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Cognition-Supervised Saliency Detection: Contrasting EEG
Signals and Visual Stimuli

Anonymous Authors

Figure 1: Illustration of cognition-supervised visual saliency detection and its applications in downstream tasks. EEG responses
to visual stimuli are used to train embedding models through CLIP loss by contrasting EEG with stimuli image representations.
The learned EEG embeddings are applied in downstream tasks such as clustering, classification, fine-tuning personalized
models, and conditioning generative models. No manual annotation is needed during training or inference.

ABSTRACT
Understanding human assessment of semantically salient parts of
multimedia content is crucial for developing human-centric appli-
cations, such as annotation tools, search and recommender systems,
and systems able to generate new media matching human interests.
However, the challenge of acquiring suitable supervision signals
to detect semantic saliency without extensive manual annotation
remains significant. Here, we explore a novel method that utilizes
signals measured directly from human cognition via electroen-
cephalogram (EEG) in response to natural visual perception. These
signals are used for supervising representation learning to capture
semantic saliency. Through a contrastive learning framework, our
method aligns EEG data with visual stimuli, capturing human cog-
nitive responses without the need for any manual annotation. Our
approach demonstrates that the learned representations closely
align with human-centric notions of visual saliency and achieve
competitive performance in several downstream tasks, such as im-
age classification and generation. As a contribution, we introduce
an open EEG/image dataset from 30 participants, to facilitate further
research in utilizing cognitive signals for multimodal data analy-
sis, studying perception, and developing models for cross-modal
representation learning.
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1 INTRODUCTION
Human cognition excels at detecting salient information from vari-
ous media, rapidly identifying what is important for an individual
in a specific context or multimedia experience. This innate ability
to discern salient parts of stimuli is crucial for a range of multi-
media applications, including generating personalized content rec-
ommendations, interfaces, and multimedia experiences. However,
replicating this capability in machines, particularly in a way that
reflects an individual’s perception of semantic saliency, remains
a significant challenge. Traditional machine learning approaches
often rely on large datasets of implicitly obtained signals, such as
click data [27, 37, 50] or dwell time [59], from platforms that expose
information to their users, such as social media or video stream-
ing services. These data, often combined with visual information
under a supervised learning framework [58], serve as proxies for
cognitive responses to salient features. However, these supervision
data may not always capture the nuanced cognitive preferences
of individuals and is dependent on availability of behavioral data,
such as clicks.

In this work, we propose an alternative approach, cognition-
supervised saliency detection, to capture human cognitive responses
to visual information without reliance on manual labels or behav-
ioral data. Our method utilizes natural human cognitive reactions
evoked by visual perception of media content and measured via

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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electroencephalogram (EEG). Specifically, participants are exposed
to visual information while their EEG signals evoked in response
to perception are recorded. These EEG data are then employed in
a self-supervision framework to learn representations of salient
semantic visual features eliciting variations in cognitive responses.

Integrating brain responses into machine learning has histori-
cally been challenging. Prior research on visual saliency detection
leveraging brain responses often depended on manually labeled
data [12, 44, 62] or the fine-tuning of models pretrained on such
data [14, 18, 48, 53]. Unsupervised methods, conversely, tend to
underperform with brain data due to its inherent noise and com-
plexity [40]. In scenarios such as supervised binary classification
using only single-trial data with complex visual stimuli, accuracy
typically remains modest – for instance, 0.78 for differentiating
human faces from objects [33], about 0.7 for within-subject and
roughly 0.4 for cross-subject comparisons [33, 63], 0.708 for Ima-
geNet subsets [2], and under 0.6 for text stimuli [19]. Moreover,
certain earlier studies addressing similar challenges have been crit-
icized for relying on confounded datasets [34]. As a result, using
brain signals as a direct source of supervision for machine learning
models is facing two fundametal problems: achieving a performance
that has utility for practical applications and learning without man-
ually labeled data.

Our approach tackled both of these problems. It learns repre-
sentations of semantic visual saliency as perceived by the brain,
utilizing unlabeled EEG data contrasted with visual stimuli for su-
pervision. The model is crafted to differentiate between target and
non-target saliency, based on participants’ brain responses.

Utilizing this model, we explore two primary research questions:

RQ1: Can representations of semantic saliency be directly learned
from EEG data as a supervision signal?

RQ2: Do the learned representations accurately capture the salient
features in downstream tasks?

With our experiment results, we demonstrated that the learned
representations reflect the desired semantic visual saliency better
than any single modality representations, and linear classifiers built
on top of them have performance comparable to supervised models.
We also tested our method in personalization scenarios where a
base model can flexibly adapt to a small amount of personal data.
In a generative downstream task, the learned representations are
used to successfully condition the generated images to fully match
the semantic saliency given in the task.

Additionally, to further research in this area, we are releas-
ing an open, anonymized EEG dataset from 30 participants. This
dataset, designed with specific semantic saliency detection tasks for
multimedia content, aims to promote advancements in cognition-
supervised models.

In summary, our main contributions are:

• Introducing a novel approach for contrastively training mod-
els with cognitive EEG responses to visual multimedia stim-
uli, to learn representations of semantic visual saliency.

• Releasing a new open and anonymized EEG dataset from
30 participants, complete with a comprehensive codebase,
to encourage research in cognition-supervised models for
multimedia applications.

2 RELATEDWORK
In recent years, the integration of brain signals with machine learn-
ing has garnered considerable attention for its potential to enhance
both the performance and interpretability of models. Among the
array of brain-computer interface devices, electroencephalogra-
phy (EEG) signals stand out as a favored modality, offering rich,
albeit noisy, data for supervised machine learning models. EEG is
valued for its non-intrusive nature, high temporal resolution, and
cost-effectiveness.

However, EEG signals are inherently challenged by limited spa-
tial resolution and susceptibility to artifacts and noise from subject
movements, which can significantly impede the efficacy of EEG-
based machine learning models. This is particularly prominent for
models addressing cognitive processes like visual semantic saliency
recognition in real-world media content. The modest spatial resolu-
tion of EEG complicates the accurate localization of neural activity
tied to visual cognition, and noise can further obscure the cognitive
signals of interest.

Decoding EEG signals has enabled a wide range of applications,
including emotion recognition [3, 24] for affective multimedia ex-
periences, mental workload assessment [4, 46] for adaptive user
interfaces, and multimedia content understanding [29, 42]. These
applications are grounded in supervised EEG classification mod-
els, which facilitate the effective use of brain data across various
contexts.

However, traditional supervised machine learning approaches
rely on manual annotations, presenting challenges related to cost
of training the models and subjectivity of the training data. Manual
annotations, requiring domain experts to label vast quantities of
multimedia data, are both time-consuming and resource-intensive.
Moreover, the subjectivity inherent in human annotations can lead
to inter-annotator variability, undermining the reliability and con-
sistency of annotations, especially for subjective phenomena like
emotions and cognitive responses to multimedia content. This may
force "one-size-fits-all" models and ignore the need for personalized
models of human cognition.

To address these limitations, there is a growing need for un-
supervised and self-supervised approaches that leverage EEG as
supervisory signals to train machine learning models. Recent re-
search has explored the direct use of brain signals as supervisory
signals for machine learning models [8, 9, 16, 32]. Self-supervised
learning with EEG data may provide potentially more objective
and quantifiable measures of brain activity, leading to more reliable
and cost-effective annotations compared to traditional methods
requiring expert knowledge for manual annotation. Moreover, the
real-time capture of brain responses enhances the adaptability and
robustness of machine learning models, allowing them to dynami-
cally respond to changes in brain states during perception of digital
information.

A series of earlier studies on EEG-based image reconstruction suf-
fer from confounded EEG data due to specific experimental block de-
signs. This includes the EEG-GAN approach [43, 52], Thoughtviz [54],
Brain2image [29], EEG-ChannelNet [42], and numerous subse-
quent research on the same datasets such as EEG2IMAGE [51],
DM-RE2I [61], NeuroGAN [38], and GDN-GAN [30]. To this end,
subsequent analyses [1, 2, 34] have identified a critical flaw in these
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approaches: the block design in data collection introduces tempo-
ral correlations between the presentation order of stimulus class
and the experiment duration. Attempts to replicate these studies
have suggested that models were learning to recognize the order
of stimuli presentation rather than the genuine cognitive reactions
to the stimuli [34].

In parallel, contrastive learning methods have gained signifi-
cant attention in the broader field of machine learning [10, 20–
22, 45, 56, 57]. Contrastive learning aims to develop robust and
meaningful representations without explicit annotations, by maxi-
mizing the similarity between positive pairs (similar samples) and
minimizing it between negative pairs (dissimilar samples). The ef-
ficacy of contrastive learning has been proven in areas like large
language models [45], image embeddings [25], and audio data [47],
yet its application in EEG-based machine learning to be paired
with multimedia data is still relatively unexplored. Similar con-
trastive methods have been applied to EEG data for tasks such as
sleep stage classification [26], emotion recognition [39], and pathol-
ogy screening [6]. These methods often rely on carefully designed
data augmentation or combinations of transformations. However,
identifying effective data augmentation techniques for EEG data in
multimedia scenarios remains a challenge. A recent study [26] high-
lighted how improper transformation choices could significantly
reduce test accuracy, from 82.90% to 48.15%.

Moreover, focusing contrastive learning on a singlemodalitymay
overlook valuable information from other modalities, especially in
multimedia applications that typically involve multiple modalities.
This challenge was tackled by supervised contrastive learning [20],
which enhances image pair augmentation with labeling for better
grouping. Another study [57] introduced a hierarchical semantic
alignment strategy to assess the semantic similarity between im-
ages. Additionally, a multimodal contrastive training method [60]
employed multiple loss functions to leverage the intrinsic data
structure of each modality.

Our work is inspired by the well-known language supervision
approach CLIP [45], which learns representations from paired text
and image data to align across two modalities. Similarly, our em-
bedding model aligns representations from paired EEG and visual
stimuli data, effortlessly obtained from data collection in multime-
dia scenarios. Unlike merely decoding EEG signals to categorical
or simplistic stimuli, our contrastive approach bridges EEG with
high-dimensional multimedia stimuli. In a manner akin to CLIP,
which is grounded in natural language supervision, we define our
method as cognition-supervised learning.

A recent study [49] investigated non-linear techniques to learn a
consistent latent space of joint behavior and neural data across sub-
jects, applying this method to various animal datasets. However, it’s
crucial to recognize that this data was acquired through intrusive
methods, using implanted electrodes or probes, which are more
challenging to apply to human subjects in multimedia contexts
than non-intrusive EEG signals. This study aimed at movie frame
reconstruction, focusing on the sequence of movie frames rather
than their content, which restricts its applicability to multimedia
applications featuring diverse and dynamic content.

Consequently, a significant research opportunity exists for effec-
tive cognition-supervised learning within multimedia applications.
To fill this gap, we introduce a novel approach that leverages the

contrast between EEG data and multimedia stimuli as a supervisory
signal. Our method benefits from label-free learning using EEG
data and integrates stimuli information to remain effective even
with a limited amount of EEG data, which might be insufficient for
self-supervision if relying solely on EEG signals.

3 METHODS
3.1 Data Collection and Preparation
To explore the feasibility of cognition-supervised learning, we con-
ducted neurophysiological experiments to gather EEG responses
to generated visual stimuli. The acquisition of neurophysiological
data and subsequent experiments received approval from the ethi-
cal review board of social and behavioral sciences at anonymous
organization , adhering to the Declaration of Helsinki1. Informed
consent was signed by each participant to acknowledge their rights.
Participants were compensated with vouchers for the local cinema.

Visual Stimuli Preparation. We selected generated images
of faces as visual stimuli, recognizing that humans exhibit strong
responses to facial stimuli [55]. Generated images were chosen
over real ones to control for variances in semantics and confound-
ing visual features, thereby minimizing brain responses related to
recognition effects. This approach ensures a homogeneous dataset
that facilitates strict semantic-level evaluation in generative tasks.
A random sample of 70,000 images was generated using a progres-
sive GAN2 [28], pre-trained on the CelebA dataset [35]. The raw
images, with a resolution of 1024 by 1024 pixels, were manually
screened by researchers to remove images with visual artifacts, such
as distorted faces or evident signs of artificiality, to ensure brain
responses reflected semantic saliency rather than artifact recogni-
tion. These images were categorized into eight groups based on
semantic saliency: smiling, not smiling, female, male, young, old,
dark hair, and light hair (blond).

Participants. Neurophysiological data were collected from
thirty participants (self-reported 13 female and 17 male, mean age
28 years (SD = 7.14, Min = 18, Max = 45)) at anonymous organiza-
tion. Participants were healthy with normal or corrected-to-normal
vision.

Apparatus, Tasks, and Procedure Participants were exposed
to eight recognition tasks sequentially, each corresponding to one of
the semantic saliency groups (e.g., female, smiling). An elliptic grey
frame was used to obscure the backgrounds of all images. EEG data
were captured using 32 Ag/AgCl electrodes, placed according to the
10–20 system, and connected to a QuickAmp USB (BrainProducts
GmbH, Gilching, Germany) amplifier with a sampling rate of 2,000
Hz. Eye movements were monitored for artifact removal through
two pairs of bipolar electrodes positioned near the eyes (1 cm lateral
to the left and right canthi, and 2 cm above and below the right
pupil).

For each task, stimuli were labeled binary according to their
semantic saliency. For instance, in the "smile" task, participants
viewed images of smiling (target) and non-smiling (non-target)
faces. Participants were asked to mentally note images matching

1http://www.wma.net/en/20activities/10ethics/10helsinki/
2https://github.com/tkarras/progressive_growing_of_gans under the attribution-
noncommercial 4.0 international (cc by-nc 4.0) license

https://github.com/tkarras/progressive_growing_of_gans


349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anonymous Authors

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

the task description without any physical response. Each task iter-
ation presented twenty target and twenty non-target images in a
random sequence. Stimuli were displayed using a rapid serial visual
presentation (RSVP) method at a 500 ms interval. A demonstration
task was conducted before each main task to confirm participants’
understanding, where they were to identify images featuring the
specified semantic attribute.

Data Preprocessing. Post data collection, we applied standard
signal cleaning techniques [36] to enhance the signal-to-noise ratio,
involving only automatic methods that do not necessitate any addi-
tional labeled data. This included applying a band-pass filter within
the 0.2–35 Hz frequency range and time-locking epochs from -200
to 900 ms relative to stimulus onset, with baseline correction us-
ing the pre-stimulus interval from -200 to 0 ms. Eyeblink artifacts
were eliminated using a threshold heuristic, setting the threshold
to the 200th largest mean absolute value across epochs and chan-
nels, within a [10,80] range. After preprocessing and balancing, an
average of 1144 epochs per participant remained. Data aggregated
across participants revealed a typical P300 effect, with increased
potentials for target stimuli observable from 250 ms post-stimulus
onset until 600 ms, as shown in Figure 2. This result validates the
anticipated ERP effect on a population average through our experi-
mental setup.

3.2 Cognitive Supervision
Cognition-supervised learning is predicated on the fundamental
observation that the human brain differentially responds to percep-
tual stimuli. This principle implies that the contrast between visual
stimuli and brain responses can act as a supervision signal, enabling
direct learning from preferences reflected in cognitive processes.
This contrastive learning framework allows for the development of
a loss function that relies solely on EEG data and stimuli, obviating
the need for manual annotations.

Figure 2: Average event-related potentials (ERPs) across par-
ticipants at the Pz electrode for target and non-target stimuli,
illustrating a P300 effect.

To facilitate cognition-supervised learning, we introduce a model
that embeds EEG signals. For each stimulus image generated from
a latent vector 𝑌 ∈ R𝐿 (where 𝐿 is the dimension), we represent
the corresponding epoched EEG response as 𝑋 ∈ R𝐶×𝑇 , with 𝐶

denoting the number of channels and 𝑇 the number of time steps
in the epoch.

Initially, we considered employing a regression model 𝑓𝑟𝑒𝑔 :
R𝐶×𝑇 → R𝐿 to reconstruct the stimulus vector from EEG inputs.
However, this approach tended to overfit to noise and showed
limited generalizability. Moreover, reconstructing the entire stim-
ulus vector from EEG is impractical since only salient semantic
features and major facial attributes are discernible to participants.
Consequently, we adopted a noise contrastive estimation using a
CLIP loss [45], aiming to embed semantic saliency as perceived by
participants.

Our proposed embedding model 𝑓embed : R𝐶×𝑇 → R𝐿 is trained
with an EEG signal𝑋 and its associated stimulus vector𝑌 , alongside
a set of negative stimulus vectors 𝑌𝑖 for 𝑖 ∈ {2, 3, . . . , 𝑁 }, ensuring
𝑌𝑖 differ from 𝑌 . The negative set is sampled from the remaining
stimuli vectors in the dataset while avoiding duplication of 𝑌 and
𝑌𝑖 . 𝑌1 := 𝑌 is treated as the positive sample.

The model 𝑓embed predicts the probability 𝑝 𝑗 = P[𝑌𝑗 = 𝑌 ] by
calculating the dot product between 𝑍 := 𝑓embed (𝑋 ) and each 𝑌𝑗 ,
followed by a Softmax function. The probability is defined as:

𝑝 𝑗 =
𝑒 ⟨𝑍,𝑌𝑗 ⟩

𝑁∑
𝑗 ′=1

𝑒 ⟨𝑍,𝑌𝑗 ′ ⟩
(1)

where ⟨·, ·⟩ indicates the inner product.
𝑓embed is optimized using cross-entropy between the actual prob-

ability 𝑝 𝑗 and the estimated 𝑝 𝑗 , where 𝑝 𝑗 = 1 iff 𝑗 = 1, and 𝑝 𝑗 = 0
otherwise. The loss function simplifies to:

𝐿CLIP (𝑝, 𝑝) = −⟨𝑍,𝑌 ⟩ + log(
𝑁∑︁
𝑗=2

𝑒 ⟨𝑍,𝑌𝑗 ⟩) (2)

3.3 Model Structure
To accommodate inter-subject variability while capturing the in-
trinsic structures of EEG signals, we employ a deep neural network,
𝑓embed, processing raw, vectorized EEG signals. Additionally, a one-
hot encoded vector representing the participant is input to the
network, which outputs an embedding vector 𝑍 of the same dimen-
sion as the stimulus vector 𝑌 . The network architecture comprises
two components: (1) a participant-specific convolution matrix and
(2) a series of fully connected layers.

Fully Connected Layers. The embedding model features four
fully connected layers. The first three layers each have 2048 hidden
nodes and utilize a LeakyReLU activation function with 𝛼 = 0.3.
Following each of these layers is a Dropout layer with a dropout
rate of 0.5. The final layer outputs 512 nodes without any activation
function.

Participant-SpecificMatrix.To accommodate variability across
participants within a unified model, we implement a strategy sim-
ilar to that described in [17]. A participant-specific layer, placed
at the outset of the network, contains a trainable 𝐶 ×𝐶 matrix for
each participant. This matrix is applied to the vectorized𝐶 ×𝑇 EEG
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signal across channels, initialized near the identity matrix with
slight random perturbations.

Data Augmentation. To enhance model generalization and
mitigate overfitting, we apply random data augmentation during
training. Initially, each EEG vector 𝑥 ∈ R𝐶×𝑇 is scaled by a ran-
dom vector 𝑐 ∈ [0.95, 1.05]𝐶 . Subsequently, we perform a random
crop and resize on the vector to 𝑥 ′ ∈ R𝐶×𝑇 , selecting an interval
[𝑙, 𝑟 ] where 𝑙 ∈ [0, 𝑇10 ] and 𝑟 ∈ [𝑇 − 𝑇

10 ,𝑇 ]. For the validation set,
we consistently crop and resize the data within the fixed interval
[ 𝑇20 ,𝑇 − 𝑇

20 ], excluding the random scaling.

4 EXPERIMENTS
In this section, we evaluate the efficacy of cognitive supervision on
embedding models through structured experiments. Initially, t-SNE
visualization assesses embedding space clustering for target versus
non-target saliency. Next, unsupervised clustering examines the em-
bedding space’s alignment with target and non-target distinctions.
Subsequently, a linear evaluation protocol [5, 13, 15, 23, 31, 41]
determines if classifiers on saliency embeddings outperform non-
supervised data. We then explore personalized model tuning. Fi-
nally, a qualitative assessment is conducted using generative adver-
sarial networks to visualize cognition-supervised predictions.

Dataset. Our dataset consists of EEG signal and stimuli vector
pairs from 30 participants, comprising a total of 35490 pairs. To
ensure that the individual factor is accounted for, we mixed all
participant data while retaining a unique participant identifier to
apply the participant-specific matrix. For the unsupervised task, we
trained and evaluated our embedding model on the entire dataset.
For linear classification tasks, we employed 10-fold validation by
randomly splitting the dataset into training and testing sets and
reported the mean of evaluation metrics. All experiments were
repeated three times with different random seeds. To accurately
reflect the variability due tomethodological randomness rather than
distribution differences, results are averaged across the tasks for
each run, and standard deviations of these averages are computed
and reported alongside all evaluations.

Hyperparameters andHardware. In all experiments, the brain
embedding model is trained with Adam optimizers with an initial
learning rate 1𝑒 − 4, 𝛽1 = 0.9, 𝛽2 = 0.999, and a weight decay 1𝑒 − 4.
The mini-batch size is set to 256 in all experiments. We conducted
all experiments on Tensorflow with a single Nvidia GeForce RTX
3070 Ti GPU. Each embedding model in the unsupervised clustering
experiments, linear evaluation experiments and the base model in
the personalized experiments are trained with 500 epochs. The
personalized model is fine-tuned by 100 iterations by using the
base model, with all other parameters frozen except the participant-
specific matrix.

4.1 t-SNE Visualization of Embeddings
First, we provide an intuitive understanding of the learned embed-
dings by visualizing the feature space of EEG, stimuli, and embed-
ding space visualized via t-SNE as shown in Figure 3. The data
points are colored according to the target and non-target stimuli.
The learned embedding space separates the data significantly better
than either of the original modalities. The target and non-target

data points are not linearly separable in either the EEG or stim-
uli space, but they are clearly separable in the learned embedding
space.

4.2 Unsupervised Clustering and Classification
The discernible patterns within the t-SNE visualizations inspire us
to perform unsupervised clustering to automatically distinguish be-
tween target and non-target clusters, leveraging the model’s innate
capability to differentiate salient features without label assistance.

Evaluation Procedure. Employing KMeans with 𝑘 = 2 on the
embeddings, we identify two clusters. The one with a higher aver-
age P300 effect is designated as the Target cluster (𝐶𝑇 ), while the
other is recognized as the Non-target cluster (𝐶𝑁 ). This method
allows for the autonomous classification of the dataset into mean-
ingful groups that correspond to the stimuli’s inherent saliency,
without any reliance on explicit labels. We compute the clustering
accuracy as the ratio of correctly classified samples to the total
number of samples.

Control Models. For context, we compare our approach against
KMeans clustering applied to (1) stimuli vectors, (2) flattened EEG
signals, and (3) their concatenated forms. This comparison high-
lights the efficacy of our embeddings in capturing cognitive patterns.
The highest clustering accuracy over all clusters permutations is
reported for control models.

Results. Table 1 summarizes the clustering accuracies, under-
scoring our model’s superiority in discerning between target and
non-target clusters across various tasks. This outcome confirms
the model’s effectiveness in capturing participant-perceived salient
features purely through unsupervised learning.

4.3 Linear Evaluation
Evaluation procedure. To evaluate the efficiency of the learned
saliency representations, we follow the commonly used linear eval-
uation protocol, by training a linear classifier on top of the frozen
embeddings. The dataset is randomly split into a training set and
a testing set with disjoint sets of stimuli. We then train our con-
trastive embedding model on the training set and then compute the
embeddings with frozen model weights. A single-layer binary clas-
sifier 𝐶 (·) : R512 → {0, 1} is trained on the embeddings from the
training set using the explicit labels of stimuli images. The classifier
is then evaluated on the test set using the labels with classification
accuracy.

Control models. To provide a basis for comparison, we also
consider three control models as the baseline. The first is a well-
known supervised EEGNet [33] structure to estimate the upper limit
of performance for the cognition-supervised models and highlights
the difficulties of the task. The second is a linear discriminant
analysis model (LDA) [7] to estimate the separability of raw EEG
signals. Both control models are trained on the raw EEG signals and
the explicit labels. The third baseline model is a randomly permuted
cognition-supervised EEG classifier to determine a lower bound
performance, in which the pairs of EEG signals and stimuli vectors
are shuffled so that the pairs are broken.

Results. Table 2 shows the mean accuracies of all models for
each task. The linear classifiers on saliency embeddings consistently
outperform the random baseline and the LDA models, indicating
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Figure 3: Visualization of feature space of (left) EEG, (middle) stimuli and (right) embedding space visualized via t-SNE. The
learned embedding space separates the data significantly better than either of the original modalities.

Table 1: Clustering accuracies on all tasks with different inputs for KMeans.

KMeans input female male blond darkhaired smiles nosmile old young Mean

stimuli vectors 0.57±0.02 0.56±0.06 0.54±0.01 0.53±0.03 0.51±0.01 0.52±0.01 0.52±0.02 0.53±0.01 0.536±0.011
EEG signals 0.57±0.01 0.51±0.01 0.56±0.01 0.52±0.01 0.57±0.01 0.50±0.01 0.52±0.01 0.55±0.01 0.537±0.001
concatenated 0.55±0.02 0.53±0.02 0.56±0.03 0.56±0.04 0.52±0.01 0.52±0.01 0.53±0.01 0.52±0.01 0.535±0.006
ours 0.76±0.01 0.70±0.01 0.71±0.03 0.71±0.01 0.70±0.02 0.67±0.01 0.61±0.01 0.67±0.01 0.691±0.004

Table 2: Classification accuracies for linear classifiers on top of learned representations and other supervised models. The
train/test split is the same for all models.

Method female male blond darkhaired smiles nosmile old young Mean

EEGNet 0.76±0.01 0.67±0.01 0.74±0.02 0.71±0.03 0.72±0.01 0.69±0.01 0.64±0.02 0.68±0.01 0.700±0.005
LDA 0.58±0.01 0.54±0.01 0.56±0.02 0.55±0.02 0.56±0.01 0.55±0.01 0.53±0.01 0.55±0.01 0.553±0.005
random control 0.52±0.02 0.53±0.02 0.53±0.01 0.52±0.02 0.51±0.01 0.51±0.01 0.51±0.01 0.54±0.01 0.519±0.004
ours 0.76±0.01 0.70±0.02 0.73±0.01 0.71±0.01 0.71±0.01 0.68±0.01 0.63±0.01 0.65±0.02 0.701±0.005

that the learned embeddings were effective in disentangling se-
mantic features. Furthermore, we observed that the mean accuracy
across all tasks is higher than that of the EEGNet, which suggests
that the learned embeddings successfully reduced the high dimen-
sionality of raw EEG signals while preserving the saliency perceived
by the participant. It is worth noting that, the embedding model is
trained without labels and the supervised linear classifier on top of
it is expected to have relatively lower performance compared to a
completely supervised model, as shown in [11].

4.4 Personalized Model Evaluation
Evaluation procedure.To extend our model’s utility to accurately
reflect individual cognitive responses, we evaluated fine-tuned per-
sonalized models. For each of the 30 participants, a base model was
initially trained using EEG data from the other 29 participants. The
target participant’s data was then divided into a 5-fold training set
and a test set. We froze the base model’s weights, with the exception
of the participant-specific matrix, which was randomly initialized
and then fine-tuned using the single-participant training set. Frozen
saliency embeddings from other participants were used to assist in
selecting the target cluster.

Controlmodels. For comparison, we also evaluated two control
models. The first control model is the base model evaluated on the
test set without fine-tuning. The target participant matrix is set to

the identity matrix. The second control model was fine-tuned on
randomly shuffled training data, breaking the pairs of EEG signals
and stimuli vectors.

Results. Table 3 presents the mean clustering accuracy on the
test set and reports the mean from 5-fold validation across all par-
ticipants. The personalized models demonstrated a small improved
accuracy over the base models on average on all tasks. Our results
suggest that with more data available, our method has the potential
to further improve. In addition, the base model, which was not
trained with personal data, still achieved a high clustering accuracy
compared to the random control model. This underscores the zero-
shot prediction capability of our embedding model, highlighting its
potential to learn robust representations and adapt to the subjective
information from individual cognitive signals.

4.5 Qualitative evaluation via generative
visualization

Generative Visualization of Salient Features. In order to pro-
vide an intuitive understanding of the inter-subject variations, we
visualize the embeddings for a qualitative evaluation. We sample
a set 𝑆 of candidate stimuli vectors which can be the set of stim-
uli vectors in the training set, or a fresh set of randomly sampled
vectors from the noise distribution used in the generative model.
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Table 3: Clustering accuracies of all personalized models.

Model female male blond darkhaired smiles nosmile old young Mean

random control 0.56±0.01 0.53±0.01 0.55±0.02 0.55±0.01 0.51±0.01 0.52±0.01 0.52±0.01 0.55±0.01 0.537±0.025
base model 0.74±0.01 0.66±0.01 0.70±0.01 0.68±0.01 0.70±0.01 0.65±0.01 0.61±0.01 0.65±0.01 0.673±0.020
personalized model 0.74±0.01 0.67±0.01 0.70±0.01 0.68±0.01 0.70±0.01 0.66±0.01 0.62±0.01 0.66±0.01 0.682±0.021

Table 4: Clustering accuracies of model variants in ablation study.

Model Variant female male blond darkhaired smiles nosmile old young Mean

full model 0.76±0.01 0.70±0.01 0.71±0.03 0.71±0.01 0.70±0.02 0.67±0.01 0.61±0.01 0.67±0.01 0.691±0.005
𝑀base 0.75±0.02 0.64±0.01 0.68±0.01 0.67±0.02 0.66±0.01 0.64±0.05 0.60±0.02 0.64±0.01 0.660±0.007
𝑀no augmentation 0.75±0.01 0.66±0.02 0.69±0.01 0.69±0.01 0.67±0.02 0.62±0.01 0.54±0.08 0.64±0.02 0.658±0.011
𝑀no matrix 0.73±0.01 0.65±0.02 0.70±0.01 0.67±0.01 0.70±0.01 0.65±0.01 0.62±0.01 0.64±0.01 0.668±0.003

(a) (b)

Figure 4: Visualization of clusters by mapping to (a) stimuli vectors from the training set and (b) randomly sampled vectors
not from the training set. Each of the eight tasks results in a Target cluster and a Non-target cluster. The visualization of
Target cluster should match the task description (female, male, blond, dark hair, smiles, nosmile, old, young) and Non-target
visualization should not.

Each embedding 𝑍 in a cluster 𝐶 is mapped to one of these stimuli
𝑣𝑍 = argmax𝑌 ∈𝑆 ⟨𝑍,𝑌 ⟩, and use the mean𝑀𝐶 = 1

|𝐶 |
∑

𝑍 ∈𝐶
𝑣𝑍 to rep-

resent the cluster. We visualize it using the pre-trained generative
model. For each task, we expect the image generated from𝑀𝐶Target
to contain salient task-specific semantic features and𝑀𝐶Non-target to
have the opposite semantic saliency.

Results. The generated images with the stimuli set and the
randomly sampled set are shown in Figure 4. Between the images

from𝑀𝐶Target and𝑀𝐶Non-target , it can be clearly seen that the seman-
tic difference in images is correlated to the semantic task given to
the participants. In Figure 4a the candidate image vectors are the
stimuli vectors from the training set. In Figure 4b, 600 randomly
sampled 512 vectors that are not present in the training set, are
used as candidate sets and the semantic difference matching the
task is still present. The salient features are clearly present across
the different tasks and not present in the opposite tasks (Figure 4a).
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The representations result in generated images in which the in-
tended salient features are present even for randomly sampled
candidates (Figure 4b). This indicates that the learned embeddings
reflect the underlying signal from human cognition for generating
task-specific salient features.

For each individual, we also visualized the subset of embeddings
from a single participant similarly in supplementary materials Sec.
A1.

4.6 Ablation Analysis
An ablation study was conducted to study the effects of participant-
specific matrices and data augmentation. In contrast to the full
model, three variants of the models were trained: (a)𝑀no matrix that
removes the participant-specific matrix; (b) 𝑀no augmentation that
removes data augmentation; (c)𝑀base that removes both.

The basemodel𝑀base and𝑀no matrix assumes that all data are col-
lected from the same participant, and we select the cluster with the
higher ERP effect as the target cluster. To minimize the differences
caused by random cropping in data augmentation or other dimen-
sion changes, the base model𝑀base and𝑀no augmentation crops the
EEG signals with fixed intervals as used in the test set.

Table 4 shows the accuracies of the full model and other variants
for each task. The full model with the participant-specific matrix
and augmentation consistently yields improved accuracy over all
model variants in all tasks except the task old. The two variant
models𝑀no matrix and𝑀no augmentation both have improved mean
accuracy over the base model.

5 DISCUSSION
We presented cognitive supervision that allows to use EEG brain
recordings and stimuli information to learn embeddings that cap-
ture differences in visual saliency wihtout any external labels. Be-
low, we reflect on the two research questions we posed.

Can representations of semantic saliency be directly
learned from EEG data as a supervision signal?We introduced
a novel approach for contrastive training of models supervised
solely by brain signals, demonstrating the feasibility of learning
semantic visual saliencies from EEG signals. Our models success-
fully capture semantic saliency without relying on explicit manual
annotations.

Do the learned representations accurately capture the
salient features in downstream tasks? We evaluated the per-
formance of our models in classification, clustering, and image
generation tasks using facial image data. The results indicate en-
hanced performance across these tasks, comparable to classification
models pre-trained and fine-tuned with extensive labeled datasets.
In image generation tasks, the models demonstrate capabilities that
are both valid and competitive, even when compared to models
trained with manually annotated data.

Limitations. Currently, the field of brain-computer interfacing,
while advancing, is predominantly challenged by issues of accuracy
and practical convenience when compared to established user inter-
faces. Our experimental setup, although innovative, is principally
confined to the laboratory environment and may not yet translate
seamlessly to widespread public use. Nevertheless, our experiments
underscore the potential to cultivate human-in-the-loop learning

systems that directly engage with human cognitive processing.
These systems do not depend on manual labeling, nor do they rely
on the often inaccurate and indirect manual annotations or implicit
behavioral indicators. A distinct limitation of our method lies in
its focus on discerning between target or non-target saliency at an
individual level, essentially capturing whether an item of visual
information holds salience or not. This dichotomy means our tech-
nique is not apt for annotation tasks demanding explicit labels but
rather suits recognition scenarios that model individual preferences
or where the task itself delineates the saliency. Examples where our
method could be particularly effective include enhancing image
search accuracy, CAPTCHA image detection, or in contexts where a
saliency detection task is predefined for participants. Despite these
limitations, numerous outcomes from our research suggest that
the capabilities of models trained under our cognitive supervision
framework often exceed those of models trained via conventional
manual labeling. This efficacy highlights the potential of leverag-
ing cognitive supervision to substantially refine machine learning,
offering a pathway to discern human preferences toward visually
salient features in a completely passive manner.

6 CONCLUSIONS
We have pioneered a novel demonstration that machine learning
systems can be self-supervised directly from human cognitive sig-
nals captured through EEG, to detect saliency of information per-
ceived by the user. This approach paves the way for developing
machine learning systems that incorporate human-in-the-loop in-
teractions by real-time monitoring of cognitive reactions toward
digital content. While this represents a powerful new paradigm in
machine learning, capable of learning user reactions to information
encountered and experienced in the digital world, it also surfaces
significant ethical concerns. These arise not from the recording
technology per se but from the potential for broader application
of cognitive signal monitoring. As technological development pro-
gresses, demonstrating that models can learn autonomously from
brain responses without the need for explicit task labels or cali-
bration, there’s an increasing risk associated with the pervasive
collection and use of cognitive data. Such practices, if overlooked,
could enable the inference of individual and collective attitudes
towards a broad spectrum of digital content, as evidenced in our
initial experiments.

Therefore, the use of data must be regulated with adequate poli-
cies that can prevent lasting threats to the public. To this end, there
are already actions circumventing unethical use. For instance, the
EU AI act3 prevents AI systems for the purpose of identifying or
inferring emotions or intentions of natural persons on the basis of
their biometric data in the workplace and educational institutions.

However, the policies are only regulating specific use cases. With
this work, we call for more academic investigation to understand
what is possible, theoretically and empirically, with this novel tech-
nology to formulate robust guidelines ensuring the responsible
adoption and use of cognitive supervision technologies.

3https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai

https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
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