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Abstract

Dynamical systems minimizing an energy are ubiquitous in geometry and physics.1

We propose a gradient flow framework for GNNs where the equations follow the2

direction of steepest descent of a learnable energy. This approach allows to analyse3

the GNN evolution from a multi-particle perspective as learning attractive and4

repulsive forces in feature space via the positive and negative eigenvalues of a5

symmetric ‘channel-mixing’ matrix. We perform spectral analysis of the solutions6

and conclude that gradient flow graph convolutional models can induce a dynamics7

dominated by the graph high frequencies, which is desirable for heterophilic8

datasets. We also describe structural constraints on common GNN architectures9

allowing to interpret them as gradient flows. We perform thorough ablation studies10

corroborating our theoretical analysis and show competitive performance of simple11

and lightweight models on real-world homophilic and heterophilic datasets.12

1 Introduction and motivations13

Graph neural networks (GNNs) [38, 20, 21, 36, 7, 15, 27] and in particular their Message Passing14

formulation (MPNN) [19] have become the standard ML tool for dealing with different types of15

relations and interactions, ranging from social networks to particle physics and drug design. One16

of the often cited drawbacks of traditional GNN models is their poor ‘explainability’, making it17

hard to know why and how they make certain predictions [46, 47], and in which situations they18

may work and when they would fail. Limitations of GNNs that have attracted attention are over-19

smoothing [29, 30, 8], over-squashing and bottlenecks [1, 40], and performance on heterophilic data20

[31, 51, 13, 4, 45] – where adjacent nodes usually have different labels.21

time

Figure 1: GRAFF dynamics:
attractive and repulsive forces
lead to a non-smoothing pro-
cess able to separate labels.

Contributions. We propose a Gradient Flow Framework22

(GRAFF) where the GNN equations follow the direction of steep-23

est descent of a learnable energy. Thanks to this framework we can24

(i) interpret GNNs as a multi-particle dynamics where the learned25

parameters determine pairwise attractive and repulsive potentials26

in the feature space. This sheds light on how GNNs can adapt to27

heterophily and explains their performance and the smoothness of28

the prediction. (ii) GRAFF leads to residual convolutional models29

where the channel-mixing W is performed by a shared symmet-30

ric bilinear form inducing attraction and repulsion via its positive31

and negative eigenvalues, respectively. We theoretically investi-32

gate the interaction of the graph spectrum with the spectrum of the33

channel-mixing, proving that if there is more mass on the negative34

eigenvalues of W, then the dynamics is dominated by the graph-35

high frequencies, which could be desirable on heterophilic graphs.36

We also extend results of [29, 30, 8] by showing that when we drop37

the residual connection intrinsic to the gradient flow framework,38

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.



graph convolutional models always induce a low-frequency dominated dynamics independent of the39

sign and magnitude of the spectrum of the channel-mixing. We also discuss how simple choices40

make common architectures fit GRAFF and conduct thorough ablation studies to corroborate the the-41

oretical analysis on the role of the spectrum of W. (iii) We crystallize an instance of our framework42

into a linear, residual, convolutional model that achieves competitive performance on homophilic and43

heterophilic real world graphs whilst being faster than GCN.44

Related work. Our analysis is related to studying GNNs as filters on the graph spectrum [15, 24,45

2, 25] and over-smoothing [29, 30, 8, 50] and partly adopts techniques similar to [30]. The key46

difference is that we also consider the spectrum of the ‘channel-mixing’ matrix. The concept of47

gradient flows has been a standard tool in physics and geometry [16], from which they were adopted48

for image processing [26], and recently used in ML [35] for the analysis of Transformers [41] – see49

also [18] for discussion of loss landscapes. Our continuous-time evolution equations follows the spirit50

of Neural ODES [22, 12, 3] and the study of GNNs as continuous dynamical systems [44, 10, 17, 9].51

Outline. In Section 2, we review the continuous and discrete Dirichlet energy and the associated52

gradient flow framework. We formalize the notion of over-smoothing and low(high)-frequency-53

dominated dynamics to investigate GNNs and study the dominant components in their evolution. We54

extend the graph Dirichlet energy to allow for a non-trivial norm for the feature edge-gradient. This55

leads to gradient flow equations that diffuse the features and over-smooth in the limit. Accordingly,56

in Section 3 we introduce a more general energy with a symmetric channel-mixing matrix W giving57

rise to attractive and repulsive pairwise terms via its positive and negative eigenvalues and show58

that the negative spectrum can induce high-frequency-dominant dynamics. In Section 4 we first59

compare with continuous GNN models and then discretize the equations and provide a ‘recipe’ for60

making standard GNN architectures fit a gradient flow framework. We adapt the spectral analysis to61

discrete-time showing that gradient flow convolutional models can generate a dynamics dominated by62

the high frequencies via the negative eigenvalues of W while this is impossible if we drop the residual63

connection. In Section 5 we corroborate our theoretical analysis on the role of the spectrum of W64

via ablation studies on graphs with varying homophily. Experiments on real world datasets show a65

competitive performance of our model despite its simplicity and reduced number of parameters.66

2 Gradient-flow formalism67

Notations adopted throughout the paper. Let G = (V,E) be an undirected graph with n nodes.68

We denote by F ∈ Rn×d the matrix of d-dimensional node features, by fi ∈ Rd its i-th row69

(transposed), by fr ∈ Rn its r-th column, and by vec(F) ∈ Rnd the vectorization of F obtained70

by stacking its columns. Given a symmetric matrix B, we let λB+, λ
B
− denote its most positive and71

negative eigenvalues, respectively, and ρB be its spectral radius. If B ⪰ 0, then gap(B) denotes the72

positive smallest eigenvalue of B. ḟ(t) denotes the temporal derivative, ⊗ is the Kronecker product73

and ‘a.e.’ means almost every w.r.t. Lebesgue measure and usually refers to data in the complement74

of some lower dimensional subspace in Rn×d. Proofs and additional results appear in the Appendix.75

Starting point: a geometric parallelism. To motivate a gradient-flow approach for GNNs, we start76

from the continuous case (see Appendix A.1 for details). Consider a smooth map f : Rn → (Rd, h)77

with h a constant metric represented by H ⪰ 0. The Dirichlet energy of f is defined by78

E(f, h) = 1

2

∫
Rn

∥∇f∥2h dx =
1

2

d∑
q,r=1

n∑
j=1

∫
Rn

hqr∂jf
q∂jf

r(x)dx (1)

and measures the ‘smoothness’ of f . A natural approach to find minimizers of E - called harmonic79

maps - was introduced in [16] and consists in studying the gradient flow of E , wherein a given map80

f(0) = f0 is evolved according to ḟ(t) = −∇fE(f(t)). These type of evolution equations have81

historically been the core of variational and PDE-based image processing; in particular, gradient82

flows of the Dirichlet energy were shown [26] to recover the Perona-Malik nonlinear diffusion [32].83

Motivation: GNNs for node-classification. We wish to extend the gradient flow formalism to node84

classification on graphs. Assume we have a graph G, node-features F0 and labels {yi} on Vtrain ⊂ V,85

and that we want to predict the labels on Vtest ⊂ V. A GNN typically evolves the features via some86
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parametric rule, GNNθ(G,F0), and uses a decoding map for the prediction y = ψDE(GNNθ(G,F0)).87

In graph convolutional models [15, 27], GNNθ consists of two operations: applying a shared linear88

transformation to the features (‘channel mixing’) and propagating them along the edges of the graph89

(‘diffusion’). Our goal consists in studying when GNNθ is the gradient flow of some parametric class90

of energies Eθ : Rn×d → R, which generalize the Dirichlet energy. This means that the parameters91

can be interpreted as ‘finding the right notion of smoothness’ for our task. We evolve the features by92

Ḟ(t) = −∇FEθ(F(t)) with prediction y = ψDE(F(T )) for some optimal time T .93

Why a gradient flow? Since Ėθ(F(t)) = −||∇FEθ(F(t))||2, the energy dissipates along the gradient94

flow. Accordingly, this framework allows to explain the GNN dynamics as flowing the node features95

in the direction of steepest descent of Eθ. Indeed, we find that parametrizing an energy leads to96

equations governed by attractive and repulsive forces that can be controlled via the spectrum of97

symmetric ‘channel-mixing’ matrices. This shows that by learning to distribute more mass over the98

negative (positive) eigenvalues of the channel-mixing, gradient flow models can generate dynamics99

dominated by the higher (respectively, lower) graph frequencies and hence tackle different homophily100

scenarios. The gradient flow framework also leads to sharing of the weights across layers (since we101

parametrize the energy rather than the evolution equations, as usually done in GNNs), allowing us to102

reduce the number of parameters without compromising performance (see Table 1).103

Analysis on graphs: preliminaries. Given a connected graph G with self-loops, its adjacency104

matrix A is defined as aij = 1 if (i, j) ∈ E and zero otherwise. We let D = diag(di) be the degree105

matrix and write Ā := D−1/2AD−1/2. Let F ∈ Rn×d be the matrix representation of a signal. Its106

graph gradient is (∇F)ij := fj/
√
dj − fi/

√
di. We define the Laplacian as ∆ := − 1

2div∇ (the107

divergence div is the adjoint of ∇), represented by ∆ = I− Ā ⪰ 0. We refer to the eigenvalues of108

∆ as frequencies: the lowest frequency is always 0 while the highest frequency is ρ∆ ≤ 2 [14]. As109

for the continuum case, the gradient allows to define a (graph) Dirichlet energy as [49]110

EDir(F) :=
1

4

∑
i

∑
j:(i,j)∈E

||(∇F)ij ||2 ≡ 1

4

∑
(i,j)∈E

|| fi√
di

− fj√
dj

||2 =
1

2
trace(F⊤∆F), (2)

where the extra 1
2 is for convenience. As for manifolds, EDir measures smoothness. If we stack the111

columns of F into vec(F) ∈ Rnd, the gradient flow of EDir yields the heat equation on each channel:112

vec(Ḟ(t)) = −∇vec(F)EDir(vec(F(t))) = −(Id ⊗∆)vec(F(t)) ⇐⇒ ḟr(t) = −∆fr(t), (3)

for 1 ≤ r ≤ d. Similarly to [8], we rely on EDir to assess whether a given dynamics t 7→ F(t) is a113

smoothing process. A different choice of Laplacian L = D −A with non-normalized adjacency114

induces the analogous Dirichlet energy EDir
L (F) = 1

2 trace(F
⊤LF). Throughout this paper, we rely115

on the following definitions (see Appendix A.3 for further equivalent formulations and justifications):116

Definition 2.1. Ḟ(t) = GNNθ(F(t), t) initialized at F(0) is smoothing if EDir(F(t)) ≤ C + φ(t),117

with C a constant only depending on EDir(F(0)) and φ̇(t) ≤ 0. Over-smoothing occurs if either118

EDir(F(t)) → 0 or EDir
L (F(t)) → 0 for t→ ∞.119

Our notion of ‘over-smoothing’ is a relaxed version of the definition in [34] – although in the linear120

case one always finds an exponential decay of EDir. We note that EDir(F(t)) → 0 iff ∆fr(t) → 0 for121

each column fr. As in [30], this corresponds to a loss of separation power along the solution where122

nodes with equal degree become indistinguishable since we converge to ker(∆) (if we replaced ∆123

with L then we would not even be able to separate nodes with different degrees in the limit).124

To motivate the next definition, consider Ḟ(t) = ĀF(t). Despite ||F(t)|| being unbounded for a.e.125

F(0), the low-frequency components are growing the fastest and indeed F(t)/||F(t)|| → F∞ s.t.126

∆fr∞ = 0 for 1 ≤ r ≤ d. We formalize this scenario – including the opposite case of high-frequency127

components being dominant – by studying EDir(F(t)/||F(t)||), i.e. the Rayleigh quotient of Id ⊗∆.128

Definition 2.2. Ḟ(t) = GNNθ(F(t), t) initialized at F(0) is Low/High-Frequency-Dominant129

(L/HFD) if EDir(F(t)/||F(t)||) → 0 (respectively, EDir(F(t)/||F(t)||) → ρ∆/2) for t→ ∞.130

We report a consequence of Definition 2.2 and refer to Appendix A.3 for additional details and131

motivations for the characterizations of LFD and HFD.132

Lemma 2.3. GNNθ is LFD (HFD) iff for each tj → ∞ there exist tjk → ∞ and F∞ s.t.133

F(tjk)/||F(tjk)|| → F∞ and ∆fr∞ = 0 ( ∆fr∞ = ρ∆fr∞, respectively).134
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If a graph is homophilic, adjacent nodes are likely to share the same label and we expect a smoothing135

or LFD dynamics enhancing the low-frequency components to be successful at node classification136

tasks [43, 28]. In the opposite case of heterophily, the high-frequency components might contain more137

relevant information for separating classes [4, 5] – the prototypical example being the eigenvector of138

∆ associated with largest frequency ρ∆ separating a regular bipartite graph. In other words, the class139

of heterophilic graphs contain instances where signals should be sharpened by increasing EDir rather140

than smoothed out. Accordingly, an ideal framework for learning on graphs must accommodate both141

of these opposite scenarios by being able to induce either an LFD or a HFD dynamics.142

Parametric Dirichlet energy: channel-mixing as metric in feature space. In eq. (1) a constant143

nontrivial metric h in Rd leads to the mixing of the feature channels. We adapt this idea by considering144

a symmetric positive semi-definite H = W⊤W with W ∈ Rd×d and using it to generalize EDir as145

EDir
W (F) :=

1

4

d∑
q,r=1

∑
i

∑
j:(i,j)∈E

hqr(∇fq)ij(∇fr)ij =
1

4

∑
(i,j)∈E

||W(∇F)ij ||2. (4)

We note the analogy with eq. (1), where the sum over the nodes replaces the integration over the146

domain and the j-th derivative at some point i is replaced by the gradient along the edge (i, j) ∈ E.147

We generally treat W as learnable weights and study the gradient flow of EDir
W :148

Ḟ(t) = −∇FEDir
W (F(t)) = −∆F(t)W⊤W. (5)

We see that eq. (5) generalizes eq. (3). Below ‘smoothing’ is intended as in Definition 2.1.149

Proposition 2.4. Let P ker
W be the projection onto ker(W⊤W). Equation (5) is smoothing since150

EDir(F(t)) ≤ e−2tgap(W⊤W)gap(∆)||F(0)||2 + EDir((P ker
W ⊗ In)vec(F(0))), t ≥ 0.

In fact F(t) → F∞ s.t. ∃ ϕ∞ ∈ Rd: for each i ∈ V we have (f∞)i =
√
diϕ∞ + P ker

W fi(0).151

Proposition 2.4 implies that no weight matrix W in eq. (5) can separate the limit embeddings F(∞)152

of nodes with same degree and input features. If W has a trivial kernel, then nodes with same degrees153

converge to the same representation and over-smoothing occurs as per Definition 2.1. Differently154

from [29, 30, 8], over-smoothing occurs independently of the spectral radius of the ‘channel-mixing’155

if its eigenvalues are positive – even for equations which lead to residual GNNs when discretized156

[12]. According to Proposition 2.4, we do not expect eq. (5) to succeed on heterophilic graphs where157

smoothing processes are generally harmful – this is confirmed in Figure 2 (see prod-curve). To158

remedy this problem, we generalize eq. (5) to a gradient flow that can be HFD as per Definition 2.2.159

3 A general parametric energy for pairwise interactions160

We first rewrite the energy EDir
W in eq. (4) as161

EDir
W (F) =

1

2

∑
i

⟨fi,W⊤Wfi⟩ −
1

2

∑
i,j

āij⟨fi,W⊤Wfj⟩. (6)

We then define a new, more general energy by replacing the occurrences of W⊤W with new162

symmetric matrices Ω,W ∈ Rd×d since we also want to generate repulsive forces:163

Etot(F) :=
1

2

∑
i

⟨fi,Ωfi⟩ −
1

2

∑
i,j

āij⟨fi,Wfj⟩ ≡ Eext
Ω (F) + Epair

W (F), (7)

with associated gradient flow of the form (see Appendix B)164

Ḟ(t) = −∇FEtot(F(t)) = −F(t)Ω+ ĀF(t)W. (8)

Note that eq. (8) is gradient flow of some energy F 7→ Etot(F) iff both Ω and W are symmetric.165

A multi-particle system point of view: attraction vs repulsion. Consider the d-dimensional166

node-features as particles in Rd with energy Etot. While the term Eext
Ω is independent of the graph167

topology and represents an external field in the feature space, the second term Epair
W constitutes a168

potential energy, with W a bilinear form determining the pairwise interactions of adjacent node169
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representations. Given a symmetric W, we write W = Θ⊤
+Θ+ − Θ⊤

−Θ−, by decomposing the170

spectrum of W in positive and negative values.We can rewrite Etot = Eext
Ω−W + EDir

Θ+
− EDir

Θ−
, i.e.171

Etot(F) =
1

2

∑
i

⟨fi, (Ω−W)fi⟩+
1

4

∑
i,j

||Θ+(∇F)ij ||2 −
1

4

∑
i,j

||Θ−(∇F)ij ||2. (9)

The gradient flow of Etot minimizes EDir
Θ+

and maximizes EDir
Θ−

. The matrix W encodes repulsive172

pairwise interactions via its negative-definite component Θ− which lead to terms ||Θ−(∇F)ij ||173

increasing along the solution. The latter affords a ‘sharpening’ effect desirable on heterophilic graphs174

where we need to disentangle adjacent node representations and hence ‘magnify’ the edge-gradient.175

Spectral analysis of the channel-mixing. We will now show that eq. (8) can lead to a HFD176

dynamics. To this end, we assume that Ω = 0 so that eq. (8) becomes Ḟ(t) = ĀF(t)W. According177

to eq. (9) the negative eigenvalues of W lead to repulsion. We show that the latter can induce HFD178

dynamics as per Definition 2.2. We let P ρ−
W be the orthogonal projection into the eigenspace of179

W ⊗ Ā associated with the eigenvalue ρ− := |λW− |(ρ∆ − 1). We define ϵHFD explicitly in eq. (24).180

Proposition 3.1. If ρ− > λW+ , then Ḟ(t) = ĀF(t)W is HFD for a.e. F(0): there exists ϵHFD s.t.181

EDir(F(t)) = e2tρ−
(ρ∆

2
||P ρ−

W F(0)||2 +O(e−2tϵHFD)
)
, t ≥ 0,

and F(t)/||F(t)|| converges to F∞ ∈ Rn×d such that ∆fr∞ = ρ∆fr∞, for 1 ≤ r ≤ d.182

Proposition 3.1 shows that if enough mass of the spectrum of the ‘channel-mixing’ is distributed over183

the negative eigenvalues, then the evolution is dominated by the graph high frequencies. This analysis184

is made possible in our gradient flow framework where W must be symmetric. The HFD dynamics185

induced by negative eigenvalues of W is confirmed in Figure 2 (neg-prod-curve in the bottom chart).186

A more general energy. Equations with a source term may have better expressive power [44, 11, 39].187

In our framework this means adding an extra energy term of the form Esource
W̃

(F) := β⟨F,F(0)W̃⟩188

to eq. (7) with some learnable β and W̃. This leads to the following gradient flow:189

Ḟ(t) = −F(t)Ω+ ĀF(t)W − βF(0)W̃. (10)
We also observe that one could replace the fixed matrix Ā with a more general symmetric graph190

vector field A satisfying Aij = 0 if (i, j) /∈ E, although in this work we focus on the case A = Ā.191

We also note that when Ω = W, then eq. (8) becomes Ḟ(t) = −∆F(t)W. We perform a spectral192

analysis of this case in Appendix B.2.193

Non-linear activations. In Appendix B.3 we discuss non-linear gradient flow equations. Here194

we study what happens if the gradient flow in eq. (10) is activated pointwise by σ : R → R. We195

show that although we are no longer a gradient flow, the learnable multi-particle energy Etot is still196

decreasing along the solution, meaning that the interpretation of the channel-mixing W inducing197

attraction and repulsion via its positive and negative eigenvalues respectively is preserved.198

Proposition 3.2. Consider a non-linear map σ : R → R such that the function x 7→ xσ(x) ≥ 0. If199

t 7→ F(t) solves the equation200

Ḟ(t) = σ
(
−F(t)Ω+ ĀF(t)W − βF(0)W̃

)
,

where σ acts elementwise, then201

dEtot(F(t))

dt
≤ 0.

A proof of this result and more details and discussion are reported in Appendix E. We emphasize202

here that differently from previous results about behaviour of ReLU wrt EDir [30, 8], we deal with a203

much more general energy that can also induce repulsion and a more general family of activation204

functions (that include ReLU, tanh, arctan and many others).205

4 Comparison with GNNs206

In this Section, we study standard GNN models from the perspective of our gradient flow framework.207
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4.1 Continuous case208

Continuous GNN models replace layers with continuous time. In contrast with Proposition 3.1,209

we show that three main linearized continuous GNN models are either smoothing or LFD as210

per Definition 2.2. The linearized PDE-GCND model [17] corresponds to choosing β = 0 and211

Ω = W = K(t)⊤K(t) in eq. (10), for some time-dependent family t 7→ K(t) ∈ Rd×d:212

ḞPDE−GCND(t) = −∆F(t)K(t)⊤K(t).

The CGNN model [44] can be derived from eq. (10) by setting Ω = I− Ω̃,W = W̃ = I, β = 1:213

ḞCGNN(t) = −∆F(t) + F(t)Ω̃+ F(0).

Finally, in linearized GRAND [10] a row-stochastic matrix A(F(0)) is learned from the encoding214

via an attention mechanism and we have215

ḞGRAND(t) = −∆RWF(t) = −(I−A(F(0)))F(t).

We note that if A is not symmetric, then GRAND is not a gradient flow.216

Proposition 4.1. PDE−GCND, CGNN and GRAND satisfy the following:217

(i) PDE−GCND is a smoothing model: ĖDir(FPDE−GCND
(t)) ≤ 0.218

(ii) For a.e. F(0) it holds: CGNN is never HFD and if we remove the source term, then219

EDir(FCGNN(t)/||FCGNN(t)||) ≤ e−gap(∆)t.220

(iii) If G is connected, FGRAND(t) → µ as t→ ∞, with µr = mean(fr(0)), 1 ≤ r ≤ d.221

By (ii) the source-free CGNN-evolution is LFD independent of Ω̃. Moreover, by (iii), over-smoothing222

occurs for GRAND as per Definition 2.1. On the other hand, Proposition 3.1 shows that the negative223

eigenvalues of W can make the source-free gradient flow in eq. (8) HFD. Experiments in Section 5224

confirm that the gradient flow model outperforms CGNN and GRAND on heterophilic graphs.225

4.2 Discrete case226

We now describe a discrete version of our gradient flow model and compare it to ‘discrete’ GNNs227

where discrete time steps correspond to different layers. In the spirit of [12], we use explicit Euler228

scheme with step size τ ≤ 1 to solve eq. (10) and set W̃ = I. In the gradient flow framework we229

parametrize the energy rather than the actual equations, which leads to symmetric channel-mixing230

matrices Ω,W ∈ Rd×d that are shared across the layers. Since the matrices are square, an encoding231

block ψEN : Rn×p → Rn×d is used to process input features F0 ∈ Rn×p and generally reduce the232

hidden dimension from p to d. Moreover, the iterations inherently lead to a residual architecture233

because of the explicit Euler discretization:234

F(t+ τ) = F(t) + τ
(
−F(t)Ω+ ĀF(t)W + βF(0)

)
, F(0) = ψEN(F0), (11)

with prediction y = ψDE(F(T )) produced by a decoder ψDE : Rn×d → Rn×k, where k is the235

number of label classes and T integration time of the form T = mτ , so that m ∈ N represents the236

number of layers. Although eq. (11) is linear, we can include non-linear activations in ψEN, ψDE237

making the entire model generally non-linear. We emphasize two important points:238

• Since the framework is residual, even if the message-passing is linear, this is not equivalent239

to collapsing the dynamics into a single layer with diffusion matrix Ām, with m the number240

of layers, see eq. (27) in the appendix where we derive the expansion of the solution.241

• We could also activate the equations pointwise and maintain the physics interpretation thanks242

to Proposition 3.2 to gain greater expressive power. In the following though, we mainly243

stick to the linear discrete gradient flow unless otherwise stated.244

Are discrete GNNs gradient flows? Given a (learned) symmetric graph vector field A ∈ Rn×n245

satisfying Aij = 0 if (i, j) /∈ E, consider a family of linear GNNs with shared weights of the form246

F(t+ 1) = F(t)Ω+AF(t)W + βF(0)W̃, 0 ≤ t ≤ T. (12)

Symmetry is the key requirement to interpret GNNs in eq. (12) in a gradient flow framework.247
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Lemma 4.2. Equation (12) is the unit step size discrete gradient flow of Eext
I−Ω + Epair

A,W − Esource
W̃

,248

with Epair
A,W defined by replacing Ā with A in eq. (7), iff Ω and W are symmetric.249

Lemma 4.2 provides a recipe for making standard architectures into a gradient flow, with symmetry250

being the key requirement. When eq. (12) is a gradient flow, the underlying GNN dynamics is251

equivalent to minimizing a multi-particle energy by learning attractive and repulsive directions in252

feature space as discussed in Section 3. In Appendix C.2, we show how Lemma 4.2 covers linear253

versions of GCN [27, 43], GAT [42], GraphSAGE [23] and GCNII [11] to name a few.254

Over-smoothing analysis in discrete setting. By Proposition 3.1 we know that the continuous255

version of eq. (11) can be HFD thanks to the negative eigenvalues of W. The next result represents a256

discrete counterpart of Proposition 3.1 and shows that residual, symmetrized graph convolutional257

models can be HFD. Below P
ρ−
W is the projection into the eigenspace associated with the eigenvalue258

ρ− := |λW− |(ρ∆ − 1) and we report the explicit value of δHFD in eq. (28) in Appendix C.3. We let:259

λW+ (ρ∆ − 1))−1 < |λW− | < 2(τ(2− ρ∆))−1. (13)

Theorem 4.3. Given F(t+ τ) = F(t) + τĀF(t)W, with W symmetric, if eq. (13) holds then260

EDir(F(mτ)) = (1 + τρ−)
2m

(
ρ∆
2

||P ρ−
W F(0)||2 +O

((
1 + τδHFD

1 + τρ−

)2m
))

, δHFD < ρ−,

hence the dynamics is HFD for a.e. F(0) and in fact F(mτ)/||F(mτ)|| → F∞ s.t. ∆fr∞ = ρ∆fr∞.261

Conversely, if G is not bipartite, then for a.e. F(0) the system F(t + τ) = τĀF(t)W, with W262

symmetric, is LFD independent of the spectrum of W.263

Theorem 4.3 shows that linear discrete gradient flows can be HFD due to the negative eigenvalues of264

W. This differs from statements that standard GCNs act as low-pass filters and thus over-smooth in265

the limit. Indeed, in these cases the spectrum of W is generally ignored [43, 11] or required to be266

sufficiently small in terms of singular value decomposition [29, 30, 8] when no residual connection267

is present. On the other hand, Theorem 4.3 emphasizes that the spectrum of W plays a key role to268

enhance the high frequencies when enough mass is distributed over the negative eigenvalues provided269

that a residual connection exists – this is confirmed by the neg-prod-curve in Figure 2.270

The residual connection from a spectral perspective. Given a sufficiently small step-size so271

that the right hand side of inequality 13 is satisfied, F(t+ τ) = F(t) + τĀF(t)W is HFD for a.e.272

F(0) if |λW− |(ρ∆ − 1) > λW+ , i.e. ‘there is more mass’ in the negative spectrum of W than in the273

positive one. This means that differently from [29, 30, 8], there is no requirement on the minimal274

magnitude of the spectral radius of W coming from the graph topology as long as λW+ is small275

enough. Conversely, without a residual term, the dynamics is LFD for a.e. F(0) independently of the276

sign and magnitude of the eigenvalues of W. This is also confirmed by the GCN-curve in Figure 2.277

Over-smoothing vs LFD. We highlight how in general a linear GCN equation as F(t + τ) =278

τĀF(t)W may avoid over-smoothing in the sense of Definition 2.1, meaning that EDir(F(t)) → ∞279

as soon as there exist λ∆i ∈ (0, 1) and the spectral radius of W is large enough. However, this280

will not lead to over-separation since the dominating term is the lowest frequency one: in other281

words, once we re-set the scale right as per the normalization in Theorem 4.3, we encounter loss of282

separability even with large (and possibly negative) spectrum of W.283

5 Experiments284

In this section we evaluate the gradient flow framework (GRAFF). We corroborate the spectral285

analysis using synthetic data with controllable homophily. We confirm that having negative (positive)286

eigenvalues of the channel-mixing W are essential in heterophilic (homophilic) scenarios where the287

gradient flow should align with HFD (LFD) respectively. We show that the gradient flow in eq. (11)288

– a linear, residual, symmetric graph convolutional model – achieves competitive performance on289

heterophilic datasets.290
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Methodology. We crystallize GRAFF in the model presented in eq. (11) with ψEN, ψDE im-291

plemented as single linear layers or MLPs, and we set Ω to be diagonal. For the real-world292

experiments we consider diagonally-dominant (DD), diagonal (D) and time-dependent choices293

for the structure of W that offer explicit control over its spectrum. In the (DD)-case, we consider294

a W0 ∈ Rd×d symmetric with zero diagonal and w ∈ Rd defined by wα = qα
∑

β |W0
αβ | + rα,295

and set W = diag(w) + W0. Due to the Gershgorin Theorem the eigenvalues of W belong to296

[wα −
∑

β |W0
αβ |,wα +

∑
β |W0

αβ |], so the model ‘can’ easily re-distribute mass in the spectrum of297

W via qα, rα. This generalizes the decomposition of W in [11] providing a justification in terms of298

its spectrum and turns out to be more efficient w.r.t. the hidden dimension d as shown in Figure 4 in299

the Appendix. For (D) we take W to be diagonal, with entries sampled U [−1, 1] and fixed – i.e., we300

do not train over W – and only learn ψEN, ψDE. We also include a time-dependent model where Wt301

varies across layers. To investigate the role of the spectrum of W on synthetic graphs, we construct302

three additional variants: W = W′ + W′⊤, W = ±W′⊤W′ named sum, prod and neg-prod303

respectively where prod (neg-prod) variants have only non-negative (non-positive) eigenvalues.304

Complexity and number of parameters. If we treat the number of layers as a constant, the discrete305

gradient flow scales as O(|V|pd + |E|d2), where p and d are input feature and hidden dimension306

respectively, with p ≥ d usually. Note that GCN has complexity O(|E|pd) and in fact our model is307

faster than GCN as confirmed in Figure 5 in Appendix D. Since ψEN, ψDE are single linear layers308

(MLPs), we can bound the number of parameters by pd+ d2 + 3d+ dk, with k the number of label309

classes, in the (DD)-variant while in the (D)-variant we have pd+ 3d+ dk. Further ablation studies310

appear in Figure 4 in the Appendix showing that (DD) outperforms sum and GCN – especially in the311

lower hidden dimension regime – on real-world benchmarks with varying homophily.312
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Figure 2: Experiments on synthetic datasets
with controlled homophily.

Synthetic experiments and ablation studies.313

To investigate our claims in a controlled environ-314

ment we use the synthetic Cora dataset of [51, Ap-315

pendix G]. Graphs are generated for target levels316

of homophily via preferential attachment – see317

Appendix D.3 for details. Figure 2 confirms the318

spectral analysis and offers a better understanding319

in terms of performance and smoothness of the320

predictions. Each curve – except GCN – repre-321

sents one version of W as in ‘methodology’ and322

we implement eq. (11) with β = 0, Ω = 0. Fig-323

ure 2 (top) reports the test accuracy vs true label324

homophily. Neg-prod is better than prod on low-325

homophily and viceversa on high-homophily. This326

confirms Proposition 3.1 where we have shown327

that the gradient flow can lead to a HFD dy-328

namics – that are generally desirable with low-329

homophily – through the negative eigenvalues of330

W. Conversely, the prod configuration (where we331

have an attraction-only dynamics) struggles in low-332

homophily scenarios even though a residual connection is present. Both prod and neg-prod are333

‘extreme’ choices and serve the purpose of highlighting that by turning off one side of the spectrum334

this could be the more damaging depending on the underlying homophily. In general though ‘neutral’335

variants like sum and (DD) are indeed more flexible and better performing. In fact, (DD) outperforms336

GCN especially in low-homophily scenarios, confirming Theorem 4.3 where we have shown that337

without a residual connection convolutional models are LFD – and hence more sensitive to underlying338

homophily – irrespectively of the spectrum of W. This is further confirmed in Figure 3.339

In Figure 2 (bottom) we compute the homophily of the prediction (cross) for a given method and we340

compare with the homophily (circle) of the prediction read from the encoding (i.e. graph-agnostic).341

The homophily here is a proxy to assess whether the evolution is smoothing, the goal being explaining342

the smoothness of the prediction via the spectrum of W as per our theoretical analysis. For neg-prod343

the homophily after the evolution is lower than that of the encoding, supporting the analysis that344

negative eigenvalues of W enhance high-frequencies. The opposite behaviour occurs in the case of345

prod and explains that in the low-homophily regime prod is under-performant due to the prediction346
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Texas Wisconsin Cornell Film Squirrel Chameleon Citeseer Pubmed Cora
Hom level 0.11 0.21 0.30 0.22 0.22 0.23 0.74 0.80 0.81
#Nodes 183 251 183 7,600 5,201 2,277 3,327 18,717 2,708
#Edges 295 466 280 26,752 198,493 31,421 4,676 44,327 5,278
#Classes 5 5 5 5 5 5 7 3 6

GGCN 84.86± 4.55 86.86± 3.29 85.68± 6.63 37.54± 1.56 55.17± 1.58 71.14± 1.84 77.14± 1.45 89.15± 0.37 87.95± 1.05
GPRGNN 78.38± 4.36 82.94± 4.21 80.27± 8.11 34.63± 1.22 31.61± 1.24 46.58± 1.71 77.13± 1.67 87.54± 0.38 87.95± 1.18
H2GCN 84.86± 7.23 87.65± 4.98 82.70± 5.28 35.70± 1.00 36.48± 1.86 60.11± 2.15 77.11± 1.57 89.49± 0.38 87.87± 1.20
GCNII 77.57± 3.83 80.39± 3.40 77.86± 3.79 37.44± 1.30 38.47± 1.58 63.86± 3.04 77.33± 1.48 90.15± 0.43 88.37± 1.25
Geom-GCN 66.76± 2.72 64.51± 3.66 60.54± 3.67 31.59± 1.15 38.15± 0.92 60.00± 2.81 78.02± 1.15 89.95± 0.47 85.35± 1.57
PairNorm 60.27± 4.34 48.43± 6.14 58.92± 3.15 27.40± 1.24 50.44± 2.04 62.74± 2.82 73.59± 1.47 87.53± 0.44 85.79± 1.01
GraphSAGE 82.43± 6.14 81.18± 5.56 75.95± 5.01 34.23± 0.99 41.61± 0.74 58.73± 1.68 76.04± 1.30 88.45± 0.50 86.90± 1.04
GCN 55.14± 5.16 51.76± 3.06 60.54± 5.30 27.32± 1.10 53.43± 2.01 64.82± 2.24 76.50± 1.36 88.42± 0.50 86.98± 1.27
GAT 52.16± 6.63 49.41± 4.09 61.89± 5.05 27.44± 0.89 40.72± 1.55 60.26± 2.50 76.55± 1.23 87.30± 1.10 86.33± 0.48
MLP 80.81± 4.75 85.29± 3.31 81.89± 6.40 36.53± 0.70 28.77± 1.56 46.21± 2.99 74.02± 1.90 75.69± 2.00 87.16± 0.37
CGNN 71.35± 4.05 74.31± 7.26 66.22± 7.69 35.95± 0.86 29.24± 1.09 46.89± 1.66 76.91± 1.81 87.70± 0.49 87.10± 1.35
GRAND 75.68± 7.25 79.41± 3.64 82.16± 7.09 35.62± 1.01 40.05± 1.50 54.67± 2.54 76.46± 1.77 89.02± 0.51 87.36± 0.96
Sheaf (max) 85.95± 5.51 89.41± 4.74 84.86± 4.71 37.81± 1.15 56.34± 1.32 68.04± 1.58 76.70± 1.57 89.49± 0.40 86.90± 1.13

GRAFF (DD) 88.38± 4.53 87.45± 2.94 83.24± 6.49 36.09± 0.81 54.52± 1.37 71.08± 1.75 76.92± 1.70 88.95± 0.52 87.61± 0.97
GRAFF (D) 88.11± 5.57 88.83± 3.29 84.05± 6.10 37.11± 1.08 47.36± 1.89 66.78± 1.28 77.30± 1.85 90.04± 0.41 88.01± 1.03
GRAFF-timedep (DD) 87.03± 4.49 87.06± 4.04 82.16± 7.07 35.93± 1.23 53.97± 1.45 69.56± 1.20 76.59± 1.53 88.26± 0.41 87.38± 1.05

Table 1: Results on heterophilic and homophilic datasets

being smoother than the true homophily. (DD) and sum variants adapt better to the true homophily.347

We note how the encoding compensates when the dynamics can only either attract or repulse (i.e. the348

spectrum of W has a sign) by decreasing or increasing the initial homophily respectively.349

Real world experiments. We test GRAFF against a range of datasets with varying homophily350

[37, 33, 31] (see Appendix D.4 for additional details). We use results provided in [45, Table 1],351

which includes standard baselines as GCN [27], GraphSAGE [23], GAT [42], PairNorm [48] and352

recent models tailored towards the heterophilic setting (GGCN [45], Geom-GCN [31], H2GCN353

[51] and GPRGNN [13]). For Sheaf [5], a recent top-performer on heterophilic datasets, we took354

the best performing variant (out of six provided) for each dataset. We also include continuous355

baselines CGNN [44] and GRAND [10] to provide empirical evidence for Proposition 4.1. Splits356

taken from [31] are used in all the comparisons. The GRAFF model discussed in ‘methodology’357

is a very simple architecture with shared parameters across layers and run-time smaller than GCN358

and more recent models like GGCN designed for heterophilic graphs (see Figure 5 in the Appendix).359

Nevertheless, it achieves competitive results on all datasets, performing on par or better than more360

complex recent models. Moreover, comparison with the ‘time-dependent’ (DD) variant confirms361

that by sharing weights across layers we do not lose performance. We note that on heterophilic362

graphs short integration time is usually needed due to the topology being harmful and the negative363

eigenvalues of W leading to exponential behaviour (see Appendix D).364

6 Conclusions365

In this work, we developed a framework for GNNs where the evolution can be interpreted as366

minimizing a multi-particle learnable energy. This translates into studying the interaction between367

the spectrum of the graph and the spectrum of the ‘channel-mixing’ leading to a better understanding368

of when and why the induced dynamics is low (high) frequency dominated. From a theoretical369

perspective, we refined existing asymptotic analysis of GNNs to account for the role of the spectrum of370

the channel-mixing as well. From a practical perspective, our framework allows for ‘educated’ choices371

resulting in a simple convolutional model that achieves competitive performance on homophilic372

and heterophilic benchmarks while being faster than GCN. Our results refute the folklore of graph373

convolutional models being too simple for heterophilic benchmarks.374

Limitations and future works. We limited our attention to a constant bilinear form W, which375

might be excessively rigid. It is possible to derive non-constant alternatives that are aware of the376

features or the position in the graph. The main challenge amounts to matching the requirement for377

local ‘heterogeneity’ with efficiency: we reserve this question for future work. Our analysis is also a378

first step into studying the interaction of the graph and ‘channel-mixing’ spectra; we did not explore379

other dynamics that are neither LFD nor HFD as per our definitions. The energy formulation points380

to new models more ‘physics’ inspired; this will be explored in future work.381

Societal impact. Our work sheds light on the actual dynamics of GNNs and could hence improve382

their understanding, which is crucial for assessing their impact on large-scale applications. We also383

show that instances of our framework achieve competitive performance on heterophilic data despite384

being faster than GCN, providing evidence for efficient methods with reduced footprint.385
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code provided in SM zip563
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A Proofs and additional details of Section 2576

A.1 Discussion on continuous Dirichlet energy and harmonic maps577

In this subsection we briefly expand on the formulation of continuous Dirichlet energy in Section 2578

to provide more context. Consider a smooth map f : (M, g) → (N,h), where N is usually a larger579

manifold we embed M into, and g, h are Riemannian metrics on domain and codomain respectively.580

The Dirichlet energy of f is defined by581

E(f, g, h) := 1

2

∫
M

|df |2gdµ(g),

with |df |g the norm of the Jacobian of f measured with respect to g and h. If (M, g) is standard582

Euclidean space Rn, N = Rd and h is a constant positive semi-definite matrix, then we can rewrite583

the Dirichlet energy in a more familiar form as584

E(f, h) = 1

2

∫
Rn

trace
(
Df⊤hDf

)
dµ =

1

2

d∑
q,r=1

n∑
j=1

∫
Rn

hqr∂jf
q∂jf

r(x)dx.

The Dirichlet energy measures the smoothness of the map f , and indeed if h is the identity in Rd,585

then we recover the classical definition586

E(f) = 1

2

d∑
r=1

∫
Rn

||∇fr||2(x)dx.

Gradient flow of Dirichlet energy. Minimizers of E - referred to as harmonic maps - are important587

objects in geometry: to mention a few, geodesics, minimal isometric immersions and maps f :588

M → Rd solving ∆gf = 0 are all instances of harmonic maps. To identify such critical points, one589

computes the first variation of the energy E along an arbitrary direction ∂tf , which can be written as590

dEf (∂tf) = −
∫
M

⟨τg(f), ∂tf⟩hdµ(g).

for some tensor field τ with explicit form591

(τgM (f))α := ∆gM f
α + hNΓα

βγ∂if
β∂jf

γgijM ,

for 1 ≤ α ≤ dim(N), with {yα} local coordinates on N and Γα
βγ Christoffel symbols. It follows592

that harmonic maps are identified by the condition τg(f)) = 0. In [16], the pivotal idea of harmonic593

map flow – which has shaped much of modern research in geometric analysis – was introduced for594

the first time: in order to identify minimizers of E , an input map f0 is evolved along the direction of595

(minus) the gradient of the energy E leading to the dynamics596

∂tf = τg(f). (14)

As a special case, when the target space is the classical Euclidean space one recovers the heat equation597

induced by the input Riemannian structure. We also note that when (M, g) is a surface representing598

an image and f : (u1, u2) 7→ (u1, u2, ϕ(u1, u2)) with ϕ a color map, then eq. (14) becomes599

∂tϕ = div(Cg∇ϕ), (15)

with Cg a constant depending on the metric on M . If we now let g to depend on ϕ, one can recover600

the celebrated Perona-Malik flow [26].601

A.2 Review of Kronecker product and properties of Laplacian kernel602

Additional notations and conventions used throughout the appendix. Any graph G is taken to603

be connected. We order the eigenvalues of the graph Laplacian as 0 = λ∆0 ≤ λ∆1 ≤ . . . ≤ λ∆n−1 =604

ρ∆ ≤ 2 with associated orthonormal basis of eigenvectors {ϕ∆
i }n−1

i=0 so that in particular we have605

∆ϕ∆
0 = 0. Moreover, given a symmetric matrix B, we generally denote the spectrum of B by606

spec(B). Finally, if we write F(t)/||F(t)|| we always take the norm to be the Frobenius one and607

tacitly assume that the dynamics is s.t. the solution is not zero.608
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Kronecker product. In this subsection we summarize a few relevant notions pertaining the Kro-609

necker product of matrices that are going to be applied throughout our spectral analysis of gradient610

flow equations for GNNs in both the continuous and discrete time setting.611

Given a matricial equation of the form612

Y = AXB,

we can vectorize X and Y by stacking columns into vec(X) and vec(Y) respectively, and rewrite613

the previous system as614

vec(Y) =
(
B⊤ ⊗A

)
vec(X). (16)

If A and B are symmetric with spectra spec(A) and spec(B) respectively, then the spectrum of615

B⊗A is given by spec(A) · spec(B). Namely, if Ax = λAx and By = λBy, for x and y non-zero616

vectors, then λBλA is an eigenvalue of B⊗A with eigenvector y ⊗ x:617

(B⊗A)y ⊗ x = (λBλA)y ⊗ x. (17)

One can also define the Kronecker sum of matrices A ∈ Rn×n and B ∈ Rd×d as618

A⊕B := A⊗ Id + In ⊗B, (18)

with spectrum spec(A⊕B) = {λA + λB : λA ∈ spec(A), λB ∈ spec(B)}.619

Additional details on EDir and the choice of Laplacian. We recall that the classical graph Dirichlet620

energy EDir is defined by621

EDir(F) =
1

2
trace

(
F⊤∆F

)
,

where the (unusual) extra factor of 1
2 is to avoid rescaling the gradient flow by 2 – which is the more622

common convention. We can use the Kronecker product to rewrite the Dirichlet energy as623

EDir(F) =
1

2
vec(F)⊤(Id ⊗∆)vec(F), (19)

from which we immediately derive that ∇vec(F)EDir(F) = (Id⊗∆)vec(F) – since ∆ is symmetric –624

and hence recover the gradient flow in eq. (3) leading to the graph heat equation across each channel.625

Before we further comment on the characterizations of LFD and HFD dynamics, we review the main626

choices of graph Laplacian and the associated harmonic signals (i.e. how we can characterize the627

kernel spaces of the given Laplacian operator). Recall that throughout the appendix we always assume628

that the underlying graph G is connected. The symmetrically normalized Laplacian ∆ = I− Ā is629

symmetric, positive semi-definite with harmonic space of the form [14]630

ker(∆) := span(D
1
21n : 1n = (1, . . . , 1)⊤). (20)

This confirms that if a given GNN evolution Ḟ(t) = GNNθ(F(t), t) with initial condition F(0)631

over-smooths as per Definition 2.1 – i.e. ∆fr(t) → 0 for t → ∞ for each column 1 ≤ r ≤ d –632

then the only information persisting in the asymptotic regime is the degree and any dependence on633

the input features is lost, as studied in [30, 8]. A slightly different behaviour occurs if instead of634

∆, we consider the unnormalized Laplacian L = D − A with kernel span(1n), meaning that if635

Lfr(t) → 0 as t → ∞ for each 1 ≤ r ≤ d, then any node would be embedded to a single point,636

hence making any separation task impossible. The same consequence applies to the random walk637

Laplacian ∆RW = I−D−1A. In particular, we note that generally a row-stochastic matrix is not638

symmetric – if it was, then this would in fact be doubly-stochastic – and the same applies to the639

random-walk Laplacian (a special exception is given by the class of regular graphs). In fact, in640

general any dynamical system governed by ∆RW (or simply D−1A) is not the gradient flow of an641

energy due to the lack of symmetry, as further confirmed below in eq. (22).642

A.3 Additional details on LFD and HFD characterizations643

In this subsection we provide further details and justifications for Definition 2.1 and Definition 2.2.644

We first prove the following simple properties.645

Lemma A.1. Assume we have a (continuous) process t 7→ F(t) ∈ Rn×d, for t ≥ 0. The following646

equivalent characterizations hold:647
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(i) EDir(F(t)) → 0 for t→ ∞ if and only if ∆fr(t) → 0, for 1 ≤ r ≤ d.648

(ii) EDir(F(t)/||F(t)||) → ρ∆/2 for t → ∞ if and only if for any sequence tj → ∞ there649

exist a subsequence tjk → ∞ and a unit limit F∞ – depending on the subsequence – such650

that ∆fr∞ = ρ∆fr∞, for 1 ≤ r ≤ d.651

Proof. (i) Given F(t) ∈ Rn×d, we can vectorize it and decompose it in the orthonormal basis652

{er ⊗ ϕ∆
i : 1 ≤ r ≤ d, 0 ≤ i ≤ n− 1}, with {er}dr=1 canonical basis in Rd, and write653

vec(F(t)) =
∑
r,i

cr,i(t)er ⊗ ϕ∆
i , cr,i(t) := ⟨vec(F(t)), er ⊗ ϕ∆

i ⟩.

We can then use eq. (19) to compute the Dirichlet energy as654

EDir(F(t)) =
1

2

d∑
r=1

n−1∑
i=0

c2r,i(t)λ
∆
i ≡ 1

2

d∑
r=1

n−1∑
i=1

c2r,i(t)λ
∆
i ≥ 1

2
gap(∆)

d∑
r=1

n−1∑
i=1

c2r,i(t),

where we have used the convention above that the eigenvector ϕ∆
0 is in the kernel of ∆. Therefore655

EDir(F(t)) → 0 ⇐⇒
d∑

r=1

n−1∑
i=1

c2r,i(t) → 0, t→ ∞,

which occurs if and only if656

(Id ⊗∆)vec(F(t)) =

d∑
r=1

n−1∑
i=1

cr,i(t)λ
∆
i er ⊗ ϕ∆

i → 0.

(ii) The argument here is similar. Indeed we can write Q(t) = F(t)/||F(t)|| with Q(t) a unit-norm657

signal. Namely, we can vectorize and write658

vec(Q(t)) =
∑
r,i

qr,i(t)er ⊗ ϕ∆
i ,

∑
r,i

q2r,i(t) = 1.

Then EDir(Q(t)) → ρ∆/2 if and only if659 ∑
r,i

q2r,i(t)λ
∆
i → ρ∆, t→ ∞,

which holds if and only if660 ∑
r

q2r,ρ∆
(t) → 1

q2r,i(t) → 0, i : λ∆i < ρ∆, (21)

given the unit norm constraint. This is equivalent to the Rayleigh quotient of Id⊗∆ converging to its661

maximal value ρ∆. When this occurs, for any sequence tj → ∞ we have that q2r,i(tj) ≤ 1, meaning662

that we can extract a converging subsequence that due to eq. (21) will converge to a unit eigenvector663

Q∞ of Id ⊗ ∆ satisfying (Id ⊗ ∆)Q∞ = ρ∆Q∞. Conversely assume for a contradiction that664

there exists a sequence tj → ∞ such that EDir(F(tj)/||F(tj)||) < ρ∆/2− ϵ, for some ϵ > 0. Then665

eq. (21) fails to be satisfied along the sequence, meaning that no subsequence converges to a unit666

norm eigenvector F∞ of Id ⊗ ∆ with associated eigenvalue ρ∆ which is a contradiction to our667

assumption.668

669

Before we address the formulation of low(high)-frequency-dominated dynamics, we solve explicitly670

the system Ḟ(t) = ĀF(t) in Rn×d, with some initial condition F(0). We can vectorize the equation671

and solve ˙vec(F(t)) = (Id ⊗ Ā)vec(F(t)), meaning that672

vec(F(t)) =

d∑
r=1

n−1∑
i=0

e(1−λ∆
i )tcr,i(0)er ⊗ ϕ∆

i , cr,i(0) := ⟨vec(F(0)), er ⊗ ϕ∆
i ⟩.
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Consider any initial condition F(0) such that673

d∑
r=1

|cr,0| =
d∑

r=1

∣∣∣⟨vec(F(0)), er ⊗ ϕ∆
0 ⟩
∣∣∣ > 0,

which is satisfied for each vec(F(0)) ∈ Rnd \ U⊥, where U⊥ is the orthogonal complement of674

Rd ⊗ span(ϕ∆
0 ). Since U⊥ is a lower-dimensional subspace, its complement is dense. Accordingly675

for a.e. F(0), we find that the solution satisfies676

||vec(F(t))||2 = e2t

(
d∑

r=1

c2r,0 +O(e−2gap(∆)t)

)
= e2t

(
||P⊥

ker(∆)vec(F(0))||
2 +O(e−2gap(∆)t)

)
,

with P⊥
ker(∆) the projection onto Rd ⊗ ker(∆). We see that the norm of the solution increases677

exponentially, however the dominant term is given by the projection onto the lowest frequency signal678

and in fact679

vec(F(t))

||vec(F(t))||
=
P⊥
ker(∆)vec(F(0)) +O(e−gap(∆)t)(I− P⊥

ker(∆))vec(F(0))(
||P⊥

ker(∆)vec(F(0))||2 +O(e−2gap(∆)t)
) 1

2

→ vec(F∞),

such that (Id ⊗∆)vec(F∞) = 0 which means ∆fr∞ = 0, for each column 1 ≤ r ≤ d. Equivalently,680

one can compute EDir(F(t)/||F(t)||) and conclude that the latter quantity converges to zero as681

t→ ∞ by the very same argument.682

In fact, this motivates further the nomenclature LFD and HFD. Without loss of generality we683

focus now on the high-frequency case. Assume that we have a HFD dynamics t 7→ F(t),684

i.e. EDir(F(t)/||F(t)||) → ρ∆/2, then we can vectorize the solution and write vec(F(t)) =685

||F(t)||vec(Q(t)), for some time-dependent unit vector vec(Q(t)) ∈ Rnd:686

vec(Q(t)) =
∑
r.i

qr,i(t)er ⊗ ϕ∆
i ,

∑
r,i

q2r,i(t) = 1.

By Lemma A.1 and more explicitly eq. (21), we derive that the coefficients {qr,ρ∆
} associated with687

the eigevenctors er ⊗ ϕ∆
ρ∆

are dominant in the evolution hence justifying the name high-frequency688

dominated dynamics.689

We note that the next result covers Lemma 2.3.690

Lemma A.2. Consider a dynamical system Ḟ(t) = GNNθ(F(t), t), with initial condition F(0).691

(i) GNNθ is LFD if and only if (Id ⊗ ∆)vec(F(t))
||F(t)|| → 0 if and only if for each sequence692

tj → ∞ there exist a subsequence tjk → ∞ and F∞ (depending on the subsequence) s.t.693
F(tjk )

||F(tjk )||
→ F∞ satisfying ∆fr∞ = 0, for each 1 ≤ r ≤ d.694

(ii) GNNθ is HFD if and only if for each sequence tj → ∞ there exist a subsequence tjk → ∞695

and F∞ (depending on the subsequence) s.t. F(tjk )

||F(tjk )||
→ F∞ satisfying ∆fr∞ = ρ∆fr∞,696

for each 1 ≤ r ≤ d.697

Proof. (i) Since ∆fr(t) → 0 for each 1 ≤ r ≤ d if and only if (Id ⊗ ∆)vec(F(t)) → 0, we698

conclude that the dynamics is LFD if and only if (Id ⊗∆)vec(F(t))
||F(t)|| → 0 due to (i) in Lemma A.1.699

Consider a sequence tj → ∞. Since vec(F(tj))/||F(tj)|| is a bounded sequence we can extract700

a converging subsequence tjk : vec(F(tjk))/||F(tjk)|| → vec(F∞). If the dynamics is LFD, then701

(Id ⊗∆)
vec(F(tjk ))

||F(tjk )||
→ 0 and hence we conclude that vec(F∞) ∈ ker(Id ⊗∆). Conversely, assume702

that for any sequence tj → ∞ there exists a subsequence tjk and F∞ such that F(tjk )

||F(tjk )||
→ F∞703

satisfying ∆fr∞ = 0, for each 1 ≤ r ≤ d. If for a contradiction we had ε > 0 and tj → ∞ such that704

EDir(F(tj)/||F(tj)|| ≥ ε – for j large enough – then by (i) in Lemma A.1 there exist 1 ≤ r ≤ d,705

i > 0 and a subsequence tjk satisfying706

|⟨
(
vec(F(tjk))

||F(tjk)||

)
, er ⊗ ϕ∆

i ⟩| > δ(ε) > 0,
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meaning that there is no subsequence of {tjk} s.t. (Id ⊗∆)vec(F(tjk))/||F(tjk)|| → 0, providing707

a contradiction.708

(ii) This is equivalent to (ii) in Lemma A.1.709

710

Remark. We note that in Lemma 2.3 an LFD dynamics does not necessarily mean that the normalized711

solution converges to the kernel of Id ⊗∆ – i.e. one in general has always to pass to subsequences.712

Indeed, we can consider the simple example t 7→ vec(F(t)) := cos(t)er̄ ⊗ ϕ∆
0 , for some 1 ≤ r̄ ≤ d,713

which satisfies ∆fr(t) = 0 for each r, but it is not a convergent function due to its oscillatory nature.714

Same argument applies to HFD.715

A.4 Details and proofs on EDir
W and its gradient flow716

By direct computation one verifies that the definition in eq. (4) can be equivalently written as717

EDir
W (F) =

1

2
⟨vec(F), (W⊤W ⊗∆)vec(F)⟩,

from which we immediately derive ∇vec(F)EDir
W (vec(F)) = (W⊤W ⊗ ∆)vec(F) which proves718

eq. (5). We can now address the proof of Proposition 2.4.719

Proof of Proposition 2.4. We can vectorize the gradient flow system in eq. (5) and use the spectral720

characterization of W⊤W ⊗∆ in eq. (17) to write the solution explicitly as721

vec(F(t)) =
∑
r,i

e−(λW
r λ∆

i )tcr,i(0)ϕ
W
r ⊗ ϕ∆

i ,

where {λWr }r = spec(W⊤W) ⊂ R≥0 with associated basis of orthonormal eigenvectors given by722

{ϕW
r }r. Then723

EDir(F(t)) =
1

2
⟨vec(F(t)), (Id ⊗∆)vec(F(t))⟩ = 1

2

∑
r,i

e−2t(λW
r λ∆

i )c2r,i(0)λ
∆
i

=
1

2

∑
r:λW

r =0,i

c2r,i(0)λ
∆
i +

1

2

∑
r:λW

r >0,i>0

c2r,i(0)e
−2t(λW

r λ∆
i )λ∆i

= EDir((P ker
W ⊗ In)vec(F(0))) +

1

2

∑
r:λW

r >0,i>0

c2r,i(0)e
−2t(λW

r λ∆
i )λ∆i

≤ EDir((P ker
W ⊗ In)vec(F(0))) +

ρ∆
2
e−2tgap(W⊤W)gap(∆)||F(0)||2,

where we recall that P ker
W is the projection onto ker(W⊤W) and that by convention the index i = 0724

is associated with the lowest graph frequency λ∆0 = 0 – by assumption G is connected. This proves725

that the dynamics is in fact smoothing as per Definition 2.1. By the very same argument we find that726

vec(F(t)) → (Id ⊗ P ker
∆ )vec(F(0)) + (P ker

W ⊗ In)vec(F(0)), t→ ∞,

with P ker
∆ the orthogonal projection onto ker∆ – the other terms decay exponentially to zero. We727

first focus on the first quantity, which we can write as728

(Id ⊗ P ker
∆ )vec(F(0)) =

∑
r

cr,0(0)ϕ
W
r ⊗ ϕ∆

0 ,

which has matrix representation ϕ∆
0 ϕ⊤

∞ ∈ Rn×d with729

ϕ∞ :=
∑
r

cr,0(0)ϕ
W
r .

By eq. (20) we deduce that the i-th row of ϕ∆
0 ϕ⊤

∞ ∈ Rn×d is the d-dimensional vector
√
diϕ∞. We730

now focus on the term731

(P ker
W ⊗ In)vec(F(0)) =

∑
r:λW

r =0,j

cr,j(0)ϕ
W
r ⊗ ϕ∆

j
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which has matrix representation
∑

r:λW
r =0,j cr,j(0)ϕ

∆
j (ϕW

r )⊤. In particular, the i-th row is given by732 ∑
r:λW

r =0,j

cr,j(0)(ϕ
∆
j )iϕ

W
r = P ker

W fi(0).

This completes the proof of Proposition 2.4.733

B Proofs and additional details of Section 3734

B.1 Spectral analysis of the channel-mixing: the continuous case735

Consider the generalized energy Etot in eq. (7). We can use vectorization to rewrite it as736

Etot(vec(F)) =
1

2
⟨vec(F), (Ω⊗ In)vec(F)⟩ −

1

2
⟨vec(F), (W ⊗ Ā)vec(F)⟩,

from which the gradient flow in eq. (8) follows. In particular, given a system as in eq. (8):737

vec(Ḟ(t)) = −(Ω⊗ In)vec(F(t)) + (W ⊗ Ā)vec(F(t)),

if this is the gradient flow of F 7→ Etot(F), then we would have738

∇2
vec(F)E

tot(F) = Ω⊗ In −W ⊗ Ā, (22)

which must be symmetric due to the Hessian of a function being symmetric. The latter means739

(Ω⊤ −Ω)⊗ In = (W⊤ −W)⊗ Ā,

which is satisfied if and only if both Ω and W are symmetric. This shows that eq. (8) is the gradient740

flow of Etot if and only if Ω and W are symmetric.741

We now rely on the spectral decomposition of W to rewrite Etot explicitly in terms of attractive742

and repulsive interactions. If we have a spectral decomposition W = UΛU⊤, we can separate the743

positive eigenvalues from the negative ones and write744

W = UΛ+U
⊤ +UΛ−U

⊤ := W+ −W−.

Since W+ ⪰ 0,W− ⪰ 0, we can use the Choleski decomposition to write W+ = Θ⊤
+Θ+ and745

W− = Θ⊤
−Θ− with Θ+,Θ− ∈ Rd×d. Equation (9) follows then by direct computation: namely746

Etot(F) =
1

2

∑
i

⟨fi,Ωfi⟩ −
1

2

∑
i,j

āij⟨fi,Wfj⟩

=
1

2

∑
i

⟨fi, (Ω−W)fi⟩+
1

2

∑
i

⟨fi,Wfi⟩ −
1

2

∑
i,j

āij⟨Θ+fi,Θ+fj⟩+
1

2

∑
i,j

āij⟨Θ−fi,Θ−fj⟩

=
1

2

∑
i

⟨fi, (Ω−W)fi⟩+
1

4

∑
i,j

||Θ+(∇F)ij ||2 −
1

4

∑
i,j

||Θ−(∇F)ij ||2,

where we have used that
∑

i,j
1
di
||Θ+fi||2 =

∑
i||Θ+fi||2.747

Proof of Proposition 3.1. Once we compute the spectrum of W ⊗ Ā via eq. (17), we can write the748

solution as – recall that Ā = In − ∆ so we can rephrase the eigenvalues of Ā in terms of the749

eigenvalues of ∆:750

vec(F(t)) =
∑
r,i

eλ
W
r (1−λ∆

i )tcr,i(0)ϕ
W
r ⊗ ϕ∆

i ,

with WϕW
r = λWr ϕW

r , for 1 ≤ r ≤ d, where {ϕW
r }r is an orthonormal basis of eigenvectors in751

Rd. We can then calculate the Dirichlet energy along the solution as752

EDir(F(t)) =
1

2
⟨vec(F(t)), (Id ⊗∆)vec(F(t))⟩ = 1

2

∑
r,i

e2λ
W
r (1−λ∆

i )tc2r,i(0)λ
∆
i .

We now consider two cases:753
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• If λWr > 0, then λWr (1− λ∆i ) ≤ λW+ .754

• If λWr < 0, then λWr (1 − λ∆i ) ≤ |λW− |(ρ∆ − 1) := ρ−, with eigenvectors ϕW
r ⊗ ϕ∆

ρ∆
755

for each r s.t. WϕW
r = λW− ϕW

r – without loss of generality we can assume that ρ∆ is a756

simple eigenvalue for ∆. In particular, if λWr < 0 and λWr (1− λ∆i ) < ρ−, then757

λWr (1− λ∆i ) < max{|λW− |(λ∆n−2 − 1), |λW−,2|(ρ∆ − 1)},

where λW−,2 is the second most negative eigenvalue of W and λ∆n−2 is the second largest758

eigenvalue of ∆. In particular, we can write759

λ∆n−2 = ρ∆ − gap(ρ∆In −∆), |λW−,2| = |λW− | − gap(|λW− |Id +W). (23)

From (i) and (ii) we derive that if λWr (1− λ∆i ) ̸= ρ−, then760

λWr (1− λ∆i )− ρ− < −min{ρ− − λW+ , ρ− − |λW− |(λ∆n−2 − 1), ρ− − |λW−,2|(ρ∆ − 1)}
= −min{ρ− − λW+ , |λW− |gap(ρ∆I−∆), gap(|λW− |I+W)(ρ∆ − 1)} = −ϵHFD,

(24)

where we have used eq. (23). Accordingly, if ρ− > λW+ , then761

EDir(F(t)) = e2tρ−

ρ∆
2

∑
r:λW

r =λW
−

c2r,ρ∆
(0) +

1

2

∑
r,i:λW

r (1−λ∆
i ) ̸=ρ−

e2(λ
W
r (1−λ∆

i )−ρ−)tc2r,i(0)


= e2tρ−

(ρ∆
2

||P ρ−
W F(0)||2 +O(e−2tϵHFD)

)
.

By the same argument we can factor out the dominant term and derive the following limit for t→ ∞762

and for a.e. F(0) since P ρ−
W vec(F(0)) = 0 only if vec(F(0)) belongs to a lower dimensional763

subspace of Rnd:764

vec(F(t))

vec(F(t))
=
P

ρ−
W vec(F(0)) +O(e−ϵHFDt)((I− P

ρ−
W )vec(F(0)))(

||P ρ−
W vec(F(0))||2 +O(e−2ϵHFDt)

) 1
2

→
P

ρ−
W vec(F(0))

||P ρ−
W vec(F(0))||

,

where the latter is a unit vector vec(F∞) satisfying (Id ⊗ ∆)vec(F∞) = ρ∆vec(F∞), which765

completes the proof.766

B.2 Propagating with −∆: a perspective in terms of channel-mixing spectrum767

In this subsection we briefly review the special case of eq. (8) where Ω = W, and comment on why768

we generally expect a framework where the propagation is governed by the graph vector field Ā to769

be more flexible than one with −∆. If Ω = W, the gradient flow in eq. (8) becomes770

Ḟ(t) = −∆F(t)W. (25)

We note that once vectorized, the solution to the dynamical system can be written as771

vec(F(t)) =

d∑
r=1

n−1∑
i=0

e−λW
r λ∆

i tcr,i(0)ϕ
W
r ⊗ ϕ∆

i .

In particular, we immediately deduce the following counterpart to Proposition 3.1772

Corollary B.1. If spec(W) ∩ R− ̸= ∅, then eq. (25) is HFD for a.e. F(0).773

Differently from eq. (8) the lowest frequency component is always preserved independent of the774

spectrum of W. This means that the system cannot learn eigenvalues of W to either magnify or775

suppress the low-frequency projection. In contrast, this can be done if Ω = 0, or equivalently one776

replaces −∆ with Ā providing a further justification in terms of the interaction between graph777

spectrum and channel-mixing spectrum for why graph convolutional models use the normalized778

adjacency rather than the Laplacian for propagating messages [27].779
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B.3 A more general family of energies: gradient flow with non-linear activations780

Consider a more general pairwise energy including a non-linear differentiable activation map σ of the781

form782

Epair
σ,W(F) =

1

2

∑
i,j

āi,jσ (fi,Wfj⟩) .

We temporarily assume that Ω = 0. The gradient flow follows from direct computation:783

Ḟ(t) = Aσ(F(t))F(t)W, (Aσ(F(t)))ij := āijσ
′ (fi,Wfj⟩) . (26)

In particular, we see that the non-linear activations in general may induce a type of attention mech-784

anism where the diffusion along edges is controlled by the derivative of σ evaluated on the inner785

product of features induced by W. A similar structure is investigated in [17]. We also observe786

that analogous conclusions can be deduced if Ω ̸= 0 and the external energy term Eext
Ω includes a787

non-linear activation map σ as in the pairwise contribution.788

C Proofs and additional details of Section 4789

We first explicitly report here the expansion of the discrete gradient flow in eq. (11) after m layers to790

further highlight how this is not equivalent to a single linear layer with a message passing matrix Ām791

as for SGCN [43]. For simplicity we suppress the source term.792

F(t+ τ) = F(t) + τ
(
−F(t)Ω+ ĀF(t)W

)
vec(F(t+ τ)) =

(
Ind + τ

(
−Ω⊗ In +W ⊗ Ā

))
vec(F(t))

vec(F(mτ)) =

m∑
k=0

(
m

k

)
τk
(
−Ω⊗ In +W ⊗ Ā

)k
vec(F(0)) (27)

and we see how the message passing matrix Ā actually enters the expansion after m layers with each793

power 0 ≤ k ≤ m. This is not surprising, given that we are discretizing a linear dynamical system,794

meaning that we are approximating an exponential matrix.795

C.1 Comparison with continuous GNNs: details and proofs796

We prove the following result which covers Proposition 4.1.797

Proof of Proposition 4.1. We structure the proof by following the numeration in the statement.798

(i) From direct computation we find799

dEDir(F(t))

dt
=

1

2

d

dt
(⟨vec(F(t)), (Id ⊗∆)vec(F(t))⟩)

= −⟨vec(F(t)), (K⊤(t)K(t)⊗∆2)vec(F(t))⟩ ≤ 0,

since K⊤(t)K(t)⊗∆2 ⪰ 0. Note that we have used that (A⊗B)(C⊗D) = AC⊗BD.800

(ii) We consider the dynamical system801

ḞCGNN(t) = −∆F(t) + F(t)Ω̃+ F(0).

We can write vec(F(t)) =
∑

r,i cr,i(t)ϕ
Ω̃
r ⊗ ϕ∆

i , leading to the system802

ċr,i(t) = (λΩ̃r − λ∆i )cr,i(t) + cr,i(0), 0 ≤ i ≤ n− 1, 1 ≤ r ≤ d.

We can solve explicitly the system as803

cr,i(t) = cr,i(0)

(
e(λ

Ω̃
r −λ∆

i )t

(
1 +

1

λΩ̃r − λ∆i

)
− 1

λΩ̃r − λ∆i

)
, if λΩ̃r ̸= λ∆i

cr,i(t) = cr,i(0)(1 + t), otherwise.
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We see now that for a.e. F(0) the projection (Id ⊗ ϕ∆
ρ∆

(ϕ∆
ρ∆

)⊤)vec(F(t)) is never the dominant804

term. In fact, if there exists r s.t. λΩ̃r ≥ ρ∆, then λΩ̃r − λ∆i > λΩ̃r − ρ∆, for any other non-maximal805

graph Laplacian eigenvalue. It follows that there is no Ω̃ s.t. the normalized solution maximizes the806

Rayleigh quotient of Id ⊗∆, proving that CGNN is never HFD.807

If we have no source, then the CGNN equation becomes808

Ḟ(t) = −∆F(t) + F(t)Ω̃ ⇐⇒ vec(Ḟ(t)) = (Ω̃⊕ (−∆))vec(F(t)),

using the Kronecker sum notation in eq. (18). It follows that we can write the vectorized solution in809

the basis {ϕΩ̃
r ⊗ ϕ∆

i }r,i as810

vec(F(t)) = eλ
Ω̃
+t

 ∑
r:λΩ̃

r =λΩ̃
+

cr,0(0)ϕ
Ω̃
r ⊗ ϕ∆

0 +O(e−gap(λΩ̃
+Id−Ω̃)t)

∑
r:λΩ̃

r <λΩ̃
+

cr,0(0)ϕ
Ω̃
r ⊗ ϕ∆

0


+ eλ

Ω̃
+t

O(e−gap(∆)t)

∑
r,i>0

cr,i(0)ϕ
Ω̃
r ⊗ ϕ∆

i

 ,

meaning that the dominant term is given by the lowest frequency component and in fact, if we811

normalize we find EDir(F(t)/||F(t)||) ≤ e−gap(∆)t.812

(iii) Finally we consider the dynamical system induced by linear GRAND813

ḞGRAND(t) = −∆RWF(t) = −(I−A(F(0)))F(t).

Since we have no channel-mixing, without loss of generality we can assume that d = 1 – one can814

then extend the argument to any entry. We can use the Jordan form of A to write the solution of the815

GRAND dynamical system as816

f(t) = Pdiag(eJ1t, . . . , eJnt)P−1f(0),

for some invertible matrix P of eigenvectors, with817

eJkt = e−(1−λA
k )t

1 t · · · tmk−1

(mk−1)!

...
1

 ,

where mk are the eigenvalue multiplicities. Since by assumption G is connected and augmented with818

self-loops, the row-stochastic attention matrix A computed in [10] with softmax activation is regular,819

meaning that there exists m ∈ N such that (Am)ij > 0 for each entry (i, j). Accordingly, we can820

apply Perron Theorem to derive that any eigenvalue of A has real part smaller than one except the821

eigenvalue λA0 with multiplicity one, associated with the Perron eigenvector 1n. Accordingly, we822

find that each block eJkt decays to zero as t→ ∞ with the exception of the one eJ0t associated with823

the Perron eigenvector. In particular, the projection of f0 over the Perron eigenvector is just µ1n, with824

µ the average of the feature initial condition. This completes the proof.825

C.2 Common GNN architectures as gradient flow826

We consider linear GNNs of the form827

F(t+ 1) = F(t)Ω+AF(t)W + βF(0)W̃, 0 ≤ t ≤ T.

If Ω = 0, β = 0 and A = Ā, we recover linear GCN with weights shared across layers [27, 43].828

Similarly, if A = Ā and β = 0, this is linear GraphSAGE [23] with propagation given by symmetric829

adjacency and weights shared across layers. A symmetric version of GAT [42] can be recovered if830

Ω = 0, β = 0 and A = Ā is a symmetric attention matrix depending only on the initial encoded831

features – note that in general a row-stochastic matrix may not be symmetric so a symmetrization832

of a row-stochastic attention matrix would generally fail to remain row-stochastic. We believe that833

this point deserves further investigation. Finally GCNII [11] can be recovered by taking Ω = 0 and834

A = Ā.835
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Proof of Lemma 4.2. This follows from the same argument in eq. (22) once we regard the linear836

system in eq. (12) as a unit step size Euler discretization837

Ḟ(t) ∼ F(t+ 1)− F(t) = F(t)(Ω− Id) +AF(t)W + βF(0)W̃

838

C.3 Spectral analysis of the channel-mixing: the discrete case839

We first address the proof of the main result.840

Proof of Theorem 4.3. We consider a linear dynamical system841

F(t+ τ) = F(t) + τĀF(t)W,

with W symmetric. We vectorize the system and rewrite it as842

vec(F(t+ τ)) = (Ind + τW ⊗ Ā)vec(F(t))

which in particular leads to843

vec(F(mτ)) = (Ind + τW ⊗ Ā)mvec(F(0)).

We can then write explicitly the solution as844

vec(F(mτ)) =
∑
r,i

(
1 + τλWr (1− λ∆i )

)m
cr,i(0)ϕ

W
r ⊗ ϕ∆

i .

We now verify that by assumption in eq. (13) the dominant term of the solution is the projection into845

the eigenspace associated with the eigenvalue ρ− = |λW− |(ρ∆ − 1). The following argument follows846

the same structure in the proof of Proposition 3.1 with the extra condition given by the step-size.847

First, we note that for any r such that λWr > 0, we have848

|1 + τρ−| > |1 + τλW+ | ≥ |1 + τλWr (1− λ∆i )|

since we required ρ− > λW+ in eq. (13). Conversely, if λWr < 0, then849

|1 + τλWr (1− λ∆i )| ≤ max{|1 + τρ−|, |1 + τλW− |}

Assume that τ |λW− | > 1, otherwise there is nothing to prove. Then |1 + τρ−| > τ |λW− | − 1 if and850

only if851

τ |λW− |(2− ρ∆) < 2,

which is precisely the right inequality in eq. (13). We can then argue exactly as in the proof of852

Proposition 3.1 to derive that for each index r such that λWr < 0 and λWr ̸= λW− , then853

|1 + τλWr (1− λ∆i )| ≤ max{|1 + τ |λW−,2|(ρ∆ − 1)|, |1 + τ |λW− |(λ∆n−2 − 1)|}

with λW−,2 and λ∆n−2 defined in eq. (23). We can then introduce854

δHFD := max{λW+ , ρ−−|λW− |gap(ρ∆I−∆), ρ−− (ρ∆−1)gap(|λW− |I+W), |λW− |− 2

τ
} (28)

and conclude that855

EDir(F(t)) =
1

2

∑
r,i

(
1 + τλWr (1− λ∆i )

)2m
c2r,i(0)λ

∆
i

= (1 + τρ−)
2m

ρ∆
2

∑
r:λW

r =λW
−

c2r,ρ∆
(0) +O

((
1 + τδHFD

1 + τρ−

))2m ∑
i,r:λW

r (1−λ∆
i ) ̸=ρ−

c2r,i(0)λ
∆
i


= (1 + τρ−)

2m

(
ρ∆
2

||P ρ−
W F(0)||2 +O

((
1 + τδHFD

1 + τρ−

)2m
))

.
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In particular, we can normalize the solution and due to (Id⊗∆)P
ρ−
W vec(F(0)) = ρ∆P

ρ−
W vec(F(0)),856

we complete the proof for the case with residual connection.857

If instead we drop the residual connection and simply consider Ḟ(t) = ĀF(t)W, then858

vec(F(mτ)) = (τW ⊗ Ā)mvec(F(0)).

Since G is not bipartite, the Laplacian spectral radius satisfies ρ∆ < 2. Therefore, for each pair of859

indices (r, i) we have the following bound:860

|λWr (1− λ∆i )| ≤ max{λW+ , |λW− |},

and the inequality becomes strict if i > 0, i.e. λ∆i > 0. The eigenvalues λW+ and λW− are attained861

along the eigenvectors ϕW
+ ⊗ϕ∆

0 and ϕW
− ⊗ϕ∆

0 respectively. Accordingly, the dominant terms of the862

evolution lie in the kernel of Id⊗∆, meaning that for any F0 with non-zero projection in ker(Id⊗∆)863

– which is satisfied by all initial conditions except those belonging to a lower dimensional subspace –864

the dynamics is LFD. In fact, without loss of generality assume that |λW− | > λW+ , then865

vec(F(mτ)) = |λW− |m
∑

r:λW
r =λW

−

(−1)mcr,0(0)ϕ
W
− ⊗ ϕ∆

0

+ |λW− |m
O(φ(m))

Ind −
∑

r:λW
r =λW

−

(ϕW
− ⊗ ϕ∆

0 )(ϕW
− ⊗ ϕ∆

0 )⊤

 vec(F(0))

 ,

with φ(m) → 0 as m→ ∞, which completes the proof.866

Gradient flow as spectral GNNs. We finally discuss eq. (11) from the perspective of spectral867

GNNs as in [2]. Let us assume that β = 0, Ω = 0. If we let ∆ = UΛU⊤ be the eigendecomposition868

of the graph Laplacian and {λWr } be the spectrum of W with associated orthonormal basis of869

eigenvectors given by {ϕWr }, and we introduce zr(t) : V → R defined by zri (t) = ⟨fi(t), ϕWr ⟩, then870

we can rewrite the discretized gradient flow as871

zr(t+ τ) = U(I+ τλWr (I−Λ))U⊤zr(t) = zr(t) + τλWr Āzr(t), 1 ≤ r ≤ d. (29)

Accordingly, for each projection into the r-th eigenvector of W, we have a spectral function in the872

graph frequency domain given by λ∆ 7→ 1 + τλWr (1− λ∆). If λWr > 0 we have a low-pass filter873

while if λWr < 0 we have a high-pass filter. Moreover, we see that along the eigenvectors of W,874

if λWr < 0 then the dynamics is equivalent to flipping the sign of the edge weights, which offers a875

direct comparison with methods proposed in [4, 45] where some ‘attentive’ mechanism is proposed876

to learn negative edge weights based on feature information.877

The previous equation simply follows from878

zri (t+ τ) = ⟨fi(t+ τ),ϕW
r ⟩ = ⟨fi(t) +W(Āf(t))i,ϕ

W
r ⟩

= zri (t) + λWr
∑
j

āijz
r
j (t),

which concludes the derivation of eq. (29).879

D Additional details on experiments880

D.1 Additional details on GRAFF881

Given a gradient flow dynamical system of the form F(t+ τ) = F(t) + τĀF(t)W, the vectorized882

solution is883

vec(F(mτ)) =
∑
r,i

(
1 + τλWr (1− λ∆i )

)m
cr,i(0)ϕ

W
r ⊗ ϕ∆

i .

We then see that the number of layers m – which coincides with the quotient of the integration884

time T by the step size τ – represents the degree of the polynomial computing the solution. More885
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precisely, on a heterophilic graph for which a HFD dynamics is more suited than an LFD dynamics,886

the negative eigenvalues of W are needed to magnify the graph high-frequencies. This in turn yields887

terms
(
1 + τλWr (1− λ∆i )

)m
that would become unbounded with m growing if there is sufficient888

mass on the negative side of spec(W). On the other hand, terms associated with positive eigenvalues889

of W would quickly lead to over-smoothing. One then expects that on heterophilic graphs the degree890

m of the polynomial – i.e. the number of layers – should be generally smaller than that on homophilic891

graphs. This is confirmed in our real-world experiments where on the larger heterophilic graphs like892

Squirrel and Chameleon the optimal number m is an integer in {2, 3, 4}.893

D.2 General Experimental details894

GRAFF is implemented in PyTorch [53], using PyTorch geometric [54] and torchdiffeq [12]. Code895

and instructions to reproduce the experiments are available on GitHub. Hyperparameters were tuned896

using wandb[55] and random grid search. Experiments were run on AWS p2.8xlarge machines, each897

with 8 Tesla V100-SXM2 GPUs.898

D.3 Additional details on synthetic ablation studies:899

The synthetic Cora dataset is provided by [51, Appendix G]. They use a modified preferential900

attachment process to generate graphs for target levels of homophily. Nodes, edges and features are901

sampled from Cora proportional to a mix of class compatibility and node degree resulting in a graph902

with the required homophily and appropriate feature/label distribution. To validate the provided903

data before use we provide table 2 summarising the properties of the synthetic Cora dataset. All904

rows/levels of homophily have the same number of nodes (1,490), edges (5,936), features (1,433)905

and classes (5).906

homophily max_degree min_degree av_degree density edge_homoph node_homoph
0.00 84.33 1.67 3.98 0.0027 0.00 0.00
0.10 71.33 2.00 3.98 0.0027 0.10 0.10
0.20 73.33 1.67 3.98 0.0027 0.20 0.20
0.30 70.00 2.00 3.98 0.0027 0.29 0.30
0.40 77.67 2.00 3.98 0.0027 0.39 0.39
0.50 76.33 2.00 3.98 0.0027 0.49 0.49
0.60 76.00 1.67 3.98 0.0027 0.59 0.60
0.70 67.67 2.00 3.98 0.0027 0.70 0.70
0.80 58.00 1.67 3.98 0.0027 0.78 0.79
0.90 58.00 1.67 3.98 0.0027 0.89 0.89
1.00 51.00 2.00 3.98 0.0027 1.00 1.00

Table 2: Summary of properties of synthetic Cora dataset

As well as the ablation shown in fig. 2 we used this dataset to perform an ablation using GCN as the907

baseline. We asses the impact of each of the steps necessary to augment a standard GCN model to908

GRAFF. This involves 5 steps; 1) add an encoder/decoder. 2) add a residual connection. 3) share909

the weights of W and Ω across time/layers. 4) symmetrize W and Ω. 5) remove the non-linearity910

between layers. The results are shown in fig. 3 and corroborate Theorem 4.3 that adding a residual911

term is beneficial especially in low-homophily scenarios. We also note augmentations 3,4 and 5 are912

not "costly" in terms of performance.913

D.4 Additional details on real-world ablation studies914

For the real-world experiments in table 1 we performed 10 repetitions over the splits taken from [31].915

For all datasets we used the largest connected component (LCC) apart from Citeseer where the 5th916

and 6th split are LCC and others require the full dataset. For Chameleon and Squirrel we added917

self loops and made the edges undirected as a preprocessing step. All other datasets are provided as918

undirected but without self loops. Each split uses 48/32/20 of nodes for training, validation and test919

set respectively. Table 3 summarises each of the datasets.920

We used the real-world datasets to perform 2 ablation studies. First we choose 2 heterophilic datasets921

(Chameleon, Squirrel) and 2 homophilic (Cora, Citeseer) and observed how the size of the hidden922
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Figure 3: Experiments on synthetic Cora - GCN ablation

dataset nodes edges features classes max_degree min_degree av_degree density edge_homoph node_homoph
Texas 183 558 1,703 5 104 1 3.05 0.0167 0.06 0.06
Wisconsin 251 900 1,703 5 122 1 3.59 0.0143 0.18 0.16
Cornell 183 554 1,703 5 94 1 3.03 0.0165 0.3 0.3
Film 7,600 53,318 932 5 1,303 1 7.02 0.0009 0.22 0.22
Squirrel 5,201 401,907 2,089 5 1,904 2 77.27 0.0149 0.23 0.29
Chameleon 2,277 65,019 2,325 5 733 2 28.55 0.0125 0.26 0.33
Citeseer * 3,327 9,104 3,703 6 99 0 2.74 0.0008 0.74 0.71
Citeseer 2,120 7,358 3,703 6 99 1 3.47 0.0016 0.73 0.71
Pubmed 19,717 88,648 500 3 171 1 4.5 0.0002 0.8 0.79
Cora 2,485 10,138 1,433 7 168 1 4.08 0.0016 0.8 0.81

Table 3: Summary of properties of real-word datasets. All LCC except *

dimension effected performance for the structures of W described in section 5. For heterophilic923

datasets we used the splits from [31]. For homophilic datasets we used the methodology in [52],924

each split randomly selects 1,500 nodes for the development set, from the development set 20 nodes925

for each class are taken as the training set, the remainder are allocated as the validation set. The926

remaining nodes outside of the development set are used as the test set. This gives a lower percentage927

(3-6%) of training nodes. This approach was taken because less training information is needed in the928

homophilic setting and performance can become less sensitive to other factors, meaning less signal929

from the controlled variable. From fig. 4 we see that (DD) is more parameter efficient than sum in the930

heterophilic setting and (D) (a parameter light configuration) outperforms in the homophilic setting.931

The second ablation study further corroborates the behaviour seen in fig. 2. We tested the structures932

of W against the real-world datasets with known homophily, again neg-prod outperforms prod in the933

heterophilic setting and vice-versa due the sign of their spectra.934

dataset neg_prod prod sum
Chameleon 67.32 58.86 68.36
Squirrel 51.39 42.11 51.29
Cora 31.80 79.65 81.17
Citeseer 32.47 67.31 67.53

Table 4: Ablation with controlled spectrum of W on real-world datasets
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Figure 4: Ablation against hidden dimension

To validate the complexity analysis in Section 5 we performed a runtime ablation for the models935

between standard GCN and GRAFF described in the GCN ablation Figure 3. The average inference936

runtime over 100 runs for 1 split of Cora was recorded. We also include runtimes for the provided937

dense and sparse implementations of GGCN [45]. Adding the encoder/decoder (step 1) speeds up the938

model due to dimensionality reduction. Subsequent steps also reduce complexity and offer speedup939

with GRAFF performing the fastest.940

D.5 Details on hyperparameters941

Using wandb [55] we performed a random grid search with uniform sampling of the continuous942

variables. We provide the hyperparameters that achieved the best results from the random grid search943

in table 5. An implementation that uses these hyperparameters is available in the provided code with944

hyperparameters provided in graff_params.py. Input dropout and dropout are the rates applied to945

the encoder/decoder respectively with no dropout applied in the ODE block.946

w_style lr decay dropout input_dropout hidden_dim time step_size
chameleon diag_dom 0.0014 0.0004 0.37 0.43 64 3.2 1
squirrel diag_dom 0.0058 0.0002 0.50 0.51 64 2.3 1
texas diag_dom 0.0041 0.0354 0.33 0.39 64 0.6 0.5
wisconsin diag 0.0029 0.0318 0.37 0.37 64 2.1 0.5
cornell diag 0.0021 0.0184 0.30 0.44 64 2.0 1
film diag 0.0026 0.0130 0.48 0.42 64 1.5 1
Cora diag 0.0026 0.0413 0.34 0.53 64 3.0 0.25
Citeseer diag 0.0001 0.0274 0.22 0.51 64 2.0 0.5
Pubmed diag 0.0039 0.0003 0.42 0.41 64 2.6 0.5

Table 5: Selected hyperparameters for real-world datasets

E Elementwise non-linear activations and energy dissipation947

In this section we investigate how to extend the energy framework to include more conventional948

non-linear activation maps to potentially have better expressive power – note that recent works like949
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Figure 5: Runtime ablation for inference on Cora dataset

[6] in some sense argue for more non-linear layers. Namely, we consider the general energy in950

equation 7 with the inclusion of the source term:951

Etot(F) =
1

2

∑
i

⟨fi,Ωfi⟩ −
1

2

∑
i,j

āij⟨fi,Wfj⟩+ β⟨F,F(0)⟩.

Since the energy is quadratic, its gradient flow is a linear dynamical system:952

Ḟ(t) = −F(t)Ω+ ĀF(t)W − βF(0) (30)

The key question we explore here is: what happens if we activate the equations with a pointwise953

non-linear map σ? In general, we will not be a gradient flow of the energy Etot, however can we still954

say something about the behaviour of t 7→ Etot(F(t)) along the solution? The answer is affirmative955

and offers a novel contribution where even non-linear, residual, graph convolutional models maintain956

the intepretation of dissipating an energy where W plays the role of an edge-wise bilinear potential957

generating attraction and repulsion:958

Proposition E.1. Consider a non-linear map σ : R → R such that the function x 7→ xσ(x) ≥ 0. If959

t 7→ F(t) solves the equation960

Ḟ(t) = σ
(
−F(t)Ω+ ĀF(t)W − βF(0)

)
,

where σ acts elementwise, then961

dEtot(F(t))

dt
≤ 0.

Proof. The argument is simple and derives from direct computation. Namely, let us use the Kronecker962

product formalism to rewrite the gradient ∇vec(F)Etot(F) as a vector in Rnd: explicitly, we get963

∇vec(F)Etot(F) = (Ω⊗ In −W ⊗ Ā)vec(F) + βvec(F(0)).

It follows then that964

dEtot(F(t))

dt
=
(
∇vec(F)Etot(F(t))

)⊤
vec(Ḟ(t)) =

=
(
(Ω⊗ In −W ⊗ Ā)vec(F(t)) + βvec(F(0))

)⊤
σ
(
(−Ω⊗ In +W ⊗ Ā)vec(F(t))− βvec(F(0))

)
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If we introduce the notation Z(t) = (−Ω ⊗ In +W ⊗ Ā)vec(F(t)) − βvec(F(0)), then we can965

rewrite the derivative as966

dEtot(F(t))

dt
= −Z(t)⊤σ(Z(t)) = −

∑
α

Z(t)ασ(Z(t)α) ≤ 0

by assumption on σ, which completes the proof.967

Important consequence: The previous results shows that even if the non-linear dynamical system968

Ḟ(t) = σ
(
−F(t)Ω+ ĀF(t)W + βF(0)

)
,

is not a gradient flow for Etot, the latter quantity is still decreasing along the solution meaning that969

the interpretation of positive (negative) eigenvalues of W inducing attraction (repulsion) persists970

given that the energy has not changed. This allows us to derive that general (non-linear) graph971

convolutional models retain the learnable multi-particle energy-dissipation property provided972

that the channel-mixing matrices are symmetric and that the pointwise activation satisfies973

xσ(x) ≥ 0, which for example holds for ReLU, tanh, arctan and so on. In particular, models that974

are energy-dissipating can fit non-linear activations.975

To further support the principle that the effects induced by W are similar even in this non-linear976

setting, we consider a simplified scenario.977

Lemma E.2. If we choose Ω = W = diag(ω) with ωr ≤ 0 for 1 ≤ r ≤ d and β = 0 i.e. t 7→ F(t)978

solves the dynamical system979

Ḟ(t) = σ (−∆F(t)diag(ω)) ,

with xσ(x) ≥ 0, then the standard graph Dirichlet energy satisfies980

dEDir(F(t))

dt
≥ 0.

Proof. This again simply follows from directly computing the derivative:981

dEDir(F(t))

dt
=

1

4

d

dt

 d∑
r=1

∑
(i,j)∈E

(
fri (t)√
di

−
frj (t)√
dj

)2


=

d∑
r=1

∑
i∈V

(∆fr)iσ(−ωr(∆fr)i) =

d∑
r=1

∑
i∈V

(∆fr)iσ(|ωr|(∆fr)i) ≥ 0.

Important consequence: The previous Lemma implies that even with non-linear activations, negative982

eigenvalues of the channel-mixing induce repulsion and indeed the solution becomes less smooth as983

measured by the classical Dirichlet Energy increasing along the solution. Generalising this result to984

more arbitrary choices is not immediate and we reserve this for future work.985

986
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