging this gives Pe ≥ H(X|X̂)−1
log |X | . Using H(X|X̂) ≥ H(X|Y1, Y2), we

get:

Pe ≥
H(X|Y1, Y2)− 1

log |X |

The second line of Eq. (3) follows from H(X|Y1, Y2) = H(X)− I(X;Y1, Y2).

Note that Corollary 3 is strongly connected with Algorithm 1.

Proof of Corollary 3: From Theorem 2, the error probability Pe is lower bounded by a
quantity that monotonically decreases as I(X;Y1, Y2) increases:

Pe ≥
H(X)− I(X;Y1, Y2)− 1

log |X |

Therefore, to minimize this lower bound on Pe (and thus to strive for the minimum achiev-
able error P ∗

e ), we must maximize the term I(X;Y1, Y2). The problem then becomes se-
lecting or designing Y1 and Y2 (e.g., features, sensor data) such that I(X;Y1, Y2) is maxi-
mized, while adhering to the given constraint (e.g., I(X;Y1) + I(X;Y2) ≤ C). Maximizing
I(X;Y1, Y2) generally involves choosing Y1 and Y2 to provide complementary (synergistic
or non-redundant) information about X.

Proof of Theorem 4: We have a Markov chain X → (Y1, Y2) → Z → X̂. From the
data processing inequality, I(X; X̂) ≤ I(X;Z) ≤ I(X;Y1, Y2). This implies H(X|X̂) ≥
H(X|Z) ≥ H(X|Y1, Y2).
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Applying the Fano inequality form from Eq. (3) to the estimation of X from Z (via
X̂ = M2(Z)):

Pe ≥
H(X|X̂)− 1

log |X |

Since H(X|X̂) ≥ H(X|Z) (because X̂ is a function of Z), we have:

Pe ≥
H(X|Z)− 1

log |X |

We can rewrite H(X|Z) using the definition of mutual information: H(X|Z) = H(X) −
I(X;Z). Also, H(X|Y1, Y2) = H(X)− I(X;Y1, Y2). Substituting these into the RHS :

(H(X)− I(X;Y1, Y2))− 1

log |X |
+

I(X;Y1, Y2)− I(X;Z)

log |X |

=
H(X)− I(X;Y1, Y2)− 1 + I(X;Y1, Y2)− I(X;Z)

log |X |

=
H(X)− I(X;Z)− 1

log |X |

=
H(X|Z)− 1

log |X |

This confirms that the two expressions for the lower bound are equivalent. The term
I(X;Y1, Y2)− I(X;Z) is non-negative due to the data processing inequality (Z is processed
from Y1, Y2), and represents the information about X that is lost when passing from (Y1, Y2)
to Z.

Proof of Proposition 5: (i) Since only Ω carriesX-dependent signal, I(X;Y2) = I(X;Y2,Ω)
and the per-pixel MI adds up over Ω. (ii) By Fannes’ continuity of entropy (discrete case),
|H(Px)−H(P0)| ≤ h(ε) + ε log(d−1) whenever ∥Px − P0∥1/2 ≤ ε ≤ 1/2. Thus ∆E ≤ τ im-
plies ∥Px−P0∥1 ≤ 2f−1(τ, d) for all x. (iii) Under the minimal-mass condition, the local KL
is upper-bounded by the squared ℓ1 distance: DKL(Px∥P0) ≤ 1

β∥Px − P0∥22 ≤ 1
β∥Px − P0∥21.

(iv) Standard channel decompositions yield I(X;Y2,Ω) ≤
∑

u∈Ω EX

[
DKL(Px∥P0)

]
, hence

I(X;Y2) ≤ |Ω| · 4β
(
f−1(τ, d)

)2
, which matches the stated Φ up to a constant factor.

Consequence with Theorem 2. Combining Proposition 1 with the Fano-type lower
bound, reducing the prediction error necessarily requires increasing I(X;Y1, Y2); under the
localized embedding model, this cannot be achieved while keeping ∆E arbitrarily small.
This formalizes the success–stealthiness tension for structure-based attacks.

Theorem 6 (Detection Guarantee) Let I be an image with adversarial modifications

affecting at least α fraction of the image area. For any δ > 0, if we set K =
⌈
log(1/δ)

α

⌉
random trials in Algorithm 1, then the probability of failing to detect the modification is at
most δ.
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Proof For each random partition (R1, R2), the probability of the partition line intersecting
the modified region is at least α. Therefore, the probability of missing the modification in
a single trial is at most (1 − α). After K independent trials, the probability of missing in

all trials is at most (1− α)K . Setting K =
⌈
log(1/δ)

α

⌉
ensures:

(1− α)K ≤ exp(−αK)

≤ exp

(
−α · log(1/δ)

α

)
= exp(− log(1/δ))

= δ

This implies that with K trials, we detect the modification with probability at least
1− δ.

Corollary 7 (Practical Detection Bound) For a desired confidence level of 95% (δ =
0.05) and assuming the adversarial modification affects at least 10% of the image (α = 0.1),
setting K = 30 trials is sufficient for reliable detection.

Proof With α = 0.1 and δ = 0.05:

K =

⌈
log(1/0.05)

0.1

⌉
=

⌈
3

0.1

⌉
= 30
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