
Supplementary Material for “Bringing Image Scene Structure to
Video via Frame-Clip Consistency of Object Tokens”

In this supplementary file, we provide additional information about our experimental results, qualita-
tive examples, implementation details, and datasets. Specifically, Section A provides more experiment
results, Section B provides qualitative visualizations to illustrate our approach, Section C provides
additional implementation details, and Section D provides additional datasets details.

A Additional Experiment Results

First, we discuss the pretraining and finetuning of the SViT model variants (Section A.1). Next,
we present additional ablations (Section A.2) we performed in order to test the contribution of the
different SViT components.

A.1 SViT Variants

As explained in Section 3.3, we use several SViT variants, see Table 5 for details. Additionally,
Table 7 provides a detailed listing of the datasets we used for each SViT variant and task.

Variant Pretrain Auxiliary Image Data Finetune Auxiliary Image Data

SViT-ID In-Domain + Different-Domain In-Domain
SViT-DD Different-Domain Different-Domain
SViT-SFT Different-Domain None

Table 5: SViT Variants

A.2 Additional Experiments

Next, we provide additional experiments in Table 6.

Pretraining and finetuning using in-domain auxiliary images. As part of finetuning, SViT-ID
makes use of in-domain auxiliary image data, whereas for pretraining, it uses a different domain and
in-domain of image data (see Table 5). It is interesting to see what happens if one uses only in-domain
data for both pretraining and finetuning, and no data from external datasets. Towards this end, we
consider a SViT training setup where only the in-domain images are used for both pre-training and
fine-tuning. We do this both for SmthElse and Ego4D. Results are shown in Tables 6a and 6b. It
can be seen that results with only in-domain image data (both pretraining and finetuning) are quite
close to those of using both different and in-domain data. Thus, we conclude that the performance
improvement of the in-domain and different domain are similar, demonstrating that our method is
capable of benefiting both from in-domain and different-domain data.

Pertraining and Finetuning with or without auxiliary images. In Table 6d, we check the effect of
using the auxiliary image data during the pretraining and finetuning for the standard SViT-ID model.
Namely, during the pretraining and fine tuning processes, we examine each combination of using
or not using auxiliary image data. We can see that doing finetuning and pretraining with auxiliary
images yields the best results (65.8). Alternatively, only pretraining with auxiliary images (64.2) or
only finetuning with auxiliary images (64.4) are advantageous compared to not using any auxiliary
images. In fact, not using images at all is equivalent to MViT-v2 with additional tokens, and has no
benefit over MViT-v2.

Consistency Loss. In Table 6f we consider two different types of frame-clip consistencies. The first
is patch token consistency, which is simply replacing the object tokens with the patch tokens in the
frame-clip consistency loss and the second is object token consistency (as described in Equation 7
in the main paper). Comparing the results to not using any frame-clip consistency (65.0), we note
that object token consistency is beneficial (+0.8), but patch consistency decreases the performance
(-6.3). We hypothesize that patch consistency may reduce patch diversification within the frames,
thus reducing performance. A recent study [28] has demonstrated that vision transformers tend
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(a) ID pretraining on SomethingElse

Model Pretraining Top-1
Aux. Images

SViT-ID diff-domain 65.8
SViT ⇥2% diff-domain 65.1

SViT-ID in-domain 65.6
SViT ⇥2% in-domain 65.1

(b) ID pretraining on Ego4D

Model Pretraining Temporal Cls.
Aux. Images Loc. Error Top-1

SViT-ID diff-domain 0.64 73.8

SViT-ID in-domain 0.642 71.9

(c) HAOG Attributes

Model Top-1

SViT -Contact 65.5
SViT -Contact -Corresp. 65.3
SViT +Geometry 65.7
SViT 65.8

(d) Auxiliary images during pretraining and finetuning

Model Pretrain Finetune Top-1

SViT-ID w/o Images w/o Images 63.4
SViT-ID w/o Images w/ Images 64.4
SViT-ID w/ Images w/o Images 64.2
SViT-ID w/ Images w/ Images 65.8

(e) Images-Videos Ratio

Images/Videos Top-1

1/1 65.6
1/10 64.8
1/100 61.6

(f) Consistency loss

Model Frame-Clip Top-1
Consistency Type

SViT-ID Patches 58.7
SViT-ID Objects 65.8
SViT-ID None 65.0

Table 6: Additional Experiments. Unless otherwise noted, all experiments were performed on the
“SomethingElse” dataset. In tables 6a and 6b, “diff-domain” refers to different-domain.

to map different patches into similar latent representations, which results in information loss and
performance degradation.

The minimum requirements to make the model work. In Table 6e we aim to systematically
demonstrate the minimum requirements necessary for the model to function reasonably well. We
explored the minimum requirements to make our model work. We provide the following experiments:
(i) A ratio of 1 image to X videos (where X is 1,10, and 100): 65.6 (1-to-1), 64.8 (1-to-10), and
61.55 (1-to-100). The results indicate that using too few annotated images (1 image per 100 videos)
may result in degradation, but using a relatively small number of images (1 image per 10 videos) is
sufficient to achieve good improvement.

HAOG attributes. We use the object tokens to predict several aspects of the HAOG. In Table 6c we
consider several variations on this prediction. The model “SViT-Contact” does not predict the contact
information, resulting in �0.3% drop compared to SViT. The model “SViT+Geometry” adds to SViT
additional heads that predict distances between all HAOG objects (to explicitly add geometric bias).
This does not affect performance. Finally, we explore what happens when we do not provide the
information about the identity of bounding boxes in the training data. Namely, we treat them as four
boxes, and ask the model to match those to the object tokens, via a matching losss as in [12]. This is
model “SViT-Contact -Corresp.” which is quite close to “SViT-Contact”, indicating that SViT can
perhaps be trained with weaker labels.

Frame-clip consistency loss. In order to validate frame-clip consistency loss, we evaluate the
following experiments: (i) We perturb the image temporal position without consistency loss. We refer
to this version as SViT-Perturb (and similarly SViT-Perturb-DD and SViT-Perturb-ID). (ii) The HAOG
annotations are extrapolated from one random frame of a video. This serves as additional supervision
(without the consistency loss) since the HAOG annotations correspond to the video frames (we note
that SViT does not require such correspondence since it uses only HAOG annotations from single
images). (iii) We predict the HAOG of a random frame in a video, and then duplicate it over the
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temporal dimension and use it in the same manner as in the consistency loss. We find that these
three baselines lead to worse performance. For the first experiment, we obtained SViT-Perturb-DD
with 64.1 (while SViT-DD obtained 65.1), and SViT-Perturb-ID with 65.2 (while SViT-ID with
consistency loss got 65.8). For the second experiment, the proposed baseline achieved 65.0 compared
to our SViT-ID, which achieved 65.8 (and does not require correspondence). Taken together, this
demonstrates the importance of our frame-clip consistency loss.

HAOG "distillation". In this experiment we first train a vision transformer to predict the HAOG task
alone and then fine-tune its backbone network for the video-related task. We evaluated and achieved
62.3 compared to 63.3 of MViTv2. This indicates that training HAOGs as a form of “distillation”, as
we do in SViT, is indeed important.

The object tokens representations. To verify what the object tokens learned, we can evaluate the
ability of object tokens to be utilized explicitly for the auxiliary task as a simple detector of hands and
objects in images. This is accomplished by predicting the detections on SomethingElse based on the
learned object tokens. The learned object tokens were compared to the MViTv2 model extended with
regression and detection heads. Our model achieved an mAP of 16.8, while the proposed baseline
achieved a similar result with an mAP of 15.5. These results suggest that the object tokens learn
meaningful and useful representations.

Computational cost. The cost computation of our approach is relatively small compared to MViTv2:
+0.4% in Giga (109) FLOPs (MViTv2 with 64.5, while SViT with 64.7) and +5% in Mega (106)
parameters (MViTv2 with 34.4, while SViT with 36.1).

Hands in Diving48. To further analyze SViT performance on Diving48 we provide an experiment in
which we remove the "hand" tokens from the HAOG annotation during training, and an experiment
in which we remove the "object" tokens from the HAOG annotation during training. The result for
removing the "hand" tokens is a degradation of 1.7 in top-1 accuracy, and for removing the "object"
tokens is 0.6. We hypothesize that the “human” boxes provide a prior for localization that helps in
classifying diving actions (diving actions could be classified based on appearance and pose).

B Qualitative Visualizations

We present qualitative visualizations of the SViT-ID “object tokens” in videos for the following
datasets: SomethingElse, Ego4D, and Diving48 in Figure 3. As explained in the main paper, two
tokens correspond to the “right hand” and “left hand”, whereas the other two tokens correspond to
the objects they are interacting with. We can see that the “object tokens” are used to detect relevant
objects, even on Diving48, where there is no human-object interaction. In Diving48, we observed
a few interesting phenomena: (i) the diving persons are recognized as hands. This may be explain
by the fact that skin has shared visual features with hands. (ii) The objects recognized in low scores
indicate that the scene does not contain any objects. Overall, despite the issues we raised above, our
model performed well on Diving48. This is evidence that our method is robust to multiple domains
that do not necessarily fit with human-object graph structure (HAOG), and that it still benefits from
these learned object tokens through the attention.

C Additional Implementation Details

Our SViT model can be used on top of the most common video transformers (MViT [21], TimeS-
former [11], Mformer [66], Video Swin [56]). For our experiments, we choose the MViTv2 [53]
model because it performs well empirically. These are all implemented based on the MViTv2 [53]
library (available at https://github.com/facebookresearch/mvit), and we implement SViT
based on this repository. Additionally, in LNodes (see 3) we include weights for the L1, BCE and
GIoU losses, set to 5, 1 and 2 respectively (across all datasets). Next, we elaborate on the additional
implementation details for each dataset, including details about the dataset description, optimization,
and training and inference.

C.1 Ego4D

Dataset. Ego4D [31] is a new large-scale dataset of more than 3,670 hours of video data, capturing
the daily-life scenarios of more than 900 unique individuals from nine different countries around the
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Figure 3: Qualitative visualization of the “object tokens”. The left object and hand prediction is
visualized with green bounding box, the right object and hand prediction is visualized with blue
bounding box. A line connecting between two boxes indicates a “contact” prediction between the
two objects. Only boxes with a score greater than 0.6 are plotted.
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world. The videos contain audio, 3D meshes of the environment, eye gaze, stereo and/or synchronized
videos from multiple egocentric cameras.

Metrics. In the Object State Change Temporal Localization task, the absolute error (in seconds) is
used for evaluation. In the Object State Change Classification task, the top-1 accuracy is used for
evaluation.

Optimization details. We train using 16 frames with sample rate 4 and batch-size 128 (comprising
64 videos and 64 images) on 8 RTX 3090 GPUs. We train our network for 10 epochs with Adam
optimizer [46] with a momentum of 9e�1 and Gamma 1e�1. Following [53], we use lr = 1e�4 with
half-period cosine decay. Additionally, we used Automatic Mixed Precision, which is implemented
by PyTorch.

Training details. We use a standard crop size of 224, and we jitter the scales from 256 to 320.
Additionally, we set �Con = 10,�HAOG = 5,�V id = 1.

Inference details. We follow the official evaluation, both for the state change temporal lo-
calization and the state change classification tasks, available at https://github.com/EGO4D/
hands-and-objects.

C.2 Diving48

Dataset. Diving48 [54] contains 16K training and 3K testing videos spanning 48 fine-grained diving
categories of diving activities. For all of these datasets, we use standard classification accuracy as our
main performance metric.

Optimization details. We train using 16 frames with sample rate 4 and batch-size 128 (comprising
64 videos and 64 images) on 8 RTX 3090 GPUs. We train our network for 10 epochs with Adam
optimizer [46] with a momentum of 9e� 1 and Gamma 1e� 1. Following [53], we use lr = 1e� 4
with half-period cosine decay.

Training details. We use a standard crop size of 224 for the standard model and jitter the scales from
256 to 320. Additionally, we use RandomFlip augmentation. Finally, we sample the T frames from
the start and end diving annotation time, following [88]. We set �Con = 10,�HAOG = 5,�V id = 1.

Inference details. We take 3 spatial crops per single clip to form predictions over a single video in
testing, as in [11].

C.3 SomethingElse

Dataset. The SomethingElse dataset [59] contains 174 action categories with 54,919 training and
57,876 validation samples. The proposed compositional [59] split in this dataset provides disjoint
combinations of a verb (action) and noun (object) in the training and testing sets. This split defines
two disjoint groups of nouns {A,B} and verbs {1, 2}. Given the splits of groups, they combine the
training set as 1A + 2B, while the validation set is constructed by flipping the combination into
1B + 2A. In this way, different combinations of verbs and nouns are divided into training or testing
splits.

Few Shot Compositional Action Recognition. As mentioned in Section 3.4 of the main paper,
we also evaluate on the few-shot compositional action recognition task in [59]. For this setting,
we have 88 base action categories and 86 novel action categories. We train on the base categories
(113K/12K for training/validation) and finetune on few-shot samples from the novel categories (for
5-shot, 430/50K for training/validation; for 10-shot, 860/44K for training/validation).

Optimization details. We train using 16 frames with sample rate 4 and batch-size 128 (comprising
64 videos and 64 images) on 8 RTX 3090 GPUs. We train our network for 100 epochs with Adam
optimizer [46] with a momentum of 9e�1 and Gamma 1e�1. Following [53], we use lr = 1e�4 with
half-period cosine decay. Additionally, we used Automatic Mixed Precision, which is implemented
by PyTorch.

Regularization details. We use weight decay of 1e�4, and a dropout [37] of 5e� 1 before the final
classification.
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Training details. We use a standard crop size of 224, and we jitter the scales from 256 to 320.
Additionally, we set �Con = 2,�HAOG = 2,�V id = 1.

Inference details. We take 3 spatial crops per single clip to form predictions over a single video in
testing.

C.4 Something-Something v2

Dataset. The SSv2 [59] contains 174 action categories of common human-object interactions.

Optimization details. For the standard SSv2 [59] dataset, we train using 16 frames with sample
rate 4 and batch-size 128 (comprising 64 videos and 64 images) on 8 RTX 3090 GPUs. We train our
network for 100 epochs with Adam optimizer [46] with a momentum of 9e� 1 and Gamma 1e� 1.
Following [53], we use lr = 1e� 4 with half-period cosine decay. Additionally, we used Automatic
Mixed Precision, which is implemented by PyTorch.

Regularization details. We use weight decay of 1e� 4, and a dropout [37] of 5e� 1 before the final
classification.

Training details. We use a standard crop size of 224, and we jitter the scales from 256 to 320.
Additionally, we use RandAugment [18] with maximum magnitude 9. We set �Con = 2,�HAOG =
2,�V id = 1.

Inference details. We take 3 spatial crops per single clip to form predictions over a single video in
testing as done in [53].

C.5 AVA

Architecture. SlowFast [22] and MViT-v2 [53] are using a detection architecture with a RoI Align
head on top of the spatio-temporal features. We followed their implementation to allow a direct
comparison. Next we elaborate on the RoI Align head proposed in SlowFast [22]. First, we extract
the feature maps from our SViT model by using the RoIAlign layer. Next, we take the 2D proposal at
a frame into a 3D RoI by replicating it along the temporal axis, followed by a temporal global average
pooling. Then, we max-pooled the RoI features and fed them to an MLP classifier for prediction.

Optimization details. To allow a direct comparison, we used the same configuration as in MViT-
v2 [53]. We trained 16 frames with sample rate 4, depth of 16 layers and batch-size 32 on 8 RTX
3090 GPUs. We train our network for 30 epochs with an SGD optimizer. We use lr = 0.03 with a
weight decay of 1e� 8 and a half-period cosine schedule of learning rate decaying.

Training details. We use a standard crop size of 224 and we jitter the scales from 256 to 320. We
use the same ground-truth boxes and proposals that overlap with ground-truth boxes by IoU > 0.9
as in [22]. We set �Con = 0.1,�HAOG = 0.5,�V id = 1.

Inference details. We perform inference on a single clip with 16 frames. For each sample, the
evaluation frame is centered in frame 8. We use a crop size of 224 in test time. We take 1 spatial crop
with 10 different clips sampled randomly to aggregate predictions over a single video in testing.

D Additional Datasets Details

Here provide detailed information about the “auxiliary image datasets” (Section D.1) as well as the
licenses and privacy policies for these datasets (Section D.2).

D.1 Auxiliary Image Datasets

In Table 7 we explicitly describe the auxiliary image datasets used in each experiment. As an example,
in row 1, we describe the data used for training the SViT-SFT model for the Compositional Action
Recognition (CAR) task on the SomethingElse dataset. We note that we began by pretraining on
Ego4D and 100DOH.

Image Annotations. The collected object boxes from SSv2, 100DOH, Ego4D and AVA are purely
human annotated. In SSv2, Ego4D and AVA contact relations between the object and hand are
not annotated, so we assign the closest object to the hand for each hand. The contact relations for
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Video Dataset Task Model Pretrain Finetune
Auxiliary Images Auxiliary Images

SmthElse CAR SViT-SFT Ego4D, 100DOH -
SmthElse CAR SViT-DD Ego4D, 100DOH Ego4D, 100DOH
SmthElse CAR SViT⇥2% Ego4D, 100DOH SmthElse⇥2%
SmthElse CAR SViT-ID Ego4D, 100DOH SmthElse

Ego4D SCTL SViT-SFT Ego4D, 100DOH -
Ego4D SCTL SViT-DD 100DOH 100DOH
Ego4D SCTL SViT⇥2% Ego4D, 100DOH Ego4D⇥2%
Ego4D SCTL SViT-ID Ego4D, 100DOH Ego4D
Ego4D SCC SViT-SFT Ego4D, 100DOH -
Ego4D SCC SViT-DD 100DOH 100DOH
Ego4D SCC SViT⇥2% Ego4D, 100DOH Ego4D⇥2%
Ego4D SCC SViT-ID Ego4D, 100DOH Ego4D

SSv2 AR SViT-SFT Ego4D, 100DOH -
SSv2 AR SViT-DD Ego4D, 100DOH Ego4D, 100DOH
SSv2 AR SViT⇥2% Ego4D, 100DOH SSv2⇥2%
SSv2 AR SViT-ID Ego4D, 100DOH SSv2

Diving48 AR SViT-SFT Ego4D, 100DOH -
Diving48 AR SViT-DD Ego4D, 100DOH Ego4D, 100DOH

AVA AD SViT-SFT Ego4D, 100DOH -
AVA AD SViT-DD Ego4D, 100DOH Ego4D, 100DOH
AVA AD SViT⇥2% Ego4D, 100DOH AVA⇥2%
AVA AD SViT-ID Ego4D, 100DOH AVA

Table 7: Auxiliary Image Datasets The table describes which image datasets were you used for which
SViT setup. CAR refers to Compositional Action Recognition, AR refers to Action Recognition, AD
refers to Spatio-temporal Action Detection, SCTL to State Change Temporal Localization, SCC to
State Change Classification

100DOH are available in the dataset. In Ego4D, we use the image annotated for the State Change
Object Detection task.

Image/Video annotation naming conventions. The auxiliary image data we used is originated in
video frames. The main difference between video frames and a batch of images is the temporal
information. Since we do not use the temporal order of the annotated video frames, and practically
use them as images, we refer to them in the paper as “image annotations”.

D.2 Licenses and Privacy

The license, PII, and consent details of each dataset are in the respective papers. In addition, we wish
to emphasize that the datasets we use do not contain any harmful or offensive content, as many other
papers in the field also use them. Thus, we do not anticipate a specific negative impact, but, as with
any Machine Learning method, we recommend to exercise caution.
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