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ABSTRACT

Many efforts have been contributed to alleviate the adversarial risk of deep neu-
ral networks on continuous inputs. Adversarial robustness on general categorical
inputs, especially tabular categorical attributes, has received much less attention.
To echo this challenge, our work aims to enhance the robustness of classifica-
tion over categorical attributes against adversarial perturbations. We establish an
information-theoretic upper bound on the expected adversarial risk. Based on it,
we propose an adversarially robust learning method, named Integrated Gradient-
Smoothed Gradient (IGSG)-based regularization. It is designed to smooth the at-
tributional sensitivity of each feature and the decision boundary of the classifier to
achieve lower adversarial risk, i.e., desensitizing the categorical attributes in the
classifier. We conduct an extensive empirical study over categorical datasets of
various application domains. The experimental results confirm the effectiveness
of IGSG, which surpasses the state-of-the-art robust training methods by a mar-
gin of approximately 0.4% to 12.2% on average in terms of adversarial accuracy,
especially on high-dimension datasets.

1 INTRODUCTION

While categorical data widely exist in real-world safety-critical applications,much less research at-
tention has been attracted to evasion attack and defense with categorical inputs, compared to the
efforts with continuous data, e.g. images. It thus becomes a must to develop adversarially robust
learning paradigms to harden ML systems with categorical inputs.Previous research on adversari-
ally robust learning has mainly focused on enhancing the resilience of target classifiers against LQ

and L∞ adversarial perturbations (Goodfellow et al., 2016; Madry et al., 2017; Moosavi-Dezfooli
et al., 2019; Attias et al., 2019; Yin et al., 2019; Shafahi et al., 2019; Zhang et al., 2019; Wong
et al., 2020; Bashivan et al., 2021; Zhang et al., 2022). However, when dealing with categorical
data, the conventional Euclidean space framework used for continuous measurements, such as pixel
intensities, is not a natural fit. Categorical variables like race and occupation have non-continuous
and unordered qualitative values that cannot be combined in Cartesian products or ordered numer-
ically.Thus, L0-norm bounded adversarial perturbations are commonly employed to assess the ro-
bustness of categorical data (Lei et al., 2019; Bao et al., 2021).

Adversarial training (Madry et al., 2017) stands out as a predominant defense strategy in the con-
tinuous domain. However, adversarial training on categorical data poses a challenging Mixed In-
teger Nonlinear Programming (MINLP) problem (Lee & Leyffer, 2011). It involves the iterative
generation of adversarial training samples within the categorical feature space, followed by model
retraining using these adversarial samples in an alternating sequence. The exponential growth of
the categorical adversarial space with increasing amounts of categorical features complicates the
generation of adversarial samples via heuristic search like Brand-and-Bound (Pataki et al., 2010). In
Section.3.1, we identify that exploring the categorical adversarial space leads to insufficient cover-
age, causing a distribution gap between adversarial training and future attacks, resulting in ”robust
overfitting” on categorical data (Rice et al., 2020). Encoding categorical features as one-hot vectors
and relaxing the adversarial training to the continuous domain, treating one-hot vectors as proba-
bilistic representations, partially mitigates categorical data complexities. However, this approach
encounters a bottleneck— the non-convex and highly non-linear nature of the relaxed adversarial
training objective, stemming from the bi-level mini-max training and deep neural network archi-
tectures. Consequently, the approximated solution lacks a bounded integrality gap to the original
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discrete adversarial training problem, failing to guarantee optimality in the categorical feature space
(Nohra et al., 2021). Thus, classifiers trained this way remain vulnerable to discrete adversarial sam-
ples in the combinatorial space. As empirically confirmed in Table.1, an MLP-based classifier tuned
with the relaxed PGD-based adversarial training remains highly vulnerable to the state-of-the-art
discrete adversarial attacks.

An alternative solution involves adversarial training within the embedding space of categorical vari-
ables. For instance, text classifiers can be defended using adversarial perturbations confined to the
LQ ball around the target word in its embedding space (Zhu et al., 2019; Li et al., 2021; Pan et al.,
2022). While effective for text-related tasks, this approach is unsuitable for general categorical data,
such as system logs in cyber intrusion detection or medical examination records, lacking a meaning-
ful embedding space. Additionally, domain-specific constraints crucial for adversarial perturbations,
like synonymous words and semantic similarity measures, may be undefined or inapplicable across
various categorical domains.

Figure 1: IG score distribution from the IGSG
trained model and the undefended model Std
Train on Splice and PEDec dataset.

Considering the limitations of the discussed solu-
tions, we seek an alternative strategy to mitigate the
adversarial risk with categorical inputs. We focus
on enforcing smoothness regularization on the tar-
get classifier (Ross & Doshi-Velez, 2018a; Finlay
& Oberman, 2021). Specifically, our strategy first
involves penalizing the input gradients. According
to the information-theoretic upper bound on the ex-
pected adversarial risk on categorical data detailed
in Section.3.2, penalizing input gradients mitigates
the excessive curvature of the classification boundary and reduces the generalization gap of the tar-
get classifier. As a result, it alleviates the classifier’s over-sensitivity to input perturbation. However,
our comprehensive analysis indicates that merely penalizing the input gradient is not sufficiently
secured. An additional influential factor is the excessive reliance on specific features, where a few
features contribute significantly more to the decision output than others. The adversary may choose
to perturb these dominant features to significantly mislead the classifier’s output. To mitigate this, we
propose to perform a Total-Variation (TV) regularization (Chambolle, 2004) on the integrated gradi-
ents (IG) of one-hot encoded categorical features. This evens the attribution from different features
to the classification output. While IG is widely accepted as an XAI method to interpret feature-
wise attribution to the classifier’s decision output, our work is the first to uncover theoretically and
empirically the link between smoothing the axiomatic attribution and improving adversarial robust-
ness of the target classifier with categorical inputs. Combining both smoothing-driven regularization
techniques, we propose Integrated Gradient-Smoothed Gradient (IGSG)-based regularization, effec-
tively improving the adversarial robustness of the model. As shown in Figure.1, the IGSG-trained
model demonstrates approximately evenly distributed IG scores for different categorical features.
In contrast, the undefended model (Std Train) exhibits a highly skewed distribution of IG scores
across features. Connecting Figure.1 with Figure.3, we observe that highly attacked features are
precisely those with high IG scores. In summary, IGSG jointly smooths the classification boundary
and desensitizes categorical features. It therefore prevents adversarial attacks from exploiting the
over-sensitivity of the target classifier to the adversarial inputs.

Our technical contributions are summarized in the following perspectives:

Understanding influencing factors of adversarial risk: We’ve developed an information-theoretic
upper bound to understand and minimize the expected adversarial risk on categorical data, providing
insight into influential factors that can suppress adversarial risks effectively.

Development of a model-agnostic robust training through regularized learning for categorical
features. We’ve reframed adversarial robustness, proposing IGSG, a method focused on minimizing
our information-theoretic bound, enhancing feature contribution smoothness and decision boundary
definitiveness during training. It’s a universally adaptable solution for models dealing with categor-
ical features.

Extensive experimental study. We’ve conducted thorough analyses comparing IGSG against the
state-of-the-art adversarially robust training methods on three categorical datasets. The experimental
results confirm the superior performances of models trained via IGSG.
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2 RELATED WORKS

Adversarial training employs min-max optimization, generating adversarial samples via Fast Gra-
dient Sign Method (FGSM) (Wong et al., 2020; Zhang et al., 2022) or Projected Gradient Descent
(PGD) (Madry et al., 2017). TRADES (Zhang et al., 2019) optimizes a regularized surrogate loss,
balancing accuracy and robustness. Adversarial Feature Desensitization (AFD) (Bashivan et al.,
2021) leverages a GAN-like loss to learn invariant features against adversarial perturbations. While
these methods can handle L1-norm bounded adversaries for relaxed categorical data, ensuring con-
sistent performance is uncertain. The challenge of ”robust overfitting” in adversarial training (Rice
et al., 2020) is addressed by Chen et al. (2020); Yu et al. (2022) in the continuous domain, but our
investigation reveals this overfitting issue persists in the discrete feature space, unaddressed by exist-
ing continuous domain methods. Notably, our proposed IGSG successfully mitigates this problem.

Adversarial learning for categorical data typically involves search-based methods (Lei et al.,
2019; Wang et al., 2020b; Bao et al., 2021; Li et al., 2018; Jin et al., 2020). However, the substantial
time cost of generating adversarial samples hinders widespread application to general categorical
data tasks, as seen in cybersecurity and medical services. Xu et al. (2023) suggested extending
adversarial methods from continuous to discrete domains, but the MINLP nature of adversarial
training poses challenges in generating sufficient samples for comprehensive defense. In text data,
Ren et al. (2019) used word saliency and classification probability for guided word replacement,
while methods like FreeLB Zhu et al. (2019); Li et al. (2021) applied multiple PGD steps to word
embeddings. Dong et al. (2021) modeled the attack space as a convex hull of word vectors, and
Wang et al. (2020a) enhanced BERT-based model robustness using information theory, often relying
on language-specific constraints, limiting their broader applicability.

Regularization-based methods offer an alternative approach for enhancing adversarial robustness
by penalizing the target classifier’s complexity. Previous works Smilkov et al. (2017); Ross & Doshi-
Velez (2018b); Finlay & Oberman (2021) proposed gradient magnitude regularization during train-
ing. Others Gu & Rigazio (2014); Jakubovitz & Giryes (2018); Hoffman et al. (2019) focused on
penalizing the Frobenius norm of the Jacobian matrix for smoother classifier behavior. Additionally,
Chen et al. (2019); Sarkar et al. (2021) suggested using Integrated Gradients (IG) for feature con-
tribution measurement and applying regularization over IG to enhance robustness. Notably, these
methods did not specifically target adversarial robustness. Our work reveals the effectiveness of IG-
based regularization in adversarial robust training. Importantly, we demonstrate the significance of
simultaneously regularizing gradient magnitude and IG distribution across different feature dimen-
sions for a more potent approach.

3 UNDERSTANDING THE INFLUENCING FACTORS OF ADVERSARIAL RISK

Preliminary. Let’s assume that a random sample xi = {xi,1, xi,2, . . . , xi,p} has p categorical
features and a class label yi. Each feature xi,j can choose one out of m possible category values.
Following the one-hot encoding scheme, we can represent xi as a binary Rp∗m matrix b(xi). Each
row of b(xi) corresponds to the value chosen by feature xi,j , i.e., b(xi)j,k∗ = 1 when xi,j selects
the k∗-th category value, and for all other b(xi)j,k ̸=k∗ = 0 (k = 1, 2, ...,m). An adversarial sample
x̂i = {x̂i,j ,j=1,...,p } is generated by modifying the categorical values of a few features of xi. The
number of changed features from xi to x̂i is noted as diff(xi, x̂i). Given a classifier f and taking
b(xi) as input to f , f(b(xi)), simplified as f(xi), predicts its corresponding label yi.

3.1 LIMITATIONS OF ADVERSARIAL TRAINING ON CATEGORICAL DATA

Table 1: MLP with PGD-based ad-
versarial training

Dataset Attack Adv. Acc. Defend

Splice
PGD-1 95.2% ✓

OMPGS 51.7% ×
FSGS 43.6% ×

PEDec
PGD-1 96.0% ✓

OMPGS 74.1% ×
FSGS 52.5% ×

Census
PGD-1 93.2% ✓

OMPGS 62.7% ×
FSGS 54.1% ×

Firstly, we evaluate the limitations of adversarial training on
categorical data. We implement f as a Multilayer Percep-
tron (MLP) and conduct PGD-based adversarial training on
it across three datasets. Subsequently, the resistance of f
to three evasion attacks is outlined in Table.1. With the at-
tack budget 5 (i.e., diff(xi, x̂i) ≤ 5), both Forward Stepwise
Greedy Search (FSGS) (Elenberg et al., 2018), and orthogo-
nal matching pursuit based greedy search (OMPGS) (Wang
et al., 2020b) can directly find attack samples x̂i. PGD attack
in the 1-norm setting (PGD-1) (Madry et al., 2017) locates
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attack samples and subsequently discretizes them to yield feasible adversarial samples x̂i. Table.1
show that the adversarially trained f is only resilient against the PGD-1 based attack (high adver-
sarial accuracy), remaining vulnerable facing the other two attacks (significantly lower adversarial
accuracy). This suggests that the PGD-based adversarial training may not account for all possible
adversarial samples, causing the model to overfit to the samples discovered by the PGD method.

Similar observations can be made for f when using OMPGS-based adversarial training (see Figure.4
in Appendix.F). For the first 200 epochs, the adversarial accuracy and clean accuracy on the test set
mirrored those on the training set. However, with further adversarial training, there is a notable
increase in the adversarial accuracy and clean accuracy on the training set, while those on the test
set remain unchanged, which indicates robust overfitting. The findings in Table.1 and Figure.4
show that the adversarial examples encountered during training do not generalize well to the test
set. It suggests the presence of a distribution gap between discrete adversarial samples generated by
different attack methods, as well as a distribution gap between adversarial samples generated during
training and those encountered in the test set using the same attack method.

To provide further evidence of this distribution gap, we calculate the Wassernstein distance between
the distributions of adversarial samples generated by PGD-1 and OMPGS on PGD/OMPGS-based
adversarially trained model respectively (detailed in Appendix.F). A greater Wasserstein distance
suggests a larger discrepancy between the two distributions. Two main observations are evident
from Table.5. First, while PGD-based methods yield discrete adversarial samples with consistent
distributions during both training and testing phases, these samples present significantly disparate
distributions compared to those produced by OMPGS-based methods. This consistency in distribu-
tion with PGD-based methods is coherent with the results in Table.1, revealing substantial accuracy
against PGD-based attacks but a lack of substantial defense against OMPGS-based attacks. Second,
the adversarial samples derived via OMPGS exhibit a prominent distribution gap pre and post ad-
versarial training. This distinction is indicative of the declining adversarial accuracy of the retrained
classifier, as noted in Table.1 and Figure.4, through the course of the adversarial training.

Robust overfitting with categorical vs. continuous data. While robust overfitting in adversarial
training with continuous data has been extensively researched Yu et al. (2022), the root causes differ
when dealing with categorical data. Methods based on adversarial training typically employ heuris-
tic search techniques like PGD or OMPGS to discover discrete adversarial samples for training. Due
to the NP-hard nature of combinatorial search, these techniques can only explore a subset of adver-
sarial samples, leaving samples outside this range to be perceived as Out-of-Distribution (OOD) by
the classifier. This situation poses significant challenges for the model to generalize its robustness to
unseen adversarial samples during testing. Attempted solutions such as thresholding out small-loss
adversarial samples (Yu et al., 2022) have proven inadequate on categorical data in Appendix.I.4.
Therefore, we opt for regularized learning-based paradigms for enhanced robustness in training with
categorical data, avoiding the necessity to generate discrete adversarial samples.

3.2 INFORMATION-THEORETIC BOUND OF ADVERSARIAL RISK

Prior to developing our regularized learning approaches, we unveil the factors influencing adversarial
risk for categorical data via the following analysis. We first define the adversarial risk.

Definition 1. We consider a hypothesis spaceH and a non-negative loss function ℓ: µz×H → R+.
Following (Xu & Raginsky, 2017; Asadi et al., 2018), given a training dataset Sn composed of n
i.i.d training samples zi ∼ µ, we assume a randomized learning paradigm A mapping Sn to a
hypothesis f , i.e., f = A(Sn), according to a conditional distribution Pf |Sn . The adversarial risk
of f , noted as Radv

f , is given in Eq.1. It is defined as the expectation of the worst-case risk of f on
any data point z = (x, y) ∼ µz under the L0-based attack budget diff(x, x̂) ≤ ϵ. The expectation is
taken over the distribution of the n training samples Sn and the classifier f = A(Sn).

Radv
f = E

Sn,Pf|Sn
E

z=(x,y)∼µz ,
sup

diff(x,x̂)≤ϵ

ℓ(f(x̂), y). (1)

As defined, Radv
f measures the worst-case classification risk over an adversarial input ẑ = (x̂, y)

where the attacker can modify at most ϵ categorical features. Similarly, we provide the empirical
adversarial risk of f in Eq.2. It is defined as the expectation of the worst-case risk over adversarial
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samples ẑ = (x̂, y) over the joint distribution of Sn and Pf |Sn .

R̂adv
f = E

Sn,Pf|Sn

1

n

∑
zi=(xi,yi)∈Sn

sup
diff(xi,x̂i)≤ϵ

ℓ(f(x̂i), yi), (2)

Theorem 1. Let ℓ(f(xi), yi) be L-Lipschitz continuous for any zi = (xi, yi). Let Df be the diam-
eter of the hypothesis space H. For each xi, the categorical features modified by the worst-case
adversarial attacker and the rest untouched features are noted as ωi and ωi, respectively. Given an
attack budget ϵ, the size of ωi is upper bounded as |ωi| ≤ ϵ. The gap between the expected and
empirical adversarial risk in Eq.1 and Eq.2 is bounded from above, as given in Eq.3.

Radv
f − R̂adv

f ≤ LDf√
2n

√√√√ n∑
i=1

I(f ; zi) + 2

n∑
i=1

Ψ(xi,ωi , xi,ωi) +

n∑
i=1

Φ(xi,ωi , x̂i,ωi),

Ψ(xi,ωi , xi,ωi) = |I(xi,ωi ; f)− I(xi,ωi , yi; f)|,
Φ(xi,ωi , x̂i,ωi) = α|I(x̂i,ωi ;xi,ωi , yi, f)− I(xi,ωi ;xi,ωi , yi, f)|,

α = max
zi=(xi,yi)∈Sn,|ωi|≤ϵ

1 +
|I(x̂i,ωi ;xi,ωi , yi)− I(xi,ωi ;xi,ωi , yi)|

|I(x̂i,ωi ;xi,ωi , yi, f)− I(xi,ωi ;xi,ωi , yi, f)|
,

(3)

where xi,ωi
and x̂i,ωi

are ωi features before and after injecting adversarial modifications, and
I(X;Y ) represents the mutual information between two random variables X and Y .

The proof can be found in Appendix.A. We further discuss the tightness of Eq.3 in Appendix.A. In
the adversary-free case where ẑ = z, we show in Appendix.A that the bound established in Eq.3 is
reduced to a tight characterization of generalization error for a broad range of models, which was
previously unveiled in (Zhang et al., 2021; Bu et al., 2019).

The information-theoretical adversarial risk bound established in Eq.3 unveils two major factors to
suppress the adversarial risk over categorical inputs.

Factor 1. Reducing I(f ; zi) for each training sample zi helps suppress the adversarial risk f .
I(f, zi) in Eq. 3 represents the mutual information between the classifier f and each training sample
zi. Pioneering works (Xu & Raginsky, 2017; Bu et al., 2019; Zhang et al., 2021) have established
that a lower value of I(f, zi) corresponds to a diminishing adversary-free generalization error. As
widely acknowledged in adversarial learning research and emphasized in Eq. 3, a better generaliz-
able classifier exhibits greater resilience to adversarial attacks, resulting in lower adversarial risk

Factor 2. Reducing Ψ(xi,ωi
, xi,ωi

) and Φ(xi,ωi
, x̂i,ωi

) helps smooth the feature-wise contribu-
tion to classification, thus reducing the adversarial risk. We note that reducing the impact of
excessively influential features can suppress adversarial risk, corresponding to minimizing the sec-
ond and third terms beneath the square-root sign in Eq.3. First, in Ψ(xi,ωi

, xi,ωi
), I(xi,ωi

; f) and
I(xi,ωi , yi; f) reflect the contribution of the feature subset ωi and the rest features ωi to f . Features
with higher mutual information have more substantial influence on the decision output, i.e. adver-
sarially perturbing the values of these features is more likely to mislead the decision. Minimising
Ψ(xi,ωi , xi,ωi) thus decreases the contribution gap between the attacked and untouched features. It
prompts the classifier to maintain a more balanced reliance on different features, thereby making
it harder for adversaries to exploit influential features. Second, Φ(xi,ωi

, x̂i,ωi
) measures the sen-

sitivity of features in ωi, in terms of how adversarial perturbations to this subset of features affect
both the classification output and the correlation between ωi and ωi. Minimizing Φ(xi,ωi

, x̂i,ωi
)

makes the classifier’s output less sensitive to the perturbations over input features, which limits
the negative impact of adversarial attacks. In conclusion, jointly minimising Ψ(xi,ωi

, xi,ωi
) and

Φ(xi,ωi
, x̂i,ωi

) ensures that the classifier does not overly rely on a few highly sensitive features. It
helps reduce the susceptibility of the classifier to adversarial perturbation targeting at these features,
which consequently limits the adversarial risk.Beyond the two factors, minimizing the empirical
adversarial risk R̂adv

f in Eq.3 may also reduce the adversarial risk. This concept is synonymous
with the principles of adversarial training. Nevertheless, as highlighted in Section.3.1, the efficacy
of adversarial training is restricted.

4 IGSG: ROBUST TRAINING FOR CATEGORICAL DATA

Our design of adversarially robust training is in accordance with two recommended factors to min-
imize the adversarial risk. However, it is challenging to derive consistent estimates of mutual in-
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formation between high-dimensional variables, e.g. model parameters of deep neural networks and
high-dimension feature vectors, due to the curse of dimensionality Gao et al. (2018). Directly op-
timizing the mutual information-based bound is thus impractical. To overcome this bottleneck, we
propose the IGSG-based robust training paradigm. It jointly applies two smoothness-enhancing reg-
ularization techniques into the learning process of a classifier with categorical inputs, in order to
mitigate the adversarial attack over categorical data.

Minimizing I(f ; zi) by smoothing the curvature of the classification boundary. In previous
work, Fisher information ρ(zi)f was utilized as a quantitative measure of the information that the
hypothesis f contains about the training sample zi (Hannun et al., 2021). As shown in Wei &
Stocker (2016), ρ(zi)f is closely related to the mutual information I(f ; zi), higher/lower ρ(zi)f in-
dicates higher/lower I(f ; zi). Our work aims to minimize ρ(zi)f to effectively penalize excessively
high mutual information I(f ; zi). The computation of ρ(zi)f is detailed in Eq.16 of (Hannun et al.,
2021). In this context, suppressing ρ(zi)f (approximately suppressing I(f ; zi)) is equivalent to pe-
nalizing the magnitude of the gradient of the loss function with respect to each zi. This approach,
supported by findings in (Smilkov et al., 2017), uses gradient regularization to smooth the classi-
fier’s decision boundary, thereby reducing the potential risk of overfitting and enhancing adversarial
resilience We calculate the gradient of the classification loss to the one-hot encoded representation
of b(xi), which gives as∇b(xi)ℓ(xi, yi; θ) ∈ Rp∗m. Each element of∇b(xi)ℓ(xi, yi; θ) is formulated
as ∂

∂b(xi)j,k
ℓ(xi, yi; θ). According to (Yang et al., 2021), ∇b(xi)ℓ(xi, yi; θ) measures the curvature

of the decision boundary around the input. A larger magnitude of∇b(xi)ℓ(xi, yi; θ) indicates a more
twisted decision boundary, thus a less stable decision around the input. Enforcing the regularization
over the magnitude ∥∇b(xi)ℓ(xi, yi; θ)∥q leads to a smoother decision boundary (with lower curva-
ture) and improves the robustness of the decision output f(xi) against potential perturbation. In this
work, we apply smoothed Gradient Regularization (SG) (Smilkov et al., 2017) to further boost the
smoothness of the classifier.

Minimizing Ψ(xi,ωi , xi,ωi) and Φ(xi,ωi , x̂i,ωi) via smoothing the distribution of feature-wise
contribution to the classification output. Minimizing these terms involves evaluating the mutual
information between the feature subset ωi and the combined set of remaining features and the trained
model f . Approximating this mutual information-based penalization with Fisher information is thus
infeasible. The primary goal of regularizing these terms is to prevent the classifier from relying
too heavily on a few influential features. To achieve this, we propose using Integrated Gradient (IG)
(Sundararajan et al., 2017) to assess feature-wise contributions to the classification output. We apply
Total-Variance (TV) regularization over the feature-wise Integrated Gradient to promote a smooth
and balanced distribution of feature-wise attribution. In Appendix.I.1, we show empirically with
toy models that performing the proposed TV regularization can reduce the estimated value of both
mutual information-based terms.

We extend the computation of the IG scores in the categorical feature space by first defining a
baseline input x′. We augment the set of optional category values for each feature xi,j : we add one
dummy category m + 1, with constantly all 0 values for the embedding vector in f . Each feature
of x′ is set to take the dummy category value, i.e., b(x′)j,m+1 = 1, b(x′)j,k = 0(k = 1, 2, . . . ,m).
By feeding b(x′) to the classifier, no useful information is conveyed for classification, making it
a non-informative baseline. Given the defined baseline input x′, the IG score of each categorical
feature xi,j is approximated as:

IG(xi)j =

m∑
k=1

IG(xi)j,k =

m∑
k=1

(b(xi)j,k − b(x′)j,k)×
1

T

T∑
t=1

∂f(b(x′) + t
T
× [b(xi)− b(x′)])

∂b(xi)j,k
(4)

where T is the number of steps in the Riemman approximation of the integral. We empirically
choose T=20, which provides consistently good learning performances. IG(xi)j derived along the
trajectory between b(x′) and b(xi) hence represents the contribution of xi,j to the classifier’s output.

To ensure a smooth and balanced distribution of IG scores and to mitigate excessive dependency on
specific features, we propose to minimize the TV loss of the normalized IG scores, as influenced by
prior work (Chambolle, 2004). Initially, we employ a softmax transformation to normalize the IG
scores of each feature xi,j , ensuring the normalized scores lie within [0, 1] and collectively sum to
1. The TV regularization term is then defined as the sum of the absolute differences between neigh-
boring features’ normalized IG scores: ℓTV IG(xi) =

∑p−1
j=1 |IG(xi)j − IG(xi)j+1|, following the
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TV loss used in time series data analysis (Chambolle, 2004). This minimization promotes a more
balanced distribution of feature-wise contributions to the classifier’s decision.

Combining Eq.18 in Appendix.E and ℓTV IG(xi), the objective function of IGSG gives:

min
θ

E
(xi,yi)∈Sn

ℓ(xi, yi; θ) + αℓTV IG(xi) +
β

R

R∑
r=1

||Gr||p

where Gr,j,k =
∂

∂b(xr)j,k
ℓ(xr, yi; θ)−

∂

∂b(xr)j,k∗
ℓ(xr, yi; θ)

(5)

where α and β are hyper-parameters set by cross-validation.

5 EXPERIMENTAL EVALUATION

5.1 EXPERIMENTAL SETUP

Summary of datasets. To evaluate the proposed IGSG algorithm, we employ two categorical
datasets and one mixed dataset with both categorical and numerical features, each from different
applications and varying in the number of samples and features.
1) Splice-junction Gene Sequences (Splice) (Noordewier et al., 1990). The dataset includes 3190
gene sequences, each with 60 categorical features from the set {A, G, C, T, N}. Each sequence is
labeled as intron/exon borders (IE), exon/intron borders (EI), or neither.
2) Windows PE Malware Detection (PEDec) (Bao et al., 2021). This dataset, used for PE malware
detection, consists of 21,790 Windows executable samples, each represented by 5,000 binary fea-
tures denoting the presence or absence of corresponding malware signatures. The samples are cate-
gorized as either benign or malicious.
3) Census-Income (KDD) Data (Census) (Lane & Kohavi, 2000). This dataset includes census data
from surveys conducted from 1994 to 1995, encompassing 299,285 samples. Each has 41 features
related to demographics and employment, with 32 categorical and 9 numerical. The task is to deter-
mine whether subjects fall into the low-income (less than $50,000) or high-income group.

For Splice and PEDec, we use 90% and 10% of the data samples as the training and testing set to
measure the adversarial classification accuracy. For Census, we use the testing and the training set
given by (Lane & Kohavi, 2000), i.e., 199,523 for training and 99,762 for testing.

Robustness evaluation protocol. Three domain-agnostic attack methods, FSGS (Elenberg et al.,
2018), OMPGS (Wang et al., 2020b) and PCAA (Xu et al., 2023), designed specifically for gen-
erating discrete adversarial perturbations in categorical data, are employed to evaluate adversarial
robustness. Due to the discontinuous nature of categorical data, traditional attacks like PGD and
FGSM cannot be directly applied. Further discussion is presented in Appendix.G. FSGS, OMPGS
and PCAA, with proven attack effectiveness across various real-world applications, are suitable for
comparing the effectiveness of different robust model training methods on categorical input.

We traverse varied attack budgets (the maximum number of the modified features) for OMPGS
attacks. Due to the high computational complexity of FSGS (Bao et al., 2021), we set a fixed attack
budget of 5 on all three datasets. For PCAA, we also fix the attack budget to be 5. On each dataset,
we use MLP and Transformer (Vaswani et al., 2017) as the target classifier. Due to space limitations,
we provide detailed attack settings in Appendix.H.1, the experimental results on Transformer models
in Appendix.I.3, and the experimental results of PCAA attack in Appendix.I.7

Baselines. We involve one undefended model and 7 state-of-the-art robust training methods as the
baselines in the comparison with IGSG. Specifically, we include 5 adversarial training baselines
Adv Train (Madry et al., 2017), Fast-BAT (Zhang et al., 2022), TRADES (Zhang et al., 2019), AFD
(Bashivan et al., 2021) and PAdvT (Xu et al., 2023), and 2 regularization-based baselines IGR (Ross
& Doshi-Velez, 2018b) and JR (Hoffman et al., 2019). The details of the baselines can be found in
Appendix.H.2 and the details of the hyper parameter settings can be found in Appendix.H.3.

Performance metrics. We compare the adversarial accuracy of the target models trained using the
methods above against FSGS and OMPGS attacks. We evaluate the adversarial robustness of mixed-
type datasets by attacking categorical features with FSGS/OMPGS and numerical features with
PGD-∞. Further details can be found in Appendix.H.4. Time complexity analysis and training time
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Table 2: Adversarial Accuracy under FSGS attack and Accuracy (%) for IGSG and baseline models.
Adv Train (Madry et al., 2017), Fast-BAT (Zhang et al., 2022), TRADES (Zhang et al., 2019), AFD
(Bashivan et al., 2021), PAdvT (Xu et al., 2023), IGR (Ross & Doshi-Velez, 2018b), JR (Hoffman
et al., 2019)

Dataset Attack Undefended Adversarial Training baselines Regularization baselines Ours
Std Train Adv Train Fast-BAT TRADES AFD PAdvT IGR JR IGSG

Splice budget=5 36.7±4.8 43.6±0.7 28.7±7.4 23.3±8.6 21.1±13.0 39.1±1.7 40.9±3.0 4.3±3.7 44.0±2.6
Clean 95.2±2.5 96.2±0.4 95.6±1.0 96.3±0.3 93.4±0.7 94.9±1.3 95.2±0.6 95.2±0.9 95.9±0.7

PEDec budget=5 14.9±0.8 53.1±1.7 62.4±2.7 31.0±2.5 74.3±3.9 46.9±2.9 31.4±0.9 74.3±0.2 86.5±3.8
Clean 96.4±0.2 96.2±0.0 96.2±0.1 96.4±0.1 96.0±0.2 96.5±0.3 96.4±0.0 95.4±0.1 95.5±0.2

Census budget=5 46.2±1.8 54.1±2.3 63.4±3.8 49.8±1.6 60.2±1.9 61.9±5.4 45.8±1.7 48.3±3.4 67.2±3.5
Clean 95.4±0.1 94.5±0.3 95.0±0.1 94.8±0.3 95.2±0.2 95.2±0.1 95.3±0.1 95.4±0.1 95.5±0.2

Figure 2: Adversarial accuracy for IGSG and baselines under OMPGS attack with varied budgets.

for different methods are provided in Appendix.I.5. The code is available at https://github.
com/fshafrh/IGSG.

5.2 EXPERIMENTAL RESULTS

Adversarial Accuracy Performance of IGSG Compared to Baseline Methods. Table.2 reports
the accuracy and the adversarial accuracy against FSGS attacks for each robust training method.
From the results, we can see that the adversarial accuracy of IGSG significantly outperforms the
baseline methods. Especially, on PEDec, IGSG can largely improve the adversarial accuracy up to
86.5%. In comparison, the best baseline of robust training, JR and AFD, only achieves an adversarial
accuracy score of 74.3%. IGSG also achieves comparable accuracy on the three datasets.

Figure 2 illustrates the adversarial accuracy of all the methods tested under OMPGS-based attacks
with varying attack budgets. Higher attack budgets indicate stronger attacks against the targeted
classifier, resulting in lower adversarial accuracy overall. Similar to the undefended model, most
baseline methods experience a decline in adversarial accuracy as the attack strength increases. In
contrast, the proposed method, IGSG, consistently achieves higher and more stable levels of ad-
versarial accuracy across all three datasets. Specifically, on PEDec, IGSG maintains an adversarial
accuracy above 88% regardless of the attack strength. On Splice, IGSG consistently outperforms
other baseline methods, exhibiting a performance gain of over 10%. On Census, IGSG initially
shows similar adversarial accuracy to other baselines under small attack budgets but demonstrates
a significantly slower rate of decline as the attack budget increases. Notably, adversarial training
methods like Adv Train perform poorly on PEDec. This is because the feature space of PEDec is ex-
tensive, causing adversarial training to suffer from robust overfitting on categorical data. The attack
can only explore a small fraction of all possible adversarial perturbations, limiting the effectiveness
of adversarial training, while IGSG can provide consistently robust classification regardless of the
feature dimensionality. JR performs well on PEDec, while the performance on Splice and Census
is constantly bad. Using regularization as well, IGSG has a more stable performance on different
datasets. It is worth noting that Splice has a few particularly sensitive features. Modifying these
features can result in a change in whether a sample crosses an intron/exon or exon/intron boundary,
or neither physically, which causes misclassification. Thus, all the defense methods involved in the
test do not perform well against attacks on Splice.

Ablation Study. We include the following variants of the proposed IGSG method in the ablation
study. SG and IG are designed to preserve only the smoothed gradient-based (SG, see Eq.18) or
the IG-based smoothness regularization (IG, see Eq.17) respectively in the learning objective. We
compare SG and IG to IGSG for demonstrating the advantage of simultaneously performing the IG
and gradient smoothing-based regularization. IGSG-VG: We replace the smoothed gradient given
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in Eq.18 with the vanilla gradient of the one hot tensor. Another four variants to provide additional
validation for the design of IGSG are presented in Appendix.I.6

Table 3: Ablation Study. Adversarial Accuracy and Accu-
racy (%) for IGSG variants with an attack budget of 5.

Dataset Adversary SG IG IGSG-VG IGSG

Splice
FSGS 43.3±3.0 40.3±5.0 39.7±2.4 44.0±2.6

OMPGS 59.9±6.5 54.9±4.9 59.4±5.3 63.8±4.2
Clean 95.7±0.5 94.7±1.0 95.2±1.1 95.9±0.7

PEDec
FSGS 12.7±1.8 84.2±2.9 81.6±3.8 86.5±3.8

OMPGS 28.6±1.1 83.4±7.6 82.3±3.5 88.0±4.0
Clean 96.4±0.1 94.8±0.3 95.2±0.2 95.5±0.2

Census
FSGS 47.9±2.1 57.8±0.8 54.1±1.6 67.2±3.5

OMPGS 71.4±7.8 65.9±2.7 69.3±6.4 71.3±9.0
Clean 95.1±0.3 95.5±0.1 95.4±0.0 95.5±0.2

Table.3 shows that IGSG consistently
outperforms the variants in adversar-
ial accuracy against both FSGS and
OMPGS attacks, affirming the effec-
tiveness of IGSG’s design in mitigating
both types of greedy search-based at-
tacks simultaneously. SG does not em-
ploy IG-based regularization, resulting
in a classifier that may overly rely on
a few highly influential features con-
tributing most to the classification out-
put. These sensitive features can be readily targeted by both types of greedy search-based attacks,
particularly on PEDec. In comparison, IG lacks the classification boundary smoothness, leading to
a slight decrease in performance compared to IGSG. The results with SG and IG show that the two
attributional smoothness regularization terms employed by IGSG are complementary to each other
in improving the adversarial robustness of the built model.

Table 4: MLP with IGSG training and
Performance Gain Compared to PGD-
based Adversarial Training

Dataset Attack Adv. Acc. Gain

Splice
PGD-1 95.6% 0.4% ∼

OMPGS 63.8% 12.1% ↑
FSGS 44.0% 0.4% ∼

PEDec
PGD-1 94.5% -1.5% ∼

OMPGS 88.0% 13.9% ↑
FSGS 86.5% 34% ↑

Census
PGD-1 93.0% -0.2% ∼

OMPGS 71.3% 8.6% ↑
FSGS 67.2% 13.1% ↑

IGSG-VG replaces the smoothed gradient-based regular-
ization defined in Eq.18 and Eq.19 with a vanilla gradient.
Its diminished performance shows the merit of introduc-
ing the smoothed gradient computing and the mean field
smoothing based technique in Eq.18 and Eq.19.

Effectiveness of Avoiding Robust Overfitting. By uti-
lizing regularization, IGSG avoids the issue of “robust
overfitting” encountered in adversarial training. This re-
sults in improved performance, as demonstrated in Ta-
ble.4, compared to the adversarial accuracy shown in Ta-
ble.1. We conduct the comparison between IGSG and two
works mitigating robust overfitting in continuous domain
(Chen et al., 2020; Yu et al., 2022). IGSG achieves consistently better adversarial robustness. The
details are presented in Appendix.I.4

Figure 3: Attack frequency reduced by IGSG

Reduced Attack Frequency with IGSG. We
compare the frequency of each feature attacked
under OMPGS on Splice and PEDec. The at-
tack frequency represents the number of times a
feature appears among the altered features in all
successful adversarial attack samples. As seen in
Figure.3, IGSG results in fewer and lower peaks
on Splice compared to the undefended model, in-
dicating enhanced robustness. For PEDec, the feature with the highest attack frequency is entirely
suppressed with IGSG. This demonstrates the effectiveness of IGSG, with feature desensitization
being achieved post-training.

6 CONCLUSION

In this work, we first unveil influencing factors of adversarial threats on categorical inputs via de-
velopping an information-theoretic upper bound of the adversarial risk. Guided by the theoretical
analysis, we further propose IGSG-based adversarially robust model training via enforcing the two
smoothness regularization techniques on categorical data, which helps mitigate adversarial attacks
on categorical data. On the one hand, our method smooths the influence of different categorical fea-
tures and makes different features contribute evenly to the classifier’s output. On the other hand, our
method smooths the decision boundary around an input discrete instance by penalizing the gradient
magnitude. We demonstrate the domain-agnostic use of IGSG across different real-world applica-
tions. In our future study, we will extend the proposed method to the text classification task and
compare it with text-specific robust training methods enhanced with semantic similarity knowledge.
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Amir R. Asadi, Emmanuel Abbe, and Sergio Verdú. Chaining mutual information and tightening
generalization bounds. In Proceedings of the 32nd International Conference on Neural Informa-
tion Processing Systems, NIPS’18, pp. 7245–7254, Red Hook, NY, USA, 2018. Curran Associates
Inc.

Idan Attias, Aryeh Kontorovich, and Yishay Mansour. Improved generalization bounds for ro-
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A PROOF TO THEOREM.1

Definition 2. Diameter of f : Assuming that the hypothesis spaceH is a bounded banach space, the
diameter of f ∈ H is defined as:

Df = sup
f,f ′∈H

d(f, f ′) (6)

where d is the distance metric ofH.
Definition 3. Lipschitz continuousity of ℓ: Assuming that ℓ(f(xi), yi) is L-Lipschitz for any zi =
(xi, yi), the following inequality holds for any f and f ′ inH:

|ℓ(f(xi), yi)− ℓ(f ′(xi), yi))| ≤ Ld(f, f ′) (7)

Proof to Eq.3: Given µz and a classifier f trained using Sn, we assume the distribution of the worst-
case adversarial samples of f as µ̂z , determined by µz and f jointly. Any worst-case adversarial
sample ẑi derived by solving the loss maximization problem arg

diff(ẑi,zi)≤ϵ

max ℓ(f(xi), yi) can be

thus considered as a sample from µ̂ẑ . We can then extend the Total Variation (TV) distance-based
generalization bound of f , which is established by Theorem.2 in (Zhang et al., 2021) as below:

Ef [Radv
f ] ≤ Ef [R̂adv

f ] + LDf TV(Pf × µ̂ẑ, Pf×ẑi) (8)
where TV(·, ·) denotes the Total Variation distance between two probabilistic distribution. Pf and
µ̂ẑ are the marginal distribution of f and the worst-case adversarial sample ẑi. Pf×ẑi denotes the
joint distribution of f and ẑi.

Pinsker’s inequality in information theory (Cover & Thomas, 2005) gives further the upper bound

of the Total-Variation distance: TV(Pf × µ̂ẑ, Pf×ẑi) ≤
√

DKL(Pf,ẑi
,Pf×Pẑi

)

2 =
√

I(f,ẑi)
2 , where

DKL is the KL divergence between the two probabilistic distributions. Based on this, we can further
formulate Eq.8 by letting z = zi (i=1,2,3,...,n) and using mutual information between f and ẑi:

Ef [Radv
f ]≤ Ef [R̂adv

f ] +
LDf√
2n

√√√√ n∑
i=1

I(f ; ẑi)

≤ Ef [R̂adv
f ] +

LDf√
2n

√√√√ n∑
i=1

I(f ; zi) +

n∑
i=1

(I(f ; ẑi)− I(f ; zi))

(9)

where {zi = (xi, yi)} ∈ Sn are statistically independent training samples and ẑi the corresponding
worst-case adversarial sample. We can extend I(f ; ẑi) − I(f ; zi) as below. In this study, we only
consider feature perturbation and exclude label flipping attacks from the proposed attack scenario.
We first split ẑi = (x̂i, yi) and zi = (xi, yi) into ẑi = (x̂i,ωi , xi,ωi

, yi) and ẑi = (x̂i,ωi
, xi,ωi

, yi)
respectively. Since features in ωi remain untouched in the attack, we use the same notation of these
unmodified features in ẑi and zi.

I(f ; ẑi)− I(f ; zi)

= I(f ; x̂i,ωi , xi,ωi , yi)− I(f ;xi,ωi , xi,ωi , yi)

= I(xi,ωi
, yi; f)− I(xi,ωi

; f) + I(x̂i,ωi
; f |xi,ωi

, yi)− I(xi,ωi
, yi; f |xi,ωi

)

= I(xi,ωi
, yi; f)− I(xi,ωi

; f) +H(x̂i,ωi
|xi,ωi

, yi) +H(f |xi,ωi
, yi)−H(x̂i,ωi

, f |xi,ωi
, yi)

−H(xi,ωi , yi|xi,ωi)−H(f |xi,ωi) +H(xi,ωi , yi, f |xi,ωi)

= I(xi,ωi
, yi; f)− I(xi,ωi

; f) +H(x̂i,ωi
)− I(x̂i,ωi

;xi,ωi
, yi) +H(f)− I(xi,ωi

, yi; f)

−H(xi,ωi
, yi) + I(xi,ωi

;xi,ωi
, yi)−H(f) + I(xi,ωi

; f)

−H(x̂i,ωi , f |xi,ωi , yi) +H(xi,ωi , yi, f |xi,ωi)

= I(xi,ωi
, yi; f)− I(xi,ωi

; f) +H(x̂i,ωi
)− I(x̂i,ωi

;xi,ωi
, yi) +H(f)− I(xi,ωi

, yi; f)

−H(xi,ωi
, yi) + I(xi,ωi

;xi,ωi
, yi)−H(f) + I(xi,ωi

; f)

−H(f |xi,ωi)−H(x̂i,ωi |xi,ωi , f) +H(xi,ωi , f |xi,ωi)

≤ 2|I(xi,ωi
; f)− I(xi,ωi , yi; f)|+ |I(x̂i,ωi ;xi,ωi , yi, f)

− I(xi,ωi
;xi,ωi

, yi, f)|+ |I(x̂i,ωi
;xi,ωi

, yi)− I(xi,ωi
;xi,ωi

, yi)|
(10)
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where H(X|Y ) and I(X;Y |Z) denotes the conditional entropy of a random variable X given the
other random variable Y and the conditional mutual information between X and Y given another
random variable Z. By introducing α = max

zi=(xi,yi)∈Sn
1 +

|I(x̂i,ωi
;xi,ωi

,yi)−I(xi,ωi
;xi,ωi

,yi)|
|I(x̂i,ωi

;xi,ωi
,yi,f)−I(xi,ωi

;xi,ωi
,yi,f)| to

Eq.10, we can derive Eq.3.

We discuss about the tightness of the bound in Eq.3 from the following perspectives. First, we
show this bound reduces to a individual sample based upper bound of the generalization error of f in
the adversary-free case. It converges to zero when n→∞with the same speed as that established in
Proposition.1 of Bu et al. (2019). This bound enjoys a close level of tightness in the adversary-free
scenario as that proposed in in Bu et al. (2019).

We first give the definition of the expected and empirical risk under the adversary-free setting, fol-
lowing Definition.1.
Definition 4. Following (Xu & Raginsky, 2017; Asadi et al., 2018), given a training dataset Sn com-
posed of n i.i.d training samples zi ∼ µ, we assume a randomized learning paradigm A mapping
Sn to a hypothesis f , i.e., f = A(Sn), according to a conditional distribution Pf |Sn . The ex-
pected classification risk of f under the adversary-free scenario, noted as Rf , gives in Eq.11. The
expectation is taken over the distribution of the n training samples Sn and the classifier f = A(Sn).

Rf = E
Sn,Pf|Sn

E
z=(x,y)∼µz ,

ℓ(f(x), y). (11)

Similarly, we provide the empirical risk of f under the adversary-free scenario in Eq.12. It is taken
as the expectation over the distribution of the n training samples and the classifier.

R̂f = E
Sn,Pf|Sn

1

n

∑
zi=(xi,yi)∈Sn

ℓ(f(xi), yi) (12)

With the adversary-free setting, x̂ = x. This makes Φ(xi,ωi
, x̂i,ωi

) vanish as I(x̂i,ωi
;xi,ωi

, yi, f) =
I(xi,ωi

;xi,ωi
, yi, f). Similarly, Ψ(xi,ωi

, xi,ωi
) = |I(xi,ωi

; f) − I(xi,ωi
, yi; f)| is reduced to

I(zi; f), since ωi = ∅ for each training sample zi. As a result, the bound given in Eq.3 shrinks
to the following form in Eq.13:

Rf − R̂f ≤
√
3LDf√
2n

√√√√ n∑
i=1

I(f ; zi). (13)

where Rf and R̂f are expected and empirical risk under the adversary-free setting. In comparison,
Proposition.1 (Eq.19 and 20) in Bu et al. (2019) provides the upper bound of the generalization error
of f in a similar form:

Rf − R̂f ≤ 1

n

n∑
i=1

√
2R2I(f ; zi). (14)

with the condition that the loss function ℓ(f, z) is R-sub-Gaussian under z ∼ µz for all f ∈ H. We
can find that the two adversary-free bounds in Eq.13 and Eq.14 only differ in the scaling constant.
When n (the number of training samples) goes to infinity, both bounds vanish with the same con-
vergence speed. Compared to the training set mutual information I(f ;Sn) based bound proposed
Theorem.1 of Xu & Raginsky (2017), the individual sample mutual information-based bound (Eq.13
and Eq.14) poses a tighter bound over the generalization error according to the theoretical and em-
pirical analysis conducted in Bu et al. (2019). In Xu & Raginsky (2017), the information-theoretic
bound is built by assuming that the loss function ℓ(f, z) has a bounded cumulative generating func-
tion with z ∼ µz and f ∈ H. Nevertheless, this assumption does not necessarily hold. Our study
thus avoids this shortcoming and adopts the individual sample mutual information to develop the
adversarial risk analysis. In conclusion, we develop theoretical analysis under a more general con-
dition about the cumulative generating function of the loss function compared to Xu & Raginsky
(2017), which makes our work applicable to a broad range of problems.

Second, The value of Eq.3 is bounded. The possible value of Φ(xi,ωi , x̂i,ωi) =
|I(x̂i,ωi

;xi,ωi , yi, f) − I(xi,ωi ;xi,ωi , yi, f)| and Ψ(xi,ωi , xi,ωi) = |I(xi,ωi ; f) − I(xi,ωi , yi; f)|
follow the constraint that:

Φ(xi,ωi , x̂i,ωi) ≤ log(qϵ)

Ψ(xi,ωi
, xi,ωi

) ≤ I(zi; f)
(15)
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where the maximum cardinality of any single feature in the feature subset ωi is denoted as q. ϵ is the
maximum number of features that the attacker may perturb, a.k.a the attack budget. the number of
the features in ωi, noted as |ωi| is no more than ϵ. With this constraint, the value of Eq.3 is bounded
from above as:

Radv
f − R̂adv

f ≤LDf√
2n

√√√√ n∑
i=1

I(f ; zi) + 2

n∑
i=1

Ψ(xi,ωi , xi,ωi) +

n∑
i=1

Φ(xi,ωi , x̂i,ωi)

≤LDf√
2n

√√√√ n∑
i=1

3I(f ; zi) + n log(qϵ)

(16)

In Eq.16, the first term under the squared root symbol is
∑n

i=1 3I(f ; zi). It measures the general-
ization error under the adversary-free setting according to Eq.13. The second term log(qϵ) measures
the strength of the attack by considering the cardinality of the feature subset ωi. A higher cardinality
log(qϵ) implies a larger combinatorial set of possible categorical feature values available to the at-
tacker (more features that the attacker may perturb and/or more category values per feature that the
attacker may choose to replace the original feature value). The attacker selects one set of categor-
ical values in this combinatorial set to replace the original feature values within the feature subset
ωi, in order to deliver the adversarial attack. Consequently, a higher cardinality indicates greater
flexibility to organize feature manipulation over ωi, which signifies a stronger attack and thereby
elevates the adversarial risk. Eq.16 gives a bounded but rough estimate of the adversarial risk, as
not all of the features are useful for attack. Only the perturbation over influential features may cause
effectively the rise of adversarial risk. In this sense, Eq.3 provides more accurate estimate to the
actual adversarial risk than Eq.16.

B CONNECTION BETWEEN THE THEORETICAL ANALYSIS AND THE DESIGN
OF IGSG

Our design of adversarially robust training is in accordance with two recommended factors to min-
imize the adversarial risk. However, deriving consistent and differentiable estimates of mutual in-
formation between high-dimensional variables, such as the parameters of deep neural networks and
input categorical feature vectors, remains an open and challenging problem due to the curse of di-
mensionality Gao et al. (2018). This makes direct optimization of the mutual information-based
bound impractical. To reach this goal, we propose the IGSG-based robust training paradigm. It
jointly applies two smoothness-enhancing regularization techniques into the learning process of a
classifier with categorical inputs, in order to mitigate the adversarial attack over categorical data.
We discuss the design of IGSG in the followings. To further confirm the effectiveness of IGSG in
minimizing the mutual-information-based adversarial risk bound, we provide approximated compu-
tation of the mutual-information based bound with the toy model in Appendix.I.1. We derive the
estimated bound value derived with and without applying our proposed robust training mechanism.
The empirical observations show that enforcing the two regularization terms indeed decreases the
estimated value of the bound, which echoes the rise of adversarial accuracy.

Minimizing I(f ; zi) by smoothing the curvature of the classification boundary. In previous
work, Fisher information ρ(zi)f was utilized as a quantitative measure of the information that the
hypothesis f contains about the training sample zi (Hannun et al., 2021). As shown in Wei & Stocker
(2016), ρ(zi)f is closely related to the mutual information I(f ; zi), higher/lower ρ(zi)f indicates
higher/lower I(f ; zi). Our work aims to minimize ρ(zi)f to effectively penalize excessively high
mutual information I(f ; zi). The computation of ρ(zi)f is detailed in Eq.16 of (Hannun et al., 2021).
In this context, suppressing ρ(zi)f (approximately suppressing I(f ; zi)) is equivalent to penalizing
the magnitude of the gradient of the loss function with respect to each zi. This approach, supported
by findings in (Smilkov et al., 2017), uses gradient regularization to smooth the classifier’s decision
boundary, thereby reducing the potential risk of overfitting and enhancing adversarial resilience

Minimizing Ψ(xi,ωi
, xi,ωi

) and Φ(xi,ωi
, x̂i,ωi

) via smoothing the distribution of feature-wise
contribution to the classification output. Minimizing these terms involves evaluating the mutual
information between the feature subset ωi and the combined set of remaining features and the trained
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model f . Approximating this mutual information-based penalization with Fisher information is thus
infeasible. The primary goal of regularizing these terms is to prevent the classifier from relying
too heavily on a few influential features. To achieve this, we propose using Integrated Gradient (IG)
(Sundararajan et al., 2017) to assess feature-wise contributions to the classification output. We apply
Total-Variance (TV) regularization over the feature-wise Integrated Gradient to promote a smooth
and balanced distribution of feature-wise attribution. In Appendix.I.1, we show empirically with
toy models that performing the proposed TV regularization can reduce the estimated value of both
mutual information-based terms.

C DIFFERENCE BETWEEN PAC-BAYES BOUNDS AND OUR STUDY

Following (Xu & Raginsky, 2017; Bu et al., 2019), we don’t impose any prior distribution assump-
tion over Pf |Sn . This characterizes the major difference between our study and PAC-Bayes gen-
eralization bounds (McAllester, 1999). Though PAC-Bayesian bounds also connect information-
theoretic quantities to generalization and are similar to the mutual information approach, these
bounds are usually output dependent–that is,they give a generalization bound for a particular output
hypothesis or hypothesis distribution,rather than uniformly bounding the expected error of the algo-
rithm as does in the mutual-information based bound in our study. We adopt the mutual-information
based technique to exploit the fact that the generalization error depends strongly not only on the
underlying true data-generating distribution, but also on the correlation between the collection of
empirical risks of the available hypotheses and the final output of the learning algorithm.

D DISCUSSION ABOUT THE RANDOMIZED LEARNING MECHANISM

It is worth noting that our information-theoretic analysis roots in the research of mutual information
based generalization error analysis in (Xu & Raginsky, 2017; Bu et al., 2019). This line of inquiry
adopts an information-theoretic perspective to enhance the generalization capabilities of machine
learning algorithms. Within this theoretical framework, a model training algorithm is conceptual-
ized as a randomized mapping or an information-transmitting channel, employing the language of
information theory. This mapping or channel takes a training dataset as input and yields a hypothesis
as output. The randomness inherent in this mapping/channel manifests in two dimensions. First, the
training dataset provided to the channel is a sample selected from all possible combinations of n
training data points. Second, the resulting hypothesis from this channel is one sample chosen from
the set of possible hypotheses within the hypothesis space. The mutual information-based bound
in Eq.3 thus determine the expected adversarial risk over all possible hypothesis functions in the
hypothesis space. In other words, we offer an averaged estimate of the potential adversarial risk,
irrespective of the hypothesis chosen as the output by the learning algorithm. In this sense, for a
classifier used in a concrete learning task, whether the parameters/decision outputs of this classifier
are deterministic or randomized, our mutual-information-based bound is applicable.

E DETAILED DESIGN OF INTEGRATED GRADIENT AND SMOOTHED
GRADIENT REGULARIZATION

Definition 5. (Total Variation of IG-based Regularization). The objective function of the classifier
f with TV loss is defined as,

min
θ

E
(xi,yi)∼µz

{ℓ(xi, yi; θ) + αℓTV IG(xi)} (17)

where α is a hyper-parameter tuning the weight of the TV regularization term, and θ is the param-
eters of f . ℓ(xi, yi; θ) is the learning loss of f , e.g. the cross entropy loss function. ℓTV (·) denotes
the TV loss of the IG scores of xi. We follow the implementation of the TV loss over time series data,
i.e. ℓTV IG(xi) =

∑p−1
j=1 |IG(xi)j − IG(xi)j+1|.

In ℓTV (·), we normalize the IG scores of each feature xi,j with softmax transformation. Therefore,
the normalized IG score of each feature is valued within [0, 1] and sums up to 1. By minimizing the
regularization term based on TV loss, the distribution of the IG scores is driven to be as uniform as
possible.
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Definition 6. (Smoothed Gradient Regularization). With R randomly sampled data points
x1, x2, . . . , xR around the input instance xi, the gradient smoothing-oriented regularization term
defined on xi is given as follows:

min
θ

E
(xi,yi)∼µz

ℓ(xi, yi; θ) +
β

R

R∑
r=1

||Gr||q (18)

where β is a hyper-parameter, and Gr ∈ Rp∗m is a gradient matrix with:

Gr,j,k = gr,j,k − gr,j,k∗ (19)

where gr,j,k = ∂
∂b(xr)j,k

ℓ(xr, yi; θ). We use LQ norm to calculate the norm of the gradient. Specifi-
cally, we choose q=2 for all the experiments following (Ross & Doshi-Velez, 2018b).

We next elaborate on the details of the calculation in Eq.18 for categorical data, since it is different
from the vanilla smoothed gradient computing with continuous input (Smilkov et al., 2017). First,
we choose the categorical instances {xr, r = 1...R} by randomly changing a few features of xi,
such that |diff(xi, xr)| equals to the attack budget ϵ. By taking the gradients associated with {xr, r =
1...R} that are similar categorical vectors to xi, we aim to obtain a more accurate measurement of
the smoothness of the decision boundary around x. We average the magnitudes of the gradient
vectors of {xr, r = 1...R} for each categorical instance xi. Empirically, we choose R = 5, which
brings consistently good results without very high time complexity. Second, instead of using the
vanilla gradient, we inherit the idea of mean field smoothing as defined in Eq.10 and 13 of (Herault &
Horaud, 1995) over the gradient values associated with each categorical feature of xr. As shown in
Eq.19, for each feature of xr (noted as xr,j), we minimize the norm of the difference between gr,j,k
and gr,j,k∗ , where k∗ denotes the category value carried by xr,j . It is formulated as minimizing
the LQ norm of the difference of gradients Gr in Eq.18. By optimizing with the regularization
term, our aims are two-fold: a) We suppress the magnitude of the gradient with respect to each
categorical feature xr,j to reduce the adversarial risk. b) We smooth the distribution of the gradient
values gr,j,k associated with the optional category values of each categorical feature xr,i. Domain-
agnostic discrete attacks, e.g., Orthogonal Matching Pursuit Greedy Search (OMPGS) (Wang et al.,
2020b), rank the gradient values associated with the one-hot encoded vector xr,i. The top-ranked
category values other than xr,i = k∗ are selected by OMPGS as the candidates of feasible adversarial
perturbation to replace xr,i = k∗. Minimizing the difference betweengr,j,k and gr,j,k∗ produces a
set of uniformly distributed gradient values gr,j,k. It prevents gradient-guided attack methods like
OMPGS from identifying promising candidates for generating effective adversarial perturbation.

F EMPIRICAL STUDY OF THE ROBUST OVERFITTING ISSUE

Let Ptr and Pte (Otr and Ote) denote the adversarial samples produced by the PGD-based attack P
(OMPGS-based attack O), which are used respectively for adversarial training (tr) and testing (te).
The empirical evaluation of distribution gap is conducted by comparing the following 4 groups of
Wassernstein distance scores.

Wassernstein distance between in-distribution samples (WDin): We first measure the Wassern-
stein distance between samples within each of Ptr, Pte, Otr and Ote. For each set, we randomly
shuffle twice the adversarial samples and select 90% of the samples from the set as the probe and
gallery set. We then compute the Wassernstein distance between the probe and gallery set. This
process is repeated for 20 times. We record all the Wassernstein distance scores to measure the
distribution gap between in-distribution adversarial samples within each set. WDin is considered as
a baseline. We expect the Wassernstein distance scores between adversarial samples from different
distributions (Out-Of-Distribution) to be significantly larger than the distance scores in WDin.

Wassernstein distance between the training and testing adversarial samples produced by the
PGD-based method (WDP

out): For Ptr and Pte, we randomly sample 90% of the adversarial
samples from each set and compute the Wassernstein distance between the selected subset from the
training and testing set. We repeat this process for 20 times and obtain the Wassernstein distance
scores to measure the distribution gap between the training and testing adversarial samples generated
by the PGD-based method.
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Table 5: Average and standard
(AVG) deviation (STD) of the
Wassernstein distance scores

Group of
Wassernstein

distance
AVG STD

WDin 0.06 0.003
WDP

out 0.05 0.001
WDO

out 0.12 0.002
WDPO

out 0.18 0.002

Wassernstein distance between the training and test-
ing adversarial samples produced by the OMPGS-based
method (WDO

out): For Otr and Ote, we randomly sample
90% of the samples from each set and compute the Wassern-
stein distance between the two selected subsets. This pro-
cess is repeated 20 times to obtain all the Wasserstein distance
scores, assessing the distribution difference between training
and testing adversarial samples generated by the OMPGS-
based attack method.

Wassernstein distance between the training and testing
adversarial samples produced by the PGD-based and
OMPGS-based attack methods (WDPO

out ): We conduct a cross-check in this part. We randomly
sample 90% of the samples from Ptr and Ote respectively and compute the Wassernstein distance
between the selected subset of adversarial samples from the two sets. The same distance computing
operation is also conducted on the subsets from Otr and Pte. This process is repeated for 20 times
and obtain the Wassernstein distance scores to assess the distribution difference between training
and testing adversarial samples generated using different attack methods.

Figure 4: The “robust overfitting” of adversarially
trained MLP on Splice.

In Table.5, the averaged Wassernstein
scores of WDin and WDP

out are the small-
est among the four groups of distance val-
ues. Conversely, WDPO

out and WDO
out rank as

the largest and second largest, respectively.
Our findings can be summarized from two
perspectives. First, we conduct a Mann-
Whitney U test on the distance scores of
WDin and WDP

out. The test results indi-
cate no significant difference between the
distance scores in these two groups, yield-
ing a p-value of 0.20. This suggests that
the PGD-based method generates discrete
adversarial samples with similar distribu-
tions for both training and testing. Con-
sequently, the PGD-based adversarial train-
ing achieves high adversarial accuracy, as
observed in Table.1. Second, we conduct
Mann-Whitney U tests between WDin and WDO

out, as well as between WDin and WDPO
out . The hy-

pothesis tests reveal that WDO
out and WDPO

out are significantly higher than WDin, with p-values of 0.02
and 0.01, respectively. This indicates that 1) the training and testing adversarial samples generated
by the OMPGS-based adversarial training method have different distributions and 2) the training
adversarial samples generated by one method (either PGD-based or OMPGS-based) have a differ-
ent distribution from the testing adversarial samples generated by the other method. These results
align with the low adversarial accuracy of the PGD-based adversarial training method when facing
the OMPGS-based attack, and vice versa. Additionally, the observations confirm the occurrence of
robust overfitting in the OMPGS-based adversarial training method, as illustrated in Figure.4.

G DISTINCTIVE FACTORS IN ROBUSTNESS WITH CATEGORICAL DATA

G.1 DISTINCTIVE FACTORS IN ASSESSING ROBUSTNESS WITH CATEGORICAL DATA

We emphasize three critical distinctions in characterizing and evaluating the adversarial robustness
of categorical data compared to continuous data. Firstly, categorical data exists in discrete space,
where each feature represents a unique category. Adversarial manipulation of categorical features
involves switching from one feasible category to another, rendering traditional LQ distance metrics
inapplicable. Consequently, samples generated through PGD and FGSM attacks are considered
infeasible to use over discrete data directly (Lei et al., 2019; Bao et al., 2021; Wang et al., 2020b).
However, PGD adversarial training and TRADES are both applicable to relaxed categorical data.
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Adversarial samples are generated by relaxing b(xi) into continuous data, yielding float categorical
values in Rp∗m. While these samples are inappropriate for directly evaluating model robustness
in the discrete domain, they are effective for adversarial training, fostering improved robustness, as
discussed in the global response.

Secondly, attacking discrete data entails a complex NP-hard mixed-integer nonlinear programming
challenge (Lee & Leyffer, 2011). Moreover, the volume of the adversarial space expands exponen-
tially with the feature dimension. Although transitioning the discrete problem to the continuous
domain yields approximate solutions, the intricate combinatorial nature impedes complete coverage
of feasible discrete adversarial samples. Adversarial training relying on the relaxed solution to the
discrete attack risks overfitting to these approximations. Our study confirms this limitation, where
adversarial training struggles to significantly bolster the robustness of discrete data—especially in
high-dimensional settings with substantial attack budgets.

Finally, it is essential to recognize that certifiable adversarial robustness and adversarial risk bounds
established for the image domain do not hold for discrete data. These bounds are based on LQ

distance (q ≥ 1) and do not adequately explain the true factors influencing the adversarial risk of
discrete data, as demonstrated in Theorem 1 of (Bao et al., 2021). Therefore, applying these bounds
to discrete data would yield inaccurate and unreliable results.

G.2 DISTINCTIVE FACTORS IN L0 ROBUSTNESS

Tsipras et al. (2018) demonstrated that a model relying on multiple weakly correlated features with
the label can make high-confidence (low entropy) predictions, which appears to conflict with our
proposed method for smoothing the impact of different features. However, Tsipras et al. (2018) pri-
marily focused on the LQ attack scenario, where experiments involve L2 and L∞ attacks. However,
our focus is on enhancing the adversarial robustness of categorical data, When perturbing categorical
features, the concept of ”modification magnitude” loses relevance. Instead, each feature undergoes
a transformation by switching between distinct category values (switching from its original category
value to another one). In this context, evaluating robustness using L∞ attacks is infeasible, as men-
tioned in our earlier responses. Therefore, adversarial attacks on categorical data are framed within
the L0 attack framework, rather than the L∞ attack scenario. It’s important to underline that distinct
attack scenarios can yield varying conclusions regarding adversarial robustness. However, the fun-
damental concept driving adversarial robustness remains consistent for both L0 and LQ attacks —
mitigating overfitting on the training data is paramount.

For instance, in the context of L∞ attacks, overfitting often occurs with respect to the background.
As every pixel can be perturbed to some extent, classifiers that overfit to background elements be-
come susceptible to adversarial attacks. This concurs with the findings of (Tsipras et al., 2018).
Standard models that utilize all features tend to be vulnerable, while adversarially trained models
tend to focus on influential features. This vulnerability arises from the classifier’s overfitting to
background features. This leads us to the insight that due to the permissible perturbation of any
feature within certain bounds, changing influential features to alternative patterns is notably more
challenging than altering background features, thus rendering background overfitting a significant
adversarial vulnerability .

Nonetheless, in the context of an L0 norm bounded attack, the scenario differs. When weakly cor-
related features are perturbed, highly influential features still remain untouched within the confines
of the L0 norm constraint. Consequently, targeting the most influential features becomes a pathway
to a successful attack, which is a contrast to the L∞ attack situation. As an echo, our defense thus
aims to smooth the feature-wise contribution to the classifier, making the adversary difficult to iden-
tify influential features. This fundamental discrepancy is at the root of the disparities between our
findings and those presented in (Tsipras et al., 2018).

H DETAILED EXPERIMENTAL SETTINGS

H.1 THE SETTINGS OF FSGS AND OMPGS

To evaluate adversarial robustness, we employe the FSGS attack and OMPGS attack, shown in Al-
gorithm.1 and 2. The definition of the notations can be found in Appendix.H.4. It’s also worth noting
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Algorithm 1 FSGS for general categorical data

Input: The candidate set H = {1, 2, ...p} of all categorical features, categorical attack budget ϵ
1: S ← ∅
2: for iter = 0, 1, 2, . . . do
3: for each j ∈ H/S do
4: for each s ⊂ S, if |s| < ϵ do
5: x̂(j, s) = B(x, {j} ∪ s)
6: end for
7: mf (x(j)) = max

s⊂S,|s|<ϵ
mf (x̂(j, s))

8: end for
9: mf (x, S) = max

j∈H/S
mf (x(j))

10: j∗ = argmax
j∈H/S

mf (x(j))

11: S ← S ∪ {j∗}
12: if mf (x, S) ≥ 0 then attack successfully
13: if Time ≥ Γ then timeout
14: end for

Algorithm 2 OMPGS for general categorical data

Input: The candidate set H = {1, 2, ...p} of all categorical features, categorical attack budget ϵ
1: S ← ∅
2: for iter = 0, 1, 2, . . . do
3: for s ⊂ S, if |s| ≤ ϵ do
4: rs←∇fy(B(x, s))
5: if mf (B(x, s)) ≥ 0

then attack successfully
6: end for
7: for j ∈ H/S do
8: sj = argmax

sj⊂S,|sj |<ϵ

|rs[j]|, x̂j = B(x, {j} ∪ sj)

9: end for
10: j∗←argmax

j∈H/S

mf (x̂(j))

11: S←S ∪ {j∗}
12: if Time ≥ Γ then timeout
13: end for

that, in terms of attack methods for discrete data, while FSGS is a black-box attack and OMPGS is
white-box, FSGS, with an extensive search, often encompasses the search space of OMPGS under
the same attack budget, yielding higher success rates, as demonstrated in (Bao et al., 2021). For
both methods, we impose a time constraint on each dataset. Specifically, we allocate 1s, 150s, and
2s for FSGS, and 1s, 5s, and 1.2s for OMPGS, corresponding to Splice, PEDec, and Census datasets,
respectively. Adversarial accuracy, which measures the prediction accuracy on adversarial samples
generated by FSGS or OMPGS, is used as the metric for assessing robustness. These settings are
consistently applied to all methods, including IGSG, the baseline methods, and the ablation meth-
ods. In the case of mixed-type datasets like Census, we devise variations of FSGS and OMPGS to
enhance the effectiveness of the attack. Further details can be found in Appendix.H.4.

H.2 DETAILS OF THE BASELINE METHODS

1. Standard Training (Std Train) is the model trained with adversary-free data by cross-entropy.
2. PGD Adversarial Training (Adv Train) is the vanilla adversarial training (Madry et al., 2017).
3. Fast-BAT (Zhang et al., 2022) advances vanilla adversarial training from the perspective of bi-

level optimization. It achieves a better accuracy-robustness balance than Adv Train.
4. TRADES (Zhang et al., 2019) optimizes a regularized surrogate loss composed of empirical risk

minimization and a robustness regularization term.
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5. Adversarial Feature Desensitization (AFD) (Bashivan et al., 2021) improves robustness by learn-
ing a feature space where the adversary-free and adversarial instances share the same distribution.

6. Probabilistic Adversarial Training (PAdvT) (Xu et al., 2023) first use Probabilistic Categorical
Adversarial Attack (PCAA) proposed in the same paper to generate adversarial samples in dis-
crete space and then uses these adversarial samples for adversarial training.

7. Input Gradient Regularization (IGR) (Ross & Doshi-Velez, 2018b) penalizes the magnitude of
the vanilla gradient of the classification loss with respect to the training data.

8. Jacobian Regularization (JR) (Hoffman et al., 2019) proposes to penalize the approximation of
the Frobenius norm of the Jacobian matrix.

The last seven baselines except the sixth baseline are all originally designed for continuous input. We
relax the one-hot encoded representation of categorical training data when adapting these baselines
to our test. For four adversarial training baselines (Adv Train, Fast-BAT, TRADES and AFD), we
adopt L1-norm bounded adversary in the inner maximization of the adversarial training process.
When a mixture of categorical and numerical features presents (e.g., in Census dataset), the PGD-1
attack is applied for the categorical features and the PGD-∞ attack is used for numerical features.
For two regularization-based baselines (IGR and JR), we compute the gradient of the classifier’s
output (JR) / the classification loss (IGR) with respect to the continuous relaxation of the categorical
data. The details about the hyper-parameters during training can be found in Appendix.H.3.

H.3 THE SETTINGS OF THE HYPER-PARAMETERS IN THE TRAINING PHASE

First, we talk about the learning rate. We experiment with different learning rates for the MLP
model. Specifically, we set the learning rates to 0.07, 0.2, and 0.008 for Splice, PEDec, and Census
datasets, respectively. All methods utilizing IG regularization achieve the best performance using
the same learning rate. For other methods, unless otherwise specified, we use learning rates of 0.07,
0.00001, and 0.008 to achieve optimal performance for the MLP model. In the case of PEDec using
the IG-based training paradigm, we use a larger learning rate to achieve optimal solutions of the
smoothness of IG scores for each feature. It is important to note that large learning rates would
decrease both robustness and accuracy in other situations. For the Transformer model, we adopt
learning rates of 0.003, 0.002, and 0.02 for Splice, PEDec, and Census, respectively.”

When tuning the hyper-parameters α and β of the proposed IGSG method in Eq.5, we analyze their
sensitivity by testing different parameter values ranging from 0.01 to 100. We employ 10-fold cross-
validation and evaluate the robustness using the OMPGS attack. In detail, we randomly and evenly
divide the training set into 10 parts. Each time, we use one part as test set and others as training
set. We train an MLP classifier with varied α and β. We do the whole process for 10 times and
each part is regarded as the test set for once. After that, we calculate the average of the adversarial
accuracy under OMPGS attack for each setting of the hyper parameters. Figure 5 illustrates the
adversarial robustness of the MLP model for Splice and PEDec datasets. For Splice, we consistently
obtain excellent results, as different combinations of α and β have small impact on the adversarial
accuracy. However, for PEDec, we observe that the left side of the box consistently performed
well. When using a small α value, good results are achieved regardless of the choice of β. Hence,
when applying the IGSG method, it is unnecessary to exhaustively explore all combinations of α
and β. Balancing the three parts of the loss function typically leads to satisfactory performance.

Figure 5: Adversarial Accuracy of IGSG under different
α and β of the MLP model

Confidence intervals are calculated to
gauge the reliability of the adversarial ac-
curacy obtained through cross-validation.
For PEDec, the length of the confidence
interval ranges from 0.1 to 0.15 at a 95%
confidence level. Conversely, for Splice,
the interval is approximately 0.1 at a 95%
confidence level. In the case of the MLP
model, we choose α values of 10, 0.01,
and 1 for the three datasets, respectively.
As for β, we use values of 100, 0.1, and 3
for the respective datasets. For the Trans-
former model, α is set to 100 for all three datasets, while β takes values of 1, 0.1, and 1 for the
respective datasets.
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In the case of the PGD-1 attack in the Adv Train, AFD, and TRADES methods, we set ϵ to be 5 for the
three datasets. The attack consists of 20 iterations, with the attack step size set to ϵ/10. Regarding
Fast-BAT (Zhang et al., 2022), we also set ϵ to be 5 for the three datasets. The attack step size is
determined as ϵ/4.

In the IGR method, the parameter that weighs the importance of the norm of the input gradient is
set to the same value as β in Eq.5. For the MLP model, we use the values of 100, 0.1, and 3 for the
three datasets, respectively. As for the Transformer model, the values are set as 1, 0.1, and 1 for the
respective datasets.

In the JR method, the hyper-parameter that weighs the importance of the Frobenius norm of the
Jacobian matrix is tuned to achieve optimal robustness. For the MLP model, we set the values of
0.5, 1, and 0.02 for the three datasets, respectively. As for the Transformer model, the values are set
as 1, 0.05, and 0.1 for the respective datasets.

In the AFD method, Algorithm 1 in (Bashivan et al., 2021) includes three learning rates. For the
MLP model, we set the values of α to be 0.01, 0.00001, and 0.008, β to be 0.001, 0.0005, and 0.0001,
and γ to be 0.001, 0.00005, and 0.0001 for the three datasets, respectively. As for the Transformer
model, we set α to be 0.001, 0.002, and 0.0001, β to be 0.001, 0.0001, and 0.001, and γ to be 0.001,
0.0001, and 0.0001 for the three datasets, respectively.

In the TRADES method described in (Zhang et al., 2019), we set the parameter λ to balance accuracy
and robustness. Specifically, for the MLP model, we set λ = 1 for the Splice and Census datasets,
and λ = 0.2 for the PEDec dataset. As for the Transformer model, we set λ = 1 for the all the three
datasets.

In Eq.13 of the Fast-BAT method (Zhang et al., 2022), we set the values of the parameters as follows:
α1 = ϵ/4, λ = 1/α1, α2 = 1 for the Splice dataset, and α2 = 0.1 for the PEDec and Census
datasets.

For the training epochs, we execute 3000, 180, and 100 epochs on Splice, PEDec, and Census
respectively. We perform 5 runs of all the methods and computed the average score and standard
deviation. When evaluating the adversarial accuracy under OMPGS attack of different methods on
different attack budgets, we pick the best one among the 5 runs for each method to draw Figure.2
and Figure.8.

H.4 SPECIAL SETTINGS FOR MIXED-TYPE DATASET

For mixed-type datasets that contain both categorical and numerical features, direct application of
FSGS, OMPGS, or PGD attacks is not suitable for evaluating the robustness of the classifier. This is
because categorical data requires an L0 attack, while numerical data typically necessitates an L2 or
L∞ attack.

To address this challenge and evaluate the adversarial robustness of a mixed-type classifier, an it-
erative approach is employed. This approach involves running FSGS or OMPGS along with PGD
attacks iteratively to obtain a more effective adversary. This combination allows for a comprehensive
evaluation of the robustness of the mixed-type classifier.

Before talking about the details, we note that there are pcat categorical features and pnum numerical
features. Each categorical feature has m candidate values. For a sample x, the value of feature j

is k∗. After perturbation, the value is k̂. The ground truth label of x is y∗. During the attack, we
maintain a greedy set S, showing the alterable features. Each feature not in S cannot be changed,
i.e. for j /∈ S, k̂ = k∗. For the features in S, it is possible to choose any of the m candidate values,
and it is also acceptable to remain unchanged. Here we introduce the notation in (Bao et al., 2021).
Given a greedy set S,

mf (x) = max
y ̸=y∗
{fy(x)} − fy∗(x)

mf (x, S) = max
diff(x,x̂)⊂S

mf (x̂)

where we denote diff(x, x̂) as the set of feature indices where k̂ ̸= k∗. The function mf (x) indi-
cates whether the sample x is misclassified. If mf (x) < 0, it means that x is classified correctly,
while mf (x) ≥ 0 indicates misclassification. The function mf (x, S) checks whether the attack is
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Algorithm 3 FSGS + PGD for mixed-type data

Input: The candidate set H = {1, 2, ...pcat} of all categorical features, PGD attack budget ϵn for
numerical data, categorical attack budget ϵc

1: S ← ∅
2: for iter = 0, 1, 2, . . . do
3: for each j ∈ H/S do
4: for each s ⊂ S, if |s| < ϵc do
5: x̂(j, s) = B(x, {j} ∪ s)
6: δ(j, s) = PGD∞(x̂(j, s), ϵn)
7: x̂(j, s) = x̂(j, s) + δ(j, s)
8: end for
9: mf (x(j) + δ(j, S)) = max

s⊂S,|s|<ϵc
mf (x̂(j, s))

10: end for
11: mf (x+ δ, S) = max

j∈H/S
mf (x(j) + δ(j, S))

12: j∗ = argmax
j∈H/S

mf (x(j) + δ(j, S))

13: S ← S ∪ {j∗}
14: if mf (x+ δ, S) ≥ 0 then attack successfully
15: if Time ≥ Γ then timeout
16: end for

Algorithm 4 OMPGS + PGD for mixed-type data

Input: The candidate set H = {1, 2, ...pcat} of all categorical features, PGD attack budget ϵn for
numerical data, categorical attack budget ϵc

1: S ← ∅
2: for iter = 0, 1, 2, . . . do
3: for s ⊂ S, if |s| ≤ ϵc do
4: rs←∇fy(B(x, s))
5: if mf (B(x, s) + PGD∞(B(x, s), ϵn)) ≥ 0

then attack successfully
6: end for
7: for j ∈ H/S do
8: sj = argmax

sj⊂S,|sj |<ϵc

|rs[j]|, x̂j = B(x, {j} ∪ sj)

9: end for
10: j∗←argmax

j∈H/S

mf (x̂(j) + PGD∞(x̂(j), ϵn))

11: S←S ∪ {j∗}
12: if Time ≥ Γ then timeout
13: end for

successful under the constraints of the feature set S. The notation B(x, s) represents the adversarial
sample x̂ obtained by modifying the features of x as indicated by the binary vector s. Algorithm.3
outlines the attack process using FSGS+PGD for mixed-type data, while Algorithm.4 describes the
attack process using OMPGS+PGD for mixed-type data. For general categorical data where there
are no numerical features, the ”PGD” step in the algorithms can be ignored or ϵn can be set to 0.

During the experiment, each feature is normalized before applying the PGD attack. For PGD-∞
attack, we set ϵn = 0.2 for the Census dataset, with a total of 20 attack steps. The attack step size
is set to 0.02. During the training process of Adv Train, AFD, TRADES, and Fast-BAT, we use a
combination of PGD-1 attack for categorical features and PGD-∞ attack for numerical features to
generate adversarial samples for mixed-type data. The same attack settings are applied during the
training of Adv Train, AFD, and TRADES. For Fast-BAT, we also set ϵn = 0.2, but the attack step
size is adjusted to 0.05.
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(a) Splice (b) PEDec

Figure 6: Mutual Information Estimation for terms in Eq.3 for Splice and PEDec Datasets

I ADDITIONAL EXPERIMENTAL RESULTS

I.1 APPROXIMATION TO THE MUTUAL INFORMATION-BASED ADVERSARIAL RISK BOUND

In this section, we evaluate the mutual information as delineated in the adversarial risk bound (Eq.3),
comparing models trained via Std Train and IGSG methods. Given the intricacies and potential in-
accuracies in assessing an entire neural network, we focus on a simplified model comprising a single
fully connected layer, with softmax activation for multi-class classification and sigmoid activation
for binary classification. We utilize the Mutual Information Neural Estimation (MINE) technique
(Belghazi et al., 2018) to assess the terms and their weighted sum in Eq.3 .

For training, we randomly selected 200 and 500 samples, 20 times each, from the training sets
of Splice and PEDec datasets, respectively. These samples undergo training using Std Train and
IGSG approaches, with a learning rate of 0.001, over 200 and 1000 epochs, respectively. This
process yields an approximate accuracy of 0.9 for both datasets. Subsequently, we evaluate the
adversarial robustness of 20 models each from Std Train and IGSG, employing FSGS and OMPGS
attacks. Regarding the most sensitive features ωi in Eq.3, we predetermine them based on the
top 5 features exhibiting the highest attack frequency in Std Train models on MLP under OMPGS
attacks. These features were fixed across all samples. For Splice, ωi are [28, 29, 30, 31, 32],
and for PEDec, [3592, 3755, 3808, 4390, 4918]. Using these predetermined ωi, we calculate the
four mutual information terms, as illustrated in Figure 6, based on the 20 sampled datasets and
corresponding model parameters, utilizing the MINE methodology. We also calculate the average
adversarial accuracy on FSGS and OMPGS, the reuslt is shown in Table 6.

This experiment aims to demonstrate two key aspects. Firstly, IGSG-trained networks exhibit a
reduction in the mutual information terms in Eq.3, suggesting a lower adversarial risk bound. Sec-
ondly, beyond just a lower adversarial risk bound, IGSG-trained networks also empirically manifest
enhanced adversarial accuracy. Table 6: Average Adversarial Accu-

racy on 20 logistic regression models
for PEDec and Splice datasets.

Dataset Attack IGSG Std Train

Splice FSGS 0.019 0.010
OMPGS 0.139 0.122

PEDec FSGS 0.709 0.648
OMPGS 0.748 0.668

The results displayed in Figure 6 encompass four
mutual information terms related to the adversarial
risk bound. We first examine ”Sum”. ”Sum” is
defined as

∑n
i=1 I(f ; zi) + 2

∑n
i=1 Ψ(xi,ωi , xi,ωi) +∑n

i=1 Φ(xi,ωi
, x̂i,ωi

), representing the adversarial risk
bound in Eq.3. We can refer to Table 6 for the average ad-
versarial accuracy across 20 models trained on randomly
sampled data under FSGS and OMPGS attacks. For both
Splice and PEDec datasets, the IGSG method typically yields lower ”Sum” values and higher adver-
sarial accuracy, corroborating that IGSG effectively reduces the adversarial risk bound in Eq.3 and
that this reduction positively correlates with improved adversarial accuracy.
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(a) IGSG (b) Std Train

Figure 7: 2D PCA Boundary Visualization on PEDec Dataset

Focusing on the first three terms in Figure 6, we observe that
∑n

i=1 I(f, zi), indicative of adversary-
free generalization error, is lower after using SG regularization compared to Std Train, signify-
ing a more generalized classifier. The term

∑n
i=1 Ψ(xi,ωi , xi,ωi) quantifies the differential con-

tribution of highly vulnerable features ωi and other features ωi. Here, classifiers trained with
IGSG typically exhibit lower values, suggesting a more balanced reliance on diverse features. For∑n

i=1 Φ(xi,ωi
, x̂i,ωi

), which measures the sensitivity of the most vulnerable features ωi to adver-
sarial perturbations, IGSG-trained classifiers generally show lower values, particularly in the Splice
dataset. This trend is attributed to the high vulnerability of certain features in ωi for Splice, as evi-
dent in Figure 3. Perturbations in a single feature often lead to significant drops in prediction scores,
resulting in larger values for Std Train, while IGSG effectively reduces this effect. For PEDec, suc-
cessful attacks are usually driven by a combinatorial search. The combination of features with high
attack frequency does not necessarily lead to successful attacks, hence the lower values for both Std
Train and IGSG in this term. In summary, we observe that the classifier trained with IGSG exhibits
lower values for all the four mutual information terms in the proposed upper bound in Eq.3 (thus a
globally lower bound value) and higher adversarial accuracy across the two datasets. This finding
firstly indicates that enforcing IGSG regularization can reduce the mutual information based upper
bound of the adversarial risk proposed in Eq.3. Furthermore, we consider adversarial accuracy as a
measure of actual adversarial risk. Higher adversarial accuracy indicates lower adversarial risk and
vice versa. This quantitative evaluation demonstrates the correlation between the upper bound and
actual adversarial risk. Lower values of the mutual information bound signify higher adversarial
accuracy, thus indicating a reduced level of adversarial risk.

I.2 VISUALIZATION OF THE CLASSIFICATION BOUNDARIES

In this section, we present a visualization of classification boundaries for classifiers trained using
IGSG and Std Train methods, specifically for the PEDec dataset. We employ Multi-Layer Percep-
tron (MLP) classifiers trained via both IGSG and Std Train approaches. The visualization focuses
on the features preceding the final fully connected layer within the test set. These features are
compressed into a 2-dimensional space using Principal Component Analysis (PCA) for clearer rep-
resentation.

Each sample in this visualization is labeled according to its predicted class by each respective clas-
sifier, offering an intuitive depiction of the classification boundaries. The results, as illustrated in
Figure.7, reveal distinct differences between the two training methodologies. The IGSG-trained
classifier exhibits an almost linear and distinct boundary between the two classes in the PCA visu-
alization. In contrast, the Std Train-trained classifier’s visualization does not present a clear demar-
cation. There is considerable overlap between the two classes in the PCA visualization of features
from the last layer, indicating a twisted classification boundary.
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Table 7: Adversarial Accuracy under FSGS attack and Accuracy (%) for IGSG and baseline models
for the Transformer model. Adv Train (Madry et al., 2017), Fast-BAT (Zhang et al., 2022), TRADES
(Zhang et al., 2019), AFD (Bashivan et al., 2021), PAdvT (Xu et al., 2023), IGR (Ross & Doshi-
Velez, 2018b), JR (Hoffman et al., 2019)

Dataset Attack Undefended Adversarial Training baselines Regularization baselines Ours
Std Train Adv Train Fast-BAT TRADES AFD PAdvT IGR JR IGSG

Splice budget=5 0.9±0.9 0.4±0.5 1.0±1.1 0.0±0.0 0.2±0.4 0.2±0.4 0.4±0.3 0.1±0.1 2.3±1.4
Clean 96.9±0.4 96.7±0.8 96.4±0.5 96.2±0.6 93.7±1.5 95.6±0.6 96.4±0.2 92.9±1.7 96.7±0.7

PEDec budget=5 41.1±4.1 60.6±0.7 49.9±3.8 59.0±3.9 48.1±9.8 22.6±1.3 59.5±5.0 62.2±1.9 63.5±3.7
Clean 96.2±0.5 96.0±0.2 96.1±0.1 96.7±0.1 96.1±0.4 96.2±0.1 95.5±0.1 93.1±1.8 95.7±0.3

Census budget=5 27.6±4.3 34.1±2.7 33.1±6.1 32.2±8.0 32.2±1.0 30.4±3.4 25.1±5.3 32.7±0.4 37.8±4.3
Clean 95.2±0.1 95.2±0.1 93.4±1.1 94.4±0.1 95.1±0.0 95.1±0.0 95.1±0.1 94.9±0.2 94.8±0.1

Figure 8: Adversarial accuracy for IGSG and baselines under OMPGS attack with varied attack
budgets for the Transformer model.

This observation underscores that, compared to Std Train, IGSG facilitates a smoother and more
discernible classification boundary. Such a visualization not only highlights the distinctiveness of
the IGSG method but also demonstrates its efficacy in achieving clearer class separations.

I.3 EXPERIMENTAL RESULTS ON TRANSFORMER MODELS

In addition to implementing IGSG on the MLP model to demonstrate its effectiveness, we also con-
ducted experiments on a Transformer model. Table 7 presents the accuracy and adversarial accuracy
against FSGS attack for each robust training method used with the Transformer model. For the
Splice dataset, we observed that none of the methods provided effective defense for the Transformer
model. This could be attributed to the presence of particularly sensitive features in the Splice dataset,
as mentioned in Section.5.2. The Transformer model amplifies this effect by focusing more attention
on these features, resulting in lower adversarial accuracy. However, IGSG achieved comparatively
higher adversarial accuracy. Regarding the PEDec dataset, IGSG demonstrated slight improvement
compared to other methods, and the differences in adversarial robustness among the different robust
training methods were not significant. This may be due to the self-attention layer in the Transformer
model, which makes the relationships between different features less flexible compared to the MLP
model. For the Census dataset, most of the baseline methods did not exhibit substantial improvement
over the baseline model. However, IGSG showed a significant improvement of 10.2% compared to
the undefended model.

In Figure 8, we present the adversarial accuracy of all the methods when subjected to OMPGS
attacks with varying budgets for the Transformer model. As discussed in Section.5.2, higher ad-
versarial accuracy and a lower decrease rate of adversarial accuracy with increasing attack budgets
indicate better model robustness. Similar to the results obtained with the MLP model, we observe
that IGSG outperforms the baseline models in terms of adversarial accuracy under OMPGS attacks.
Specifically, for the Splice dataset, IGSG exhibits a noticeably lower decrease rate of adversarial ac-
curacy, although its adversarial accuracy is similar to some baseline methods when the attack budget
is small. For PEDEC, most methods demonstrate very high adversarial accuracy compared to the
MLP model. This may be because the multi-head paradigm in the self-attention layer makes the
gradient less informative compared to the MLP model. In this scenario, IGSG achieves the highest
adversarial accuracy, with almost no samples successfully attacked as the attack budget increases.
The JR method also maintains a constant adversarial accuracy as the attack budgets increase, but
it is susceptible to attacks on a few samples when the budget is small and its accuracy is inferior
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Table 8: Adversarial Accuracy and Accuracy over clean samples (%) for IGSG and other methods
alleviating robust overfitting.

Dataset Adversary Adv Train KD+SWA MLCATLS MLCATWP IGSG

Splice
FSGS 43.6±0.7 36.8±1.9 25.4±2.8 24.6±1.7 44.0±2.6

OMPGS 51.7±1.4 41.2±2.3 30.3±2.7 29.9±2.0 63.8±4.2
Clean 96.2±0.4 94.0±1.5 94.4±0.8 94.6±1.2 95.9±0.7

PEDec
FSGS 53.1±1.7 62.5±3.5 45.8±3.2 52.8±4.5 86.5±3.8

OMPGS 74.1±2.1 80.2±2.0 67.9±2.4 68.8±4.7 88.0±4.0
Clean 96.2±0.0 96.6±0.1 96.8±0.1 95.3±0.2 95.5±0.2

Census
FSGS 54.1±2.3 65.4±4.4 53.2±3.7 52.6±2.9 67.2±3.5

OMPGS 62.7±3.3 66.5±5.6 67.5±1.9 66.5±3.5 71.3±9.0
Clean 94.5±0.3 95.3±0.1 94.6±0.0 94.8±0.2 95.5±0.2

to IGSG. Regarding the Census dataset, we observe that nearly all methods achieve an adversarial
accuracy above 0.9 when modifying a single feature. As the attack budget increases, IGSG exhibits
a significantly lower decrease rate compared to other methods.

I.4 COMPARISON TO METHODS TARGETING AT ROBUST OVERFITTING

In this section, we give a comparison of the adversarial robustness between IGSG and proposed
methods aiming to address robust overfitting. We consider two works in this comparison. (Yu
et al., 2022) found that small-loss adversarial samples are the cause of robust overfitting. MLCAT
was proposed to constrain the minimum loss. Loss scaling and weight perturbation are used for
two implementation, denoted as MLCATLS and MLCATWP respectively. (Chen et al., 2020) used
learned smoothing to mitigate robust overfitting. It introduced knowledge distillation to smooth the
logits, and performed stochastic weight averaging to smooth the weights (denoted as KD+SWA).
We implement these two works on the original PGD adversarial training (Adv Train (Madry et al.,
2017)). The results are shown in Table.8. We can observe that IGSG consistently outperforms
both of the two methods when alleviating the robust overfitting issue on categorical data. Also,
KD+SWA has better performance than Adv Train on PEDec and Census datasets, but is inferior on
Splice dataset. However, MLCAT is inferior to Adv Train under both LS and WP implementations.
This may demonstrate that the statement that small-loss data cause robust overfitting may not be
correct in categorical domain.

I.5 TIME COMPLEXITY ANALYSIS

In this section, we give the time complexity of IGSG and compare the training time of IGSG with
other baseline methods. Suppose T in Eq.4 is the number of steps in the Riemman approximation
of the integral in Integrated Gradient, R in Eq.18 is the number of randomly sampled neighbors for
each data point and N is the number of samples in the training set. The time complexity for each
iteration is thus O(N ∗ (T + R + 1)). In comparison, OMPGS-based adversarial training has a
complexity of O(N ∗ (2κ + p ∗ κ)) for each iteration, where κ represents the number of iterations
within each attack and p is the number of features.

Table 9: Time cost (min) for the training process for IGSG
and baseline methods.

Model MLP Transformer
Dataset Splice PEDec Census Splice PEDec Census

Std Train 6 8 12 17 9 7
Adv Train 78 112 84 223 74 130
Fast-BAT 27 40 37 91 29 67
TRADES 114 108 210 307 81 197
AFD 276 126 316 285 101 231
IGR 9 11 19 25 13 10
JR 13 47 23 39 14 31
IGSG 39 117 82 124 71 89

We also measure the runtime cost
of IGSG with the other baselines
in Table.9, based on our implemen-
tation using the Python library Py-
Torch and conducting all the experi-
ments on Linux server with a single
GPU (NVIDIA V100). On Splice,
IGSG requires significantly less train-
ing time compared to some adversar-
ial training methods like Adv Train,
AFD and TRADES. On PEDec, IGSG
requires similar run-time, compared

28



Under review as a conference paper at ICLR 2024

Table 10: Additional Ablation Study. Adversarial Accuracy and Accuracy over clean testing samples
(%) for IGSG variants for the MLP model.

Dataset Adversary IGSG-VSG SGSG IGIG L2-IGSG IGSG

Splice
FSGS 40.4±3.5 41.5±4.1 15.6±8.2 40.2±1.1 44.0±2.6

OMPGS 56.3±5.9 59.2±8.6 45.9±3.5 57.9±0.9 63.8±4.2
Clean 95.7±1.4 94.1±0.4 90.7±7.9 96.0±0.4 95.9±0.7

PEDec
FSGS 85.7±2.2 11.9±2.5 86.4±2.2 81.7±2.6 86.5±3.8

OMPGS 84.5±3.1 30.6±2.1 85.7±4.6 83.0±1.4 88.0±4.0
Clean 95.3±0.3 96.3±0.1 95.3±0.4 95.4±0.2 95.5±0.2

Census
FSGS 56.8±3.6 66.5±2.1 50.2±2.3 62.5±1.1 67.2±3.5

OMPGS 68.6±4.6 71.6±6.8 62.3±4.2 70.6±2.4 71.3±9.0
Clean 95.3±0.3 95.1±0.3 95.5±0.1 95.3±0.0 95.5±0.2

to Adv Train, AFD and TRADES. On Census, Fast-BAT, JR and IGR need less time than IGSG,
but there is a large gap between the time cost of IGSG and that of those methods.

I.6 DETAILED ABLATION STUDY

Here, we introduce another three variants of IGSG.

SGSG: We replace the TV loss of the IG scores with the TV loss defined over the smoothed gradient
given in Eq.19.
IGIG: Instead of penalizing the lp norm of the smoothed gradient, we choose to penalize the norm
of the IG score vector of each instance x. We use SGSG and IGIG to verify the validity of the two
robustness-enhancing regularization terms.
IGSG-VSG: We replace the difference of gradient computing given in Eq.5 with the standard
smoothed gradient (Smilkov et al., 2017). We introduce IGSG-VG and IGSG-VSG to demonstrate
the necessity of introducing the mean field smoothing-driven smoothed gradient (given by Eq.19)
into the gradient smoothing-based regularization term.

L2-IGSG: To achieve attribution smoothing, L2 norm regularization is also simple and widely used.
We replace the TV loss with an L2 norm of the IG score. We introduce it to further confirm the
effectiveness of the TV loss design in IGSG.

In Table 10, we provide the adversarial accuracy of the four variants—IGSG-VSG, IGIG, SGSG and
L2-IGSG —under FSGS attack and OMPGS attack with a budget of 5 for the three datasets on an
MLP model. We also compare their performance with that of IGSG.

SGSG replaces the total variation (TV) loss of IGSG with the TV loss of the smoothed gradient.
It exhibits slightly inferior performance compared to IGSG on the Splice and Census datasets but
performs poorly on the PEDec dataset. This can be attributed to the fact that regularizing the TV loss
of the smoothed gradient evenly distributes the sensitivity of each feature. However, the gradient
information only reflects local sensitivity and does not provide a comprehensive understanding of
feature contribution.

IGIG replaces the regularization of the smoothed gradient with the LQ norm of the IG score. Without
the use of smoothed sampling, the smoothness of the classifier is inferior to that of IGSG. Addition-
ally, IG captures global information about feature contributions but is not as explicit as the gradient
in guiding the direction of attack for each category. Therefore, minimizing the magnitude of IG is
not as beneficial for the Splice and Census datasets.

L2-IGSG replaces the TV loss in the regularization of integrated gradient with an L2 norm. Com-
pared to SG, L2-IGSG generally has better adversarial accuracy. However, the L2 norm-regulated
IG term consistently yields a little lower adversarial accuracy when subjected to FSGS and OMPGS
attacks, showing the effectiveness of the TV loss.

In Table 11, we present the accuracy and adversarial accuracy under FSGS attack and OMPGS at-
tack for the Transformer model. The results are similar to those of the MLP model. Compared
to the performance of IGR shown in Table 7 and Figure 8, SG achieves slightly better adversarial
robustness due to the smoothing. The only exception is the adversarial accuracy under OMPGS
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Table 11: Ablation Study. Adversarial Accuracy and Accuracy over clean testing samples (%) for
IGSG variants for the Transformer model.

Dataset Adversary SG IG IGSG-VG IGSG-VSG SGSG IGIG IGSG

Splice
FSGS 0.3±0.2 2.2±1.6 1.5±1.4 0.7±0.7 1.0±1.0 1.3±1.3 2.3±1.4

OMPGS 33.3±3.7 34.9±1.3 36.1±4.1 34.5±5.0 35.9±5.5 33.2±3.1 36.8±4.3
Clean 96.1±0.6 96.5±0.5 96.7±0.4 96.7±0.3 96.4±0.6 96.7±0.5 96.7±0.7

PEDec
FSGS 60.4±4.4 57.1±6.0 53.9±3.6 60.6±4.3 59.9±5.4 57.2±6.8 63.5±3.7

OMPGS 95.7±0.2 95.6±0.1 95.2±0.3 95.2±0.1 92.4±2.8 91.8±6.6 95.6±0.2
Clean 95.8±0.3 95.7±0.1 95.3±0.4 95.5±0.2 95.1±0.4 95.6±0.1 95.7±0.3

Census
FSGS 28.6±0.7 31.1±1.1 36.6±4.5 33.6±2.5 28.9±0.9 26.2±2.2 37.8±4.3

OMPGS 56.9±1.1 68.7±6.1 70.1±6.5 73.4±7.2 58.3±1.5 63.3±2.5 76.9±4.8
Clean 95.0±0.0 94.9±0.1 95.0±0.3 93.6±0.0 95.0±0.0 95.2±0.0 94.8±0.1

Table 12: Adversarial accuracy of IGSG and baseline models on MLP and Transformer model
structures under PCAA attack for the three datasets.

Model Dataset Undefended Adversarial Training baselines Regularization baselines Ours
Std Train Adv Train Fast-BAT TRADES AFD PAdvT IGR JR IGSG

MLP
Splice 37.2±4.0 42.6±1.9 28.7±7.4 27.3±2.4 25.8±2.4 23.2±4.0 42.5±6.0 3.5±4.0 44.9±2.0
PEDec 94.4±0.2 94.8±0.2 95.6±0.2 95.8±0.2 94.7±0.2 94.9±0.1 95.6±0.2 95.1±0.2 94.7±0.3
Census 92.0±0.7 93.9±0.1 93.1±0.7 88.8±0.8 93.2±0.1 93.4±0.4 93.6±0.0 93.4±0.1 93.8±0.0

Transformer
Splice 8.6±3.9 2.8±0.9 10.5±3.2 7.3±1.2 2.4±1.7 6.5±1.8 11.3±3.5 7.8±3.4 11.1±2.6
PEDec 87.1±2.4 75.5±1.2 87.8±0.9 90.8±0.6 86.7±3.3 87.4±1.2 89.7±2.3 90.6±1.0 89.2±1.3
Census 92.3±1.0 94.5±0.3 91.8±1.2 91.5±1.9 92.9±1.2 94.3±0.2 93.3±0.3 93.8±0.7 93.7±0.2

attack for PEDec, where SG achieves much better robustness. This may be a result of the smooth-
ness of gradients among neighboring samples. Notably, most variants of IGSG achieve very high
adversarial accuracy under OMPGS attack, suggesting that both IG and SG training can defend
against OMPGS attack on PEDec. Regarding IG, IGSG-VG, and IGSG-VSG, their performance
varies across datasets, indicating instability. On the other hand, SGSG and IGIG do not perform
well on any dataset, suggesting that the roles of IG and SG cannot be effectively altered by each
other in the loss function.

I.7 ROBUSTNESS EVALUATION UNDER PROBABILISTIC CATEGORICAL ADVERSARIAL
ATTACK (PCAA)

In this section, we assess the robustness of our proposed IGSG and baseline methods against the
PCAA attack (Xu et al., 2023) on three datasets using MLP and Transformer models. The evaluation
maintains a consistent setting from previous experiments, with a budget limit of 5 for each dataset.

Table 12 presents the outcomes of this evaluation. It is evident that PCAA does not ensure uniform
effectiveness across different datasets. When compared with the results in Table 2 and Table 7,
PCAA demonstrates comparable effectiveness to FSGS in attacking the Splice dataset with the MLP
model and slightly lesser efficacy with the Transformer model. However, its performance on the
PEDec and Census datasets is markedly weaker. The adversarial accuracy for undefended models
remains above 87% for both model architectures on these datasets. This could be due to PEDec’s
high-dimensional feature space and the diverse and extensive categorical dimensions in Census,
suggesting that PCAA is not an effective measure for assessing robustness in these contexts.

In terms of adversarial accuracy under PCAA attack, IGSG excels on the Splice dataset with the
MLP model and attains second-best performance with the Transformer model, closely trailing IGR.
Although IGSG does not show high adversarial accuracy on the PEDec and Census datasets com-
pared to the baselines under PCAA attack, this attack strategy is not a reliable measure for these
datasets due to its limited effectiveness. Nonetheless, the results from the Splice dataset indicate
that IGSG notably enhances model robustness.
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