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ABSTRACT

Latent Graph Inference (LGI) relaxed the reliance of Graph Neural Networks
(GNNs) on a given graph topology by dynamically learning it. However, most of
LGI methods assume to have a (noisy, incomplete, improvable, ...) input graph to
rewire and can solely learn regular graph topologies. In the wake of the success
of Topological Deep Learning (TDL), we study Latent Topology Inference (LTI)
for learning higher-order cell complexes (with sparse and not regular topology)
describing multi-way interactions between data points. To this aim, we introduce
the Differentiable Cell Complex Module (DCM), a novel learnable function that
computes cell probabilities in the complex to improve the downstream task. We
show how to integrate DCM with cell complex message-passing networks layers
and train it in an end-to-end fashion, thanks to a two-step inference procedure that
avoids an exhaustive search across all possible cells in the input, thus maintaining
scalability. Our model is tested on several homophilic and heterophilic graph
datasets and it is shown to outperform other state-of-the-art techniques, offering
significant improvements especially in cases where an input graph is not provided.

1 INTRODUCTION

Graph Neural Networks (GNNs) are a versatile tool exploited in a wide range of fields, such as
computational chemistry (Gilmer et al., 2017a), physics simulations (Shlomi et al., 2020), and social
networks (Xia et al., 2021), just to name a few. GNNs have shown remarkable performance in
learning tasks where data are represented over a graph domain, due to their ability to combine the
flexibility of neural networks with prior knowledge about data relationships, expressed in terms of the
underlying graph topology. The literature on GNNs is extensive and encompasses various techniques,
typically categorized into spectral (Bruna et al., 2014) and non-spectral (Gori et al., 2005) methods.
The basic idea behind GNNs is to learn node (and/or) edge attributes representations using local
aggregation based on the graph topology, i.e. message-passing networks in their most general form
(Gilmer et al., 2017b). By leveraging this feature, GNNs have achieved outstanding results in several
tasks, including node and graph classification (Kipf & Welling, 2017a), link prediction (Zhang &
Chen, 2018), and more specialized tasks such as protein folding (Jumper et al., 2021) and neural
algorithmic reasoning (Veličković & Blundell, 2021).

The majority of GNNs assume the graph topology to be fixed (and optimal) for the task at hand,
therefore the focus is usually on designing more sophisticated architectures with the aim of improving
the message-passing process. Very recently, a series of works (Kazi et al., 2022; de Ocáriz Borde et al.,
2023; Topping et al., 2022) started to investigate techniques for Latent Graph Inference (LGI), where
the intuition is that data can have some underlying but unknown (latent) graph structure, mainly in
cases where only a point cloud of data is available but also when the given graph is suboptimal for the
downstream task. LGI is of particular interest on a variety of applications, such as disease prediction
(Cosmo et al., 2020; Song et al., 2021), brain network modeling from MRI/fMRI scans (Kan et al.,
2022; Qiao et al., 2018), building networks of patients for automatic and personalized diagnosis
(Cosmo et al., 2020; Kazi et al., 2019), recommender systems (Zhang et al., 2023), computer vision
(Bahl et al., 2022; Raboh et al., 2019), and missing data imputation (Telyatnikov & Scardapane, 2023;
Spinelli et al., 2020; You et al., 2020). At the same time, the field of Topological Deep Learning
(TDL) (Barbarossa & Sardellitti, 2020; Hajij et al., 2023) started to gain interest, motivated by the
fact that many systems are characterized by higher-order interactions that cannot be captured by the
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Figure 1: The proposed two-step procedure for Latent Topology Inference (LTI) via regular cell
complexes. The Differentiable Cell Complex Module (DCM) is a function that first learns a graph
describing the pairwise interactions among data points via the α-Differentiable Graph Module
(α-DGM), and then it leverages the graph as the 1-skeleton of a regular cell complex whose 2-
cells (polygons), describing multi-way interactions among data points, are learned via the Polygon
Inference Module (PIM). The inferred topology is then used in two message-passing networks, at
node (Graph Neural Network, GNN) and edge (Cell Complex Neural Network, CCNN) levels to
solve the downstream task. The whole architecture is trained in an end-to-end fashion.

intrinsically pairwise structure of graphs. Topological Neural Networks (TNNs) exploit tools and
objects from (algebraic) topology to encode these multi-way relationships, e.g. simplicial (Bodnar
et al., 2021b; Giusti et al., 2022; Battiloro et al., 2023e), cell (Bodnar et al., 2021a), or combinatorial
complexes (Hajij et al., 2023). However, TDL techniques usually incorporate graphs in higher-order
complexes by means of deterministic lifting maps, assigning higher-order cells to cliques or induced
cycles of the graph, thus implicitly assuming that these (task-agnostic, deterministic) complexes
are optimal for the downstream task. In addition, whenever an input graph is not available, these
strategies scale poorly in the size of the input set by requiring an exhaustive (combinatorial) search
over all possible cells, making them unfeasible for even medium-sized sets of data points.

Contribution. In this paper, we introduce the concept of Latent Topology Inference (LTI) by
generalizing LGI to higher-order complexes. The goal of LTI is not (only) learning a graph structure
describing pairwise interactions but rather learning a higher-order complex describing multi-way
interactions among data points. As a first instance of LTI, we introduce the Differentiable Cell
Complex Module (DCM), a novel deep learning architecture that dynamically learns a cell complex
to improve the downstream task. The DCM implements a two-step inference procedure to alleviate the
computational burden: first, learning the 1-skeleton of the complex (i.e., a graph) via a novel improved
version of the Differentiable Graph Module (DGM) (Kazi et al., 2022), and then learning which
higher-order cells (polygons) should be included in the complex. Both steps leverage message-passing
(at node and edge levels) and a sparse sampling technique based on the α-entmax class of functions,
which allows overcoming the limitation of the original DGM, capable of learning only regular graph
topologies. We generalize the training procedure of the DGM (Kazi et al., 2022) to train the DCM in
an end-to-end fashion. The DCM is tested on several homophilic and heterophilic datasets and it is
shown to outperform other state-of-the-art techniques, offering significant improvements both when
the input graph is provided or not. In particular, accuracy gains on heterophilic benchmarks with
provided input graphs indicate that the DCM leads to robust performance even when the input graph
does not fit the data well.

1.1 RELATED WORKS

Latent graph inference (also referred to as graph structure learning) is a problem arising in many
applications of graph neural networks and geometric deep learning (Bronstein et al., 2021). Existing
LGI approaches belong to two broad classes. Known input graph. These approaches assume the
input graph is provided but imperfect in some sense, and attempt to modify it to improve the message-
passing. Various graph rewiring approaches fall in this category (Topping et al., 2022; Sun et al.,
2022; Chen et al., 2020b; Jin et al., 2020; Zhao et al., 2023). Unknown input graph. Methods in this
class learn the graph structure in a dynamic fashion, without necessarily assuming a fixed graph at
the beginning of training. Some approaches assume the latent graph to be fully connected (complete),
e.g., Transformers (Vaswani et al., 2017) and attentional multi-agent predictive models (Hoshen,
2017), whereas other approaches perform sparse latent graph inference, offering computational
and learning advantages. Notable sparse LGI techniques are LDS-GNN (Franceschi et al., 2019),
Dynamic GCNNs (Wang et al., 2019), and variants of DGM (Kazi et al., 2022; de Ocáriz Borde et al.,
2023). A related but different problem is Neural Relational Inference (Kipf et al., 2018), also aiming
to infer latent graphs, but usually in an unsupervised fashion, with a focus on physical systems and
their time dynamics.
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Topological deep learning or TDL stems from the pioneering works on Topological Signal Processing
(TSP) (Barbarossa & Sardellitti, 2020; Schaub et al., 2021; Roddenberry et al., 2022; Sardellitti et al.,
2021) that showed the benefits of considering higher-order (multi-way) relationships among data
points. Generalizations of the renowned Weisfeiler-Lehman graph isomorphism test to simplicial
(SC) (Bodnar et al., 2021b) and cell (CW) (Bodnar et al., 2021a) complexes have been proposed,
along with SC and CW message-passing architectures. Convolutional SC and CW architectures
have been previously studied in (Ebli et al., 2020; Yang et al., 2022; Hajij et al., 2020; Yang & Isufi,
2023; Roddenberry et al., 2021; Hajij et al., 2022). Attentional SC and CW architectures have been
presented in (Battiloro et al., 2023c; Giusti et al., 2022; Goh et al., 2022; Giusti et al., 2023). A
notable unifying framework for TDL was proposed in (Hajij et al., 2023), where the concept of
combinatorial complex (CC) generalizing SCs, CWs, and hypergraphs, was introduced along with a
general class of message-passing CC neural networks. An excellent survey on TDL can be found in
(Papillon et al., 2023). Finally, message passing or diffusion on cellular sheaves (Hansen & Ghrist,
2019) built upon graphs were proposed in (Hansen & Gebhart, 2020; Bodnar et al., 2022; Battiloro
et al., 2023a;d; Barbero et al., 2022) and shown to be effective in heterophilic settings.

Our paper is related to both classes of works and helps to overcome their limitations via mutual
synergy: we significantly improve and generalize DGM to enable, for the first time, latent topology
inference and learning of non-regular topologies via the machinery of Topological Deep Learning.

2 BACKGROUND

Regular cell complexes. We start with the fundamentals of regular cell complexes, topological
spaces that provide an effective way to represent complex interaction systems of various orders.
Regular cell complexes generalize both graphs and simplicial complexes.

Definition 1 (Regular cell complex) (Hansen & Ghrist, 2019; Bodnar et al., 2021a). A regular cell
complex (CW) is a topological space C together with a partition {Xσ}σ∈PC of subspaces Xσ of C
called cells, where PC is the indexing set of C, s.t.

1. For each c ∈ C, every sufficient small neighborhood of c intersects finitely many Xσ;
2. For all τ ,σ we have that Xτ ∩ X σ ̸= ∅ iff Xτ ⊆ X σ , where X σ is the closure of the cell;
3. Every Xσ is homeomorphic to Rk for some k;
4. For every σ ∈ PC there is a homeomorphism ϕ of a closed ball in Rk to X σ such that the restriction

of ϕ to the interior of the ball is a homeomorphism onto Xσ .

From Condition 2, PC has a poset structure, given by τ ≤ σ iff Xτ ⊆ Xσ, and we say that τ bounds
σ. This is known as the face poset of C. From Condition 4, all of the topological information about C
is encoded in the poset structure of PC . Then, a regular cell complex can be identified with its face
poset. From now on we will indicate the cell Xσ with its corresponding face poset element σ. The
dimension or order dim(σ) of a cell σ is k, we call it a k−cell and denote it with σk to make this
explicit when necessary. Regular cell complexes can be described via an incidence relation (boundary
relation) with a reflexive and transitive closure that is consistent with the partial order introduced in
Definition 1. Please see Appendix D for a combinatorial and algebraic description.

Definition 2 (Boundary Relation). We have the boundary relation σ ≺ τ iff dim(σ) ≤ dim(τ) and
there is no cell δ such that σ ≤ δ ≤ τ .

In other words, Definition 2 states that the boundary of a cell σk of dimension k is the set of all
cells of dimension less than k bounding σk. The dimension or order of a cell complex is the largest
dimension of any of its cells. A graph G is a particular case of a cell complex of order 1, containing
only cells of order 0 (nodes) and 1 (edges). We can use the previous definitions to introduce the four
types of (local) adjacencies present in regular cell complexes:

Definition 3 (Cell Complex Adjacencies) (Bodnar et al., 2021a). For a cell complex C and a cell
σ ∈ PC , we define:

• The boundary adjacent cells B(σ) = {τ | τ ≺ σ}, are the lower-dimensional cells on the boundary
of σ. For instance, the boundary cells of an edge are its endpoint nodes.

• The co-boundary adjacent cell CB(σ) = {τ | σ ≺ τ}, are the higher-dimensional cells with σ on
their boundary. E.g., the co-boundary cells of a node are the edges having that node as an endpoint.
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• The lower adjacent cells Nd(σ) = {τ | ∃δ such that δ ≺ σ and δ ≺ τ}, are the cells of the same
dimension as σ that share a lower dimensional cell on their boundary. The line graph adjacencies
between the edges are a typical example of this.

• The upper adjacent cells Nu(σ) = {τ | ∃δ such that σ ≺ δ and τ ≺ δ}. These are the cells of the
same dimension as σ that are on the boundary of the same higher-dimensional cell.

Definition 4 (k-skeleton). A k-skeleton of a regular cell complex C is the subcomplex of C consisting
of cells of dimension at most k.

From Definition 1 and Definition 5, it is clear that the 0-skeleton of a cell complex is a set of
vertices and the 1-skeleton is a set of vertices and edges, thus a graph. For this reason, given a graph
G = {V, E}, it is possible to build a regular cell complex "on top of it", i.e. a cell complex CG whose
1-skeleton is isomorphic to G.

Remark 1. We remark that the term “regular” is ambiguous in this context, because a regular
cell complex is an object as in Definition 1, while a regular graph is a graph whose neighborhoods’
cardinalities are all the same. For this reason, in the following, we will refer to regular cell complex(es)
simply as “cell complex(es),” reserving the term “regular” only for graphs.

In this work, we attach order 2 cells to an inferred (learned) subset of induced cycles of the graph G
up to length Kmax, we refer to them as polygons, and we denote the resulting order-2 cell complex
with CG = {V, E ,P}, where P is the polygons set, with |V| = N , |E| = E, and |P| = P . This
procedure is formally a skeleton-preserving lifting map; a detailed discussion about the lifting of a
graph into a cell complex can be found in (Bodnar et al., 2021a).

Signals over Cell Complexes A k-cell signal is defined as a mapping from the set Dk of all k-cells
contained in the complex, with |Dk| = Nk, to real numbers (Sardellitti et al., 2021):

xk : Dk → R (1)

Therefore, for an order-2 complex CG , the k-cell signals are defined as the following mappings:

x0 : V → R, x1 : E → R, x2 : P → R, (2)

representing node, edge, and polygon signals, respectively, with N0 = N , N1 = E, and N2 = P . If
F k−cell signals are available, we collect them in a feature matrix Xk,in = {xk,in(i)}Nk

i=1 ∈ RNk×F ,
where the i-th row xk,in(i) = [xk,1(σ

k
i ), . . . , xk,F (σ

k
i )] ∈ RF collects the features, i.e. the signals

values, of the i-th k−cell σk
i . The definition of k−cell signal in (1) is sufficient and rigorous for the

scope of this paper, however more formal topological characterizations in terms of chain and cochain
spaces can be given (Sardellitti et al., 2021; Bodnar et al., 2021a; Hajij et al., 2023).

3 A DIFFERENTIABLE LAYER FOR LATENT TOPOLOGY INFERENCE

We propose a novel layer, depicted at high level in Figure 1 and in detail in Figure 2, comprising of a
series of modules among which the most important one is the Differentiable Cell Complex Module
(DCM), the first fully differentiable module that performs LTI, i.e. learns a cell complex describing
the hidden higher-order interactions among input data points. The DCM is equipped with a novel
sampling algorithm that, at the best of our knowledge, is the first graph/complex sampling technique
that allows to generate topologies whose neighborhoods cardinality is not fixed a priori but can be
freely learned in an end-to-end fashion.

The proposed layer takes as input the node feature matrix X0,in ∈ RN×Fin , and gives as output
the updated node feature matrix X0,out ∈ RN×Fout and the inferred latent cell complex CGout

.
Optionally, the layer can take as input also a graph Gin. To make the layer self-consistent in a
multi-layer setting, the output can be reduced to the updated node feature matrix X0,out and the
1-skeleton (graph) Gout of CGout .

We employ a two-step inference procedure to keep the computational complexity tractable, i.e. the
DCM module first samples the 1-skeleton of the latent cell complex (possibly in a sparse way, i.e.
E << N2), and then it samples the polygons among the induced cycles generated by the sampled
edges. The first step is implemented via the novel α-Differentiable Graph Module (α−DGM), while
the second step is implemented via the novel Polygon Inference Module (PIM). Directly sampling
among all the possible polygons, thus trivially generalizing the DGM framework (Kazi et al., 2022),
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Figure 2: The DCM and the proposed architecture.

would have led to intractable complexity, e.g. even at triangles level the sampling would have had
a complexity of the order of O(

√
E3) = O(N3), being all edges candidate to be sampled. In the

following, we describe in detail each module of the proposed layer.

3.1 THE α-DIFFERENTIABLE GRAPH MODULE

The α-DGM is a novel variation of the DGM and it is responsible for inferring the 1-skeleton (graph)
of the latent cell complex. One of the main limitations of the DGM (Kazi et al., 2022) is the constraint
of inferring only regular graphs; we solve this problem by proposing a novel sampling procedure
based on the α−entmax class of functions (Peters et al., 2019), recently introduced in the NLP
community to obtain sparse alignments and zero output probabilities. With fixed α > 1 and input
s ∈ Rd, the α−entmax function αENT : Rd → ∆d is defined as:

αENT (s) = argmax
u∈∆d

⟨u, s⟩Rd +Hα(u), (3)

where ∆d = {u ∈ Rd : u ≥ 0, ∥u∥1 = 1} is the d-dimensional probability simplex and Hα is the
family of Tsallis α-entropies parametrized by a parameter α ≥ 1 (Peters et al., 2019). For α = 1,
equation (3) recovers the standard softmax, while for α > 1 solutions can be sparse with a degree
depending on α. In practice, α can be initialized at a reasonable value (e.g., 1.5) and adapted via
gradient descent (Correia et al., 2019).

In α-DGM, we first compute auxiliary node features X0,aux = ν0(X0,in) ∈ RN×d0 , where ν0(·) is
a learnable function, e.g. a GNN if an initial graph Gin is provided or an MLP otherwise. At this
point, a (pseudo-)similarity function sim(·) is chosen, the similarities among node embeddings are
computed and collected in the vectors zi = {sim(x0,aux(i),x0,aux(j))}j ∈ RN , i, j = 1, . . . , N .
Valid examples of sim(·) are cosine similarity, inverse or minus Euclidean square distance.

The (sparse) edge probabilities are then obtained node-wise via α−entmax, i.e. the vectors pi =
αENT (LN (zi)) ∈ RN , i = 1, . . . , N are computed; layer normalization LN is employed to have
better control on the similarities statistics and, consequently, more stability in the training procedure.
The (i, j) edge is included in the inferred graph if pi(j) > 0. This procedure leads to a directed
graph that would be incompatible with the cell complex structure introduced in Section 2, whose
1-skeleton is an undirected graph; the inferred directed graph is converted to the closest undirected
graph Gout = {N , E}, i.e. each inferred edge is considered as a bidirectional edge to obtain E . We
want further stress the fact that computing edge probabilities via the α-entmax leads to sparse and
non-regular graphs whose sparsity level can be controlled (or learned) tuning the parameter α. A
detailed pictorial description of the α-DGM is shown in Figure 3 (left).

Remark 2. The choice of applying the α-entmax in a node-wise fashion and not directly on a vector
containing all the possible similarities (that would have naturally led to an undirected graph) is due
to the fact that, in the latter case, we empirically observed that the α-entmax consistently leads to
heavily disconnected graphs with few hub nodes (therefore, also leading to performance drops).

At this point, the intermediate node features X0,int ∈ RN×Fint are computed with one or more usual
message-passing (MP) rounds over the inferred graph:

x0,int(i) = γ0

(
x0,in(i),

⊕
j∈Nu(σ0

i )

ϕNu
0

(
x0,in(i),x0,in(j)

))
, (4)

where γ0(·) and ϕNu
0 (·) are learnable functions and

⊕
is any aggregation operator.
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Figure 3: The α-Differentiable Graph Module (left) and the Polygon Inference Module (right).

3.2 UPLIFT MODULE

To fully exploit the potential of cell complexes, it is not sufficient to work at the node level. For this
reason, intermediate edge features are learned (or computed) with a MP round of the form:

x1,int(i) = ψ1

( ⊕
j∈B(σ1

i )

ϕB1

(
x0,int(j)

))
, (5)

where ψ1(·) is a (possibly) learnable function. The boundary B(σ1
i ) of edge i is composed by its

endpoints nodes σ0
j and σ0

v . Therefore, the intermediate features x1,int(i) of edge i are learned (or
computed) as a function of the intermediate node features x0,int(j) and x0,int(v).

3.3 THE POLYGON INFERENCE MODULE

The Polygon Inference Module (PIM) is a novel module responsible of inferring the polygons of the
latent cell complex by sampling a subset of the induced cycles of the inferred 1-skeleton Gout.

To this aim, auxiliary edge features are computed from the auxiliary node features with a MP round as
in (5), which we denote in this context with X1,aux = ν1(X0,aux) ∈ RE×d1 for notation consistency.

At this point, we need a similarity function for the edge embeddings belonging to the same induced
cycle. We decide to use the sum of the pairwise similarities, e.g. for a generic cycle of length k made
by the edges whose indices are collected in a index set I, the similarity is computed (with a slight
abuse of notation) as:

sim({x1,aux(i)}i∈I) =
∑
i∈I

∑
j∈I,j ̸=i

sim(x1,aux(i),x1,aux(j)). (6)

The similarity in (6) for an induced cycle of length k ≤ Kmax contains k!
(k−2)!2! terms, how-

ever, Kmax is usually a very small integer and the sum can be trivially distributed. In general,
sim({x1,aux(i)}i∈I) doesn’t need to be the sum of pairwise similarities. It can be arbitrarily de-
signed, as long as it is a similarity measure, i.e. it is higher if the involved embeddings are similar.

The similarities are collected in a vector z ∈ RP̃ , where P̃ is the number of induced cycles, and
the polygons probabilities are computed as p = αENT (LN (z)) ∈ RP̃ . We set CGout

= {N , E ,P},
where P are the induced cycles with positive probabilities and |P| = P ≤ P̃ (possibly P << P̃ ).

The updated edge features X1,out ∈ RE×Fout are computed with one or more MP rounds as:

x1,out(i) = γ1

(
x1,int(i),

⊗
Nk∈{Nd,Nu}

⊕
j∈Nk(σ1

i )

ϕNk
1

(
x1,int(i),x1,int(j)

))
, (7)

where
⊗

is a neighborhoods aggregation operator (Hajij et al., 2023), γ1(·), ϕNd
1 (·), and ϕNu

1 (·) are
learnable functions. A detailed pictorial description of the PIM is shown in Figure 3 (right).

Remark 3. The message-passing rounds in (7) and in (5) (as a special case) are instances of message-
passing neural networks over cell complexes. Several MP schemes can be defined for cell (simplicial,
combinatorial) complexes, please refer to (Bodnar et al., 2021a; Hajij et al., 2023) for more details.
We employ the schemes in (5)-(7) for two reasons: the first one is that using more sophisticated MP
rounds (e.g. moving to cells of higher order than polygons or designing more intensive messages
exchange among different cell orders) would have lead to computational intractability; the second
one is that moving to higher order cells also introduces a series of tricky theoretical issues (in terms
of the structure of the complex) that are not trivial to tackle (Hansen & Ghrist, 2019). We plan to
investigate these directions in future works.
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3.4 DOWNLIFT MODULE AND OUTPUT COMPUTATION

At this point, the output node features X0,out ∈ RN×Fout are learned (or computed) from the updated
edge features X1,out ∈ RE×Fout and the intermediate node features X0,int ∈ RN×Fint as:

x0,out(i) =
[
x0,int(i)

∣∣∣∣∣∣x0,down(i)
]
, (8)

where the X0,down ∈ RN×Fout are obtained with a MP round of the form:

x0,down(i) = ψ0

( ⊕
j∈CB(σ0

i )

ϕCB0

(
x1,out(j)

))
(9)

with ψ0(·) being a (possibly) learnable function. The coboundary CB(σ0
i ) of node i is composed

by all the edges for which node i is an endpoint. Therefore, the output features x0,out(i) of node
i are learned (or computed) as the concatenation of its intermediate features and features obtained
downlifiting the updated features of the edges for which i is an endpoint.

We present a comparison in terms of computational complexity between the DCM and the DGM
(Kazi et al., 2022) in Appendix B .

3.5 TRAINING OF THE DIFFERENTIABLE CELL COMPLEX MODULE

The proposed sampling scheme based on the α-entmax does not allow the gradient of the downstream
task loss to flow both through the graph and polygons inference branches of the DCM, due to the
fact that they involve only auxiliary features and the entmax outputs are substantially just a way of
indexing the edges and the polygons present in the inferred complex. To enable a task-oriented end-
to-end training of the DCM, we generalize the approach of DGM (Kazi et al., 2022; de Ocáriz Borde
et al., 2023) and design an additional loss term that rewards edges and polygons involved in a correct
classification (in classification tasks) or in "good" predictions (in regression tasks), and penalizes
edges and polygons that lead to misclassification or high error predictions. Refer to Appendix A for
the details.

4 EXPERIMENTAL RESULTS

In this Section, we evaluate the effectiveness of the proposed framework on several heterophilic and
homophilic graph benchmarks. Graph homophily is the principle that nodes with similar labels are
more likely to be connected. Traditional Graph/Cell Complex Convolutional Neural Networks (GCNs
and CCCNs) implicitly rely on the homophily assumption, and performance drops are typically
observed in heterophilic settings (Bodnar et al., 2022; Spinelli et al., 2022; 2023).

Our main goal is to show that latent topology inference via the differentiable cell complex module
(DCM) allows learning higher-order relationships among data points that lead to significant improve-
ments w.r.t. latent graph inference. Since DCM is a generalization of the differentiable graph module
(DGM), we use as a comparison the original (discrete) DGM (Kazi et al., 2022) (denoted DGM-E)
and its recently introduced non-Euclidean version (de Ocáriz Borde et al., 2023) (denoted DGM-M).
Moreover, we also report the results of a simplified variant of our model (denoted as DCM (α = 1)),
in which the graph is explicitly learned and all the polygons are taken, i.e. α = 1 in the PIM; in this
(lower complexity) case, the α-DGM guides both the edges (explicitly) and the polygons (implicitly)
inference steps. We also test a variant, denoted with GCN-CCCN, where the complex is not imputed
at all, i.e. the input graph is used in a GCN and all the polygons are used in a CCCN, and a variant,
denoted with KCM, where the graph is imputed using a KNN after embedding the node features using
an MLP/GCN, and all the polygons are used. Finally, we report the vanilla MLP and GCN (Kipf
& Welling, 2017b), GCN2 (Chen et al., 2020a), GAT (Veličković et al., 2018), and (convolutional)
CWN (Bodnar et al., 2021a) as further baselines and comparisons. In all the experiments, we utilize
GCNs at the graph level and CCCNs at the edge level; the details about the architectures employed to
obtain the results are given in Appendix F. The first and the second best results are highlighted.

We follow the same core experimental setup of (de Ocáriz Borde et al., 2023) on transductive
classification tasks; in particular, we first focus on standard graph datasets such as Cora, CiteSeer
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Table 1: Homophilic-graph node classification benchmarks. Test accuracy in % avg.ed over 10 splits.

Cora CiteSeer PubMed Physics CS
Model/Hom. level 0.81 0.74 0.80 0.93 0.80

w
/o

gr
ap

h

MLP 58.92 ± 3.28 59.48 ± 2.14 85.75 ± 1.02 94.91 ± 0.28 87.80 ± 1.54
KCM 78.47 ± 2.09 75.20 ± 2.41 86.66 ± 0.91 95.61 ± 0.18 95.14 ± 0.32
DGM-E 62.48 ± 3.24 62.47 ± 3.20 83.89 ± 0.70 94.03 ± 0.45 76.05 ± 6.89
DGM-M 70.85 ± 4.30 68.86 ± 2.97 87.43 ± 0.40 95.25 ± 0.36 92.22 ± 1.09
DCM 78.80 ± 1.84 76.47 ± 2.45 87.38 ± 0.91 96.45 ± 0.12 95.40 ± 0.40
DCM (α = 1) 78.73 ± 1.99 76.32 ± 2.75 87.47 ± 0.77 96.22 ± 0.27 95.35 ± 0.37

w
gr

ap
h

GCN 83.11 ± 2.29 69.97± 2.00 85.75 ± 1.01 95.51 ± 0.34 87.28 ± 1.54
GCN2 87.85 ± 1.41 78.53 ± 2.66 89.60 ± 0.70 97.41 ± 0.34 95.05 ± 0.38
GAT 89.81 ± 1.77 78.18 ± 2.31 88.53 ± 0.61 98.87 ± 0.30 94.42 ± 0.70
KCM 78.43 ± 2.11 75.23 ± 2.45 86.61 ± 0.95 96.16 ± 0.17 95.46 ± 0.36
CWN 88.63 ± 1.91 75.53 ± 2.13 87.97 ± 0.77 96.23 ± 0.24 93.52 ± 0.59
GCN+CCCN 86.09 ± 1.82 78.36 ± 3.33 88.59 ± 0.67 96.90 ± 0.30 95.31 ± 0.49
DGM-E 82.11 ± 4.24 72.35 ± 1.92 87.69 ± 0.67 95.96 ± 0.40 87.17 ± 3.82
DGM-M 86.63 ± 3.25 75.42 ± 2.39 87.82 ± 0.59 96.21 ± 0.44 92.86 ± 0.96
DCM 85.78 ± 1.71 78.72 ± 2.84 88.49 ± 0.62 96.99 ± 0.44 95.79 ± 0.48
DCM (α = 1) 85.97 ± 1.86 78.60 ± 3.16 88.61 ± 0.69 96.69 ± 0.46 95.78 ± 0.49

Table 2: Heterophilic-graph node classification benchmarks. Test accuracy in % avg.ed over 10 splits.

Texas Wisconsin Squirrel Chameleon

Model/Hom. level 0.11 0.21 0.22 0.23

w
/o

gr
ap

h

MLP 77.78 ± 10.24 85.33 ± 4.99 30.44 ± 2.55 40.35 ± 3.37
KCM 84.12 ± 11.37 87.10 ± 5.15 35.15 ± 1.38 52.12 ± 2.02
DGM-E 80.00 ± 8.31 88.00 ± 5.65 34.35 ± 2.34 48.90 ± 3.61
DGM-M 81.67 ± 7.05 89.33 ± 1.89 35.00 ± 2.35 48.90 ± 3.61
DCM 85.71 ± 7.87 87.49 ± 5.94 35.55 ± 2.24 53.63 ± 3.07
DCM (α = 1) 84.96 ± 10.24 86.72 ± 6.02 35.25 ± 2.22 53.67 ± 3.19

w
gr

ap
h

GCN 41.66 ± 11.72 47.20 ± 9.76 24.19 ± 2.56 32.56 ± 3.53
GCN2 75.50 ± 7.81 74.57 ± 5.38 33.09 ± 1.76 49.50 ± 3.02
GAT 66.72 ± 11.22 60.52 ± 9.23 35.07 ± 2.13 50.73 ± 3.12
KCM 83.92 ± 11.15 84.92 ± 5.21 34.47 ± 1.49 53.12 ± 2.02
CWN 65.87 ± 6.33 64.57 ± 7.12 32.44 ± 2.75 43.86 ± 2.51
GCN+CCCN 84.43 ± 9.11 84.03 ± 5.42 OOM OOM
DGM-E 60.56 ± 8.03 70.67 ± 10.49 29.87 ± 2.46 44.19 ± 3.85
DGM-M 62.78 ± 9.31 76.00 ± 3.26 30.44 ± 2.38 45.68 ± 2.66
DCM 84.87 ± 10.04 86.33 ± 5.14 34.95 ± 2.59 53.05 ± 3.00
DCM (α = 1) 84.96 ± 5.60 85.36 ± 5.05 35.13 ± 2.27 53.76 ± 3.72

(Yang et al., 2016), PubMed, Physics and CS (Shchur et al., 2019), which have high homophily levels
ranging from 0.74 to 0.93. We then test our method on several challenging heterophilic datasets,
Texas, Wisconsin, Squirrel, and Chameleon (Rozemberczki et al., 2021), which have low homophily
levels ranging between 0.11 and 0.23. The results for the homophilic and heterophilic datasets are
presented in Tables 1 and 2, respectively. All the models were tested in two settings: assuming the
original graph is available (marked w graph in Tables 1 and 2) and a more challenging case in which
the input graph is assumed to be unavailable (w/o graph).

From Tables 1 and 2, it is evident that the DCM exhibits consistently superior performance compared
to alternative methods across both homophilic and heterophilic datasets, both with and without
provided input graphs. As expected, our method achieves top performance without an input graph for
the heterophilic datasets and with an input graph for the homophilic datasets. We achieve remarkable
results considering the input graph for heterophilic datasets. Despite exposing the model to the
“wrong” input graphs (in the sense that the topology does not match the structure of the node features),
the overall performance of the DCM remains stable, yielding remarkable improvements exceeding
20% for Texas and approximately 10% for Wisconsin compared to DGM-M (de Ocáriz Borde et al.,
2023). Therefore, observing the results across both homophilic and heterophilic datasets when the
input graph is provided, we can appreciate how DCM exploits the available “good” graphs in the first
case while being less sensitive to the “wrong” ones in the latter. Our performance on the heterophilic
datasets suggests that the learned latent complex has a homophilic 1-skeleton (graph) that enables the
involved GCNs and CCCNs to reach higher accuracies. To corroborate this hypothesis, in Figure
4, we show the evolution of the latent topology during the training for the Texas dataset along with
the nodes degree distribution, the percentage of sampled polygons %p, and the homophily level h
that we note reaching 0.99 on the final inferred graph from the initial 0.11. Moreover, the fact that
most of the inferred polygons belong to the same class and the pretty high spread of the degree
distribution further confirm the effectiveness of the proposed architecture. In Appendix,E and C, we
report ablation studies, plots, and interpretability hints on the inferred complexes.
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(a) Input, %p = 100,
h = 0.11

(b) Epoch 40, %p = 90, h =
0.40

(c) Epoch 180, %p = 20, h =
0.99

Figure 4: Evolution of the latent complex for the Texas dataset, along with homophily level and
nodes degree distribution. Edges in orange, triangles in lilac, squares in purple (Kmax = 4)

5 CONCLUSIONS

We introduced the paradigm of latent topology inference, aiming to not (only) learn a latent graph
structure but rather higher-order topological structures describing multi-way interactions among data
points. We made LTI implementable by introducing the Differentiable Cell Complex Module, a novel
learnable function that dynamically learns a regular cell complex to improve the downstream task in
an end-to-end fashion and in a computationally tractable way, via to a two-step inference procedure
that avoids an exhaustive search across all possible cells in the input. We showed the effectiveness
of the DCM on a series of homophilic and heterophilic graph benchmarks datasets, comparing its
performance against state-of-the-art latent graph inference methods, and showing its competitive
performance both when the input graph is provided or not.

6 LIMITATIONS AND FUTURE DIRECTIONS

To our knowledge, DCM is the first differentiable approach for latent topology inference. The
promising results open several avenues for future work.

Methodological. Although cell complexes are very flexible topological objects, other instances of
LTI could leverage hypergraphs or combinatorial complexes (CCs) (Hajij et al., 2022), which are
able to handle both hierarchical and set-type higher-order interactions. Second, remaining within
cell complexes, different MP schemes (Hajij et al., 2023), lifting maps (Bodnar et al., 2021a), or
model spaces (de Ocáriz Borde et al., 2023) are of interest for future work. Third, extending our
framework to weighted (Battiloro et al., 2023b) or directed complexes (Courtney & Bianconi, 2018)
could give further insights. Finally, one potentially interesting direction is merging LTI and Sheaf
Neural Networks in order to learn cellular sheaves defined on latent higher-order complexes.

Computational. While most of our experimental validation of the DCM focused on transductive
tasks, we could also tackle inductive ones (de Ocáriz Borde et al., 2023). Future works could tailor
the DCM to fit challenging specific applications as the ones presented in the introduction for LGI.
Moreover, though computationally tractable thanks to the proposed two-step inference procedure,
DCM may benefit from further improvements to effectively scale on very large datasets. The main
bottlenecks are MP operations and the search for the induced cycles of the learned graph. A possible
solution for the former could be neighbor samplers (de Ocáriz Borde et al., 2023), while the latter
could be tackled by leveraging stochastic search methods or moving to more flexible topological
spaces, e.g. CCs. Finally, our sampling strategy implicitly assumes that there are no specific edges
and polygons distribution requirements, e.g. a sampling budget is given or a particular correlation
structure needs to be imposed on the cells. In these cases, incorporating more sophisticated sampling
methods like IMLE (Li & Malik, 2018; Serra & Niepert, 2022) could be beneficial.
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REPRODUCIBILITY STATEMENT

We include all the details about our experimental setting, including the choice of hyperparameters
and the specifications of our machine, in Appendix F. We provide all the code, data splits, and
virtual environment needed to replicate the experiments at the following anonymized repository:
https://github.com/spindro/differentiable_cell-complex_module.

A TRAINING PROCEDURE

Here we discuss the key concepts about the training of the DCM. We detail how to back-propagate
through the entmax-based discrete sampling at the 1-cell (edge) level (in the α−DGM) and at the
2-cell (polygon) level (in the PIM). We follow the approach proposed by(Kazi et al., 2022) and
introduce a supplementary loss that rewards edges and polygons involved in a correct classification
and penalizes the ones which result in misclassification. We define the reward function:

δ (yi, ŷi) = E (ai)− ai , (10)

as the difference between the average accuracy of the i-th sample and the current prediction accuracy,
where yi and ŷi are the predicted and true labels, and ai = 1 if yi = ŷi or 0 otherwise. We then
define the loss associated to the edge sampling as follows:

LGL =

N∑
i=1

δ (yi, ŷi) N∑
j=1

pi(j)

 (11)

We estimate E (ai) with an exponential moving average on the accuracy during the training process

E (ai)
(t+1)

= µE (ai)
(t)

+ (1− µ)ai , (12)

with µ = 0.9 in all our experiments and E (ai)
(0)

= 1
# classes .

Similarly, the loss associated with the polygon sampling is defined as follows:

LPL =

N∑
i=1

δ (yi, ŷi) ∑
j∈Pi

p(j)

 , (13)

where Pi is the set of indices of the polygons for which node i is a vertex. Following (de Ocáriz Borde
et al., 2023), the accuracy can be replaced with the R2 score in the case of regression tasks. In every
experiment, we set the initial value of α to 1.5.
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Table 3: Execution times expressed in Seconds.

Graph MP Graph Sampling Lifting Cell Sampling Cell MP

C
or

a

GCN 5e−5 - - - -
GCN+CCCN - - 2e−1 - 2e−4

DGM 6e−4 4e−3 - - -
DCM 1e−5 5e−3 1e−1 2e−2 5e−4

Te
xa

s
GCN 2e−5 - - - -
GCN+CCCN - - 1e−2 - 2e−4

DGM 3e−5 9e−4 - - -
DCM 1e−5 9e−4 3e−2 7e−2 4e−5

B COMPUTATIONAL COMPLEXITY

We carry out a complexity analysis of the proposed architecture with a particular focus on the
differences with respect to the DGM (Kazi et al., 2022), which are:

(a) the introduction of α-entmax to sample cells compared to the Gumbel-Softmax sampler;

(b) the need to search for all cycles up to length Kmax in the skeleton Gout;

(c) the sampling operation over the cycles;

(d) the cell complex neural network;

For (a), the solution to (3) cannot be expressed in closed form except for specific values of α (Correia
et al., 2019), but an ε-approximate solution can be obtained in O(1/ log ε) time with a bisection
algorithm (Blondel et al., 2019).

For (b), we leverage the algorithm in (Bodnar et al., 2021a), which has complexity O((E +

NP̃ )polylog(N)), where N is the number of vertices, E the number of sampled edges, and P̃
the number of cycles induced by the skeleton up to length Kmax. Note that in our implementation the
cell complex is recomputed for each iteration, but this computation can be amortized across epochs,
approximated with stochastic search algorithms, or leveraging more flexible topological spaces, e.g.
Combinatorial Complexes.

For (c), the complexity is the same as (a), which is approximately linear in the number P̃ of cycles.

For (d), the complexity of message-passing is also approximately linear in the size of the cell complex,
due to the fact that we consider cells of a constant maximum dimension and boundary size (Bodnar
et al., 2021a).

As a further empirical analysis, in Table 3 we break down the actual inference execution times on
two reference datasets, Cora and Texas, for GCN, GCN+CCCN, DGM, and DCM, based on the
(macro-)operations they require. As we can see from this empirical analysis and as we could expect
from the above complexity analysis, the lifting operation (computing the cycles and lifting the node
embeddings) and cell sampling (computing the similarities among edge embeddings and applying
the α-entmax) are the main computational bottlenecks. The lifting operation needs to be performed
in every complex-based architecture (we show DCM and GCN+CCCN, but for CWN would be the
same). Architectures that do not perform LTI (CWN or GCN+CCCN) can mitigate this problem
(only) on transductive tasks by computing the cycles offline. In our setting, additional solutions w.r.t.
the ones presented in (b) could be accumulating the gradients and inferring the graph/cell-complexes
once every t iteration rather than after every optimization step. The cell sampling bottleneck, unlike
the lifting, is not given by any technical requirement, but it is just related to our actual implementation.
To keep the code readable and reproducible for (mainly) academic purposes, we use basic data
structures and functions, e.g. we store the cells in lists that we parse. However, the bottleneck could
be mitigated by optimizing the code. We will soon update our repo.

C ADDITIONAL RESULTS

We present a series of additional experiments and ablation studies to further validate the effectiveness
of the DCM. In particular, in Section C.1 we investigate the advantages of employing the α-entmax
as sampling strategy w.r.t. the Gumbel Top-k trick used in the DGM (de Ocáriz Borde et al., 2023;
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Table 4: Comparison among sampling strategies on homophilic graph node classification benchmarks.
Test accuracy in % avg.ed over 10 splits.

Cora CiteSeer PubMed Physics CS

w
/o

gr
ap

h DCM 78.80 ± 1.84 76.47 ± 2.45 87.38 ± 0.91 96.45 ± 0.12 95.40 ± 0.40
DCM (α = 1) 78.73 ± 1.99 76.32 ± 2.75 87.47 ± 0.77 96.2 ± 0.27 95.35 ± 0.37
Top-k DCM 76.16 ± 3.71 73.21 ± 2.73 87.13 ± 1.22 96.51 ± 0.49 95.25 ± 0.08
Top-k DCM All 76.24 ± 2.84 73.45 ± 3.12 87.38 ± 1.04 96.49 ± 0.64 95.17 ± 0.07

w
gr

ap
h DCM 85.78 ± 1.71 78.72 ± 2.84 88.49 ± 0.62 96.99 ± 0.44 95.79 ± 0.48

DCM (α = 1) 85.97 ± 1.86 78.60 ± 3.16 88.61 ± 0.69 96.69 ± 0.46 94.81 ± 0.49
Top-k DCM 76.96 ± 3.46 75.50 ± 2.15 86.76 ± 0.89 96.19 ± 0.33 94.74 ± 0.28
Top-k DCM All 77.55 ± 3.18 75.66 ± 2.67 86.64 ± 0.74 96.21 ± 0.34 94.79 ± 0.37

Table 5: Comparison among sampling strategies on heterophilic graph node classification benchmarks.
Test accuracy in % avg.ed over 10 splits.

Texas Wisconsin Squirrel Chameleon

w
/o

gr
ap

h DCM 85.71 ± 7.87 87.49 ± 5.94 35.55 ± 2.24 53.63 ± 3.07
DCM (α = 1) 84.96 ± 10.24 86.72 ± 6.02 35.25 ± 2.22 53.67 ± 3.19
Top-k DCM 84.21 ± 8.21 84.10 ± 6.60 33.90 ± 1.38 52.88 ± 4.24
Top-k DCM All 82.71 ± 11.25 85.18 ± 6.89 33.80 ± 1.47 53.23 ± 3.86

w
gr

ap
h DCM 84.87 ± 10.04 86.33 ± 5.14 34.95 ± 2.59 53.05 ± 3.00

DCM (α = 1) 84.96 ± 5.60 85.36 ± 5.05 35.13 ± 2.27 53.76 ± 3.72
Top-k DCM 84.61 ± 8.47 82.87 ± 7.59 33.77 ± 0.91 52.84 ± 4.24
Top-k DCM All 84.66 ± 9.33 82.10 ± 6.64 33.52 ± 1.08 51.61 ± 4.07

Kazi et al., 2022). Additionally, in Section C.2, we study the impact of the number of MP layers
in (7)-(4) (implemented, as explained in Section 4 of the body and Appendix F, with GCNs and
CCCNs). Finally, in Section C.3, we investigate the usage of different values for the maximum cycle
size Kmax.

C.1 SAMPLING STRATEGIES

In this section, we assess the impact of employing the α-entmax as sampling strategy, compared to
the Top-k sampler utilized in (Kazi et al., 2022; de Ocáriz Borde et al., 2023), for both homophilic
(Table 4) and heterophilic datasets (Table 5), with and without input graph. We compare the two
variants of the DCM (again denoted with DCM and DCM (α = 1)) against our same architecture but
with Gumbel Top-k sampler in place of the α−entmax, both when explicit sampling is performed
at edge and polygons level (denoted with Top-k DCM) and when only the edge are sampled and
all the polygons are taken (the counterpart of DCM (α = 1), denoted with Top-K DCM All). Our
investigation reveals that the capability of α-entmax of generating non-regular topologies leads to
significant performance gains on almost all the tested datasets.

C.2 NUMBER OF MESSAGE-PASSING LAYERS

In this section, we assess the impact of the number of MP layers on the performance of our model.
In Table 6 (for homophilic datasets) and Table 7 (for heterophilic datasets), we show the accuracy
as a function of the number of MP layers, i.e. GCNs and CCCNs layers at node and edge levels,
respectively. We notice that the determination of an optimal number of message-passing layers
is not governed by a universal rule but rather depends on the characteristics of the dataset under
consideration. However, we observe that employing a single message-passing layer consistently
yields favorable performance across most of the datasets, further confirming that integrating higher-
order information is beneficial. Moreover, the 1-layer configuration maintains a comparable number
of trainable parameters w.r.t. the DGM-M (de Ocáriz Borde et al., 2023) settings, whose results are
reported as a comparison. In particular, DGM-M employs 3-layer GCNs while we employ 1-layer
GCNs and 1-layer CCCNs (having 3 times the number of parameters of a single GCN layer), see
Appendix F for details. For this reason, despite the fact that some results in Table 6 and in Table 7 are
better than the ones reported in the body of the paper, we decided to show the ones that correspond
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Table 6: Results varying the number of MP layers on homophilic graph node classification bench-
marks. Test accuracy in % avg.ed over 10 splits.

# MP layers Cora CiteSeer PubMed Physics CS

w
/o

gr
ap

h 1 78.80 ± 1.84 76.47 ± 2.45 87.38 ± 0.91 96.45 ± 0.12 95.40 ± 0.40
2 76.90 ± 2.81 75.86 ± 2.35 87.77 ± 0.53 97.10 ± 0.15 94.81 ± 0.40
3 74.98 ± 4.20 74.59 ± 2.35 88.10 ± 0.45 97.09 ± 0.11 94.15 ± 0.63
4 69.74 ± 3.95 71.41 ± 2.47 87.79 ± 0.36 96.80 ± 0.08 93.54 ± 0.72

w
gr

ap
h 1 85.78 ± 1.71 78.72 ± 2.84 88.49 ± 0.62 96.99 ± 0.44 95.79 ± 0.48

2 88.89 ± 1.63 78.42 ± 2.63 88.27 ± 0.54 97.03 ± 0.23 94.50 ± 0.55
3 88.07 ± 2.26 76.95 ± 2.84 88.97 ± 0.61 97.01 ± 0.12 94.47 ± 0.54
4 86.00 ± 2.21 76.62 ± 2.86 88.62 ± 0.76 96.86 ± 0.19 93.66 ± 0.51

to architectures whose number of trainable parameters are as similar as possible to the reported
competitors.

C.3 MAXIMUM CYCLE SIZE

In this section, we conduct an ablation study on the maximum length Kmax of induced cycles taken
in consideration to sample the polygons of the latent cell complex. In Table 8 and in Table 9, we
show the accuracy as a function of Kmax, respectively. As for the choice of the number of MP layers,
even the optimal Kmax varies based on the specific dataset, however with top performance obtained
in most cases when Kmax = 4.

D ALGEBRAIC DESCRIPTION OF REGULAR CELL COMPLEXES

It is possible to give a combinatorial description along with a rich algebraic representation of regular
cell complexes. To do so, it is essential to introduce an orientation of the cells. Orienting cells is not
mathematically trivial but, in the end, it is only a "bookkeeping matter" (Roddenberry et al., 2022).
One of the possible ways of orienting cells (Sardellitti et al., 2021) is via a simplicial decomposition
of the complex, i.e. subdividing the cell into a set of internal k-simplices (Lee, 2000; Barbarossa &
Sardellitti, 2020), so that i) two simplices share exactly one (k − 1)-simplicial boundary element,
which is not the boundary of any other k-cell in the complex; and ii) two k-simplices induce an
opposite orientation on the shared (k−1)-boundary. Therefore, by orienting a single internal simplex,
the orientation propagates on the entire cell.

Given an orientation, the structure of an oriented regular cell complex of order K is then fully
captured by the set of its incidence (or boundary) matrices Bk ∈ RNk−1×Nk , k = 1, . . . ,K, with
entries Bk(i, j) = 0 if σk−1

i is not a face of σk
j , and Bk(i, j) = 1 (or −1), if σk−1

i is a face of σk
j

and its orientation is coherent (or not) with the orientation of σk
j . From the incidence information, we

build the Hodge (or combinatorial) Laplacian matrices of order k = 0, . . . ,K as (Goldberg, 2002):

L0 = B1B
T
1 , (14)

Lk = BT
kBk︸ ︷︷ ︸
L

(d)
k

+Bk+1B
T
k+1︸ ︷︷ ︸

L
(u)
k

, k = 1, . . . ,K − 1, (15)

LK = BT
KBK . (16)

Table 7: Results varying the number of MP layers on heterophilic graph node classification bench-
marks. Test accuracy in % avg.ed over 10 splits.

# MP layers Texas Wisconsin Squirrel Chameleon

w
/o

gr
ap

h 1 85.71 ± 7.87 87.49 ± 5.94 35.55 ± 2.24 53.63 ± 3.07
2 87.89 ± 10.24 84.80 ± 4.81 33.30 ± 1.67 52.22 ± 4.22
3 82.02 ± 8.97 83.64 ± 4.87 33.61 ± 2.55 51.34 ± 3.25
4 80.75 ± 10.80 79.49 ± 7.45 31.96 ± 2.56 47.82 ± 3.11

w
gr

ap
h 1 84.87 ± 10.04 86.33 ± 5.14 34.95 ± 2.59 53.05 ± 3.00

2 77.34 ± 8.64 76.31 ± 4.92 33.53 ± 2.24 52.61 ± 2.73
3 77.34 ± 8.09 80.95 ± 6.52 33.18 ± 1.88 51.47 ± 2.80
4 74.76 ± 12.01 76.13 ± 7.43 33.45 ± 2.59 43.65 ± 3.07
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Table 8: Results varying Kmax on homophilic graph node classification benchmarks. Test accuracy
in % avg.ed over 10 splits.

Kmax Cora CiteSeer PubMed Physics CS

w
/o

gr
ap

h 3 78.38 ± 2.50 75.56 ± 1.45 87.44 ± 0.91 96.32 ± 0.28 95.41 ± 0.60
4 78.80 ± 1.84 76.47 ± 2.45 87.38 ± 0.91 96.45 ± 0.12 95.40 ± 0.40
5 78.60 ± 2.60 75.62 ± 1.26 87.54 ± 0.98 96.20 ± 0.28 95.39 ± 0.60

w
gr

ap
h 3 85.54 ± 2.40 78.38 ± 1.56 88.50 ± 0.78 97.01 ± 0.28 95.68 ± 0.63

4 85.78 ± 1.71 78.72 ± 2.84 88.49 ± 0.62 96.99 ± 0.44 95.79 ± 0.48
5 85.54 ± 2.43 78.32 ± 1.47 85.75 ± 1.02 97.07 ± 0.40 95.68 ± 0.56

Table 9: Results varying Kmax on heterophilic graph node classification benchmarks. Test accuracy
in % avg.ed over 10 splits.

Kmax Texas Wisconsin Squirrel Chameleon

w
/o

gr
ap

h 3 85.53 ± 9.85 84.80 ± 6.29 35.15 ± 1.76 53.41 ± 3.30
4 85.71 ± 7.87 87.49 ± 5.94 35.55 ± 2.24 53.63 ± 3.07
5 80.22 ± 11.54 85.57 ± 7.19 34.98 ± 2.15 53.01 ± 3.73

w
gr

ap
h 3 85.49 ± 7.89 80.95 ± 7.36 33.11 ± 2.58 52.70 ± 3.21

4 84.87 ± 10.04 86.33 ± 5.14 34.95 ± 2.59 53.05 ± 3.00
5 84.21 ± 9.15 81.71 ± 6.33 33.88 ± 1.49 52.92 ± 3.30

All Laplacian matrices of intermediate orders, i.e., k = 1, . . . ,K − 1, contain two terms: The first
term L

(d)
k , also known as lower Laplacian, encodes the lower adjacency among k-order cells, i.e.

L
(d)
k (i, j) = 0 if σk

j /∈ Nd(σ
k
i ); the second term L

(u)
k , also known as upper Laplacian, encodes the

upper adjacency among k-order cells, i.e. L
(u)
k (i, j) = 0 if σk

j /∈ Nu(σ
k
i ). L0 is the usual graph

Laplacian. Hodge Laplacians admit the following Hodge decomposition (Lim, 2020).

Proposition 1 (Hodge Decomposition) The k-topological signal space RNk can be decomposed as
(Grady & Polimeni, 2010):

RNk = im
(
BT

k

)⊕
im
(
Bk+1

)⊕
ker
(
Lk

)
, (17)

where
⊕

is the direct sum of vector spaces, and ker(·) and im(·) are the kernel and image spaces of a
matrix, respectively.

Let us denote the i-th column of any feature matrix Xk ∈ RNk×F , i.e. the vector collecting the i-th
signal values of all the cells, with xk[i] := [xk,i(σ

k
1 ), . . . , xk,i(σ

k
Nk

)] ∈ RNk , where xk,i is defined
as in (1).

k-cell signals can be represented over the basis of the eigenvectors of the corresponding Hodge
Laplacian matrix Lk. We denote the eigendecomposition of Lk as Lk = UkΛkU

T
k , where Uk and

Λk = diag{λk,1, . . . , λk,Nk
} collect the eigenvector and the eigenvalues of Lk, respectively. The

Cell Complex Fourier Transform (CFT) of order k is defined as the projection of a k-cell signal xk[i]
onto the eigenvectors of Lk (Sardellitti et al., 2021):

x̂k[i] ≜ UT
k xk[i]. (18)

We refer to the eigenvalue domain of the CFT as the frequency domain (or spectrum). A consequence
of the Hodge decomposition in (17) is that the eigenvectors belonging to im

(
L
(d)
k

)
are orthogonal to

those belonging to im
(
L
(u)
k

)
, for all k = 1, . . . ,K − 1.

E ADDITIONAL PROPERTIES AND PLOTS OF THE INFERRED COMPLEXES

In this appendix, we analyze properties and show additional plots of the inferred latent cell complexes
for the Wisconsin and Cora datasets. The plots shown in Figure 5 for the Wisconsin dataset, as the
ones shown in Figure 4, are obtained by training the architecture without providing the input graph.
The plots in Figure 6 for the Cora dataset show the input and the final inferred latent complexes both
when the input graph is provided or not to the DCM. Overall, Figure 5 and Figure 6 further show the
ability of the DCM to learn a latent complex with a high level of homophily. Moreover, in Tables 11
and 12 we show the average homophily level of the learned graphs for all the tested datasets, again
both when the input graph is provided or not. It is worth noticing that the homophily levels of the
learned graphs are always greater than the input graph, even on the homophilic datasets.
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(a) Input, %p = 100, h =
0.19

(b) Epoch 10, %p = 75,
h = 0.70

(c) Epoch 50, %p = 51,
h = 0.89

(d) Epoch 100, %p = 55
h = 0.96

(e) Epoch 150, %p = 36,
h = 0.98

(f) Epoch 200, %p = 18,
h = 0.99

Figure 5: Evolution of the latent complex for the Wisconsin dataset, along with homophily level and
nodes degree distribution. Edges in orange, triangles in lilac, squares in purple (Kmax = 4)

To give some quantitative hints of the interpretability of the inferred cell complexes, we now present
several graph and complex-based metrics for the Cora and Wisconsin datasets, which illustrate how
the inferred cell complexes align with amenable properties that would be intuitively expected. In
particular, we assess the properties of the complexes at various levels.

Topological properties. To assess the latent topology w.r.t. the input graphs of the considered
datasets, we evaluate the normalized total spectral gap between the input graph and the inferred
graph, i.e. the sum of differences between the eigenvalues of the input and inferred graph Laplacians
divided by the number of nodes. Two graphs can be considered topologically similar if the spectral
gap is small (Dong et al., 2020), i.e. if they have similar frequencies, in the sense of Appendix
D. In particular, we first orient the input complex CGin (i.e. the complex having the input graph
Gin as 1-skeleton and all of its cycles as polygons) and the inferred latent complex CGout using the
procedure presented in Appendix D. At this point, we compute the graph Laplacians L0,in and L0,out

of the input Gin and inferred Gout graphs, respectively. We compute their eigenvalues {λ0,i,in}i and
{λ0,i,out}i, and we evaluate their normalized total spectral gap NSG(Gin,Gout), defined as:

NSG(Gin,Gout) =
1

N

N∑
i=1

(λ0,i,in − λ0,i,out)
2 (19)
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(a) Input graph (b) CGout w input graph, h = 0.89 (c) CGout w/o input graph, h = 0.93

Figure 6: Input graph (a), inferred latent complex if the input graph is provided (b), and inferred
latent complex if the input graph is provided (c) for the Cora dataset, along with homophily level.
Edges in orange, triangles in lilac, squares in purple (Kmax = 4).

In Table 10, we show this metric when the input graph is provided or not. As the reviewer can notice,
the spectral gap on the Cora dataset is in both cases an order of magnitude smaller than the spectral
gap on the Wisconsin dataset. This result allows us to state that, if the input graph is provided, our
model is able to significantly discard information about it in case it is a “bad” graph (Wisconsin,
heterophilic), while it is able to retain its main topological properties and sufficiently rewire it to
improve the downstream task if it is a “good” graph (Cora, homophilic). On the other hand, if the
input graph is not provided, our model is able to infer a topologically similar graph to the (unseen)
input graph if the input graph is “good” (Cora), while it infers a topologically different graph if the
input graph is “bad” (Wisconsin).

Homophily properties. To assess the latent topology w.r.t. the node labels y ∈ RN of the considered
datasets, we employ the Polygon Homophily, which quantifies the fraction of homogeneous polygons
that connect nodes having the same label, respectively. In particular, the Polygon Homophily is
designed by us by generalizing the simplicial homophily from (Sarker et al., 2023), and for a regular
cell complex CG as the ones we consider, it is computed as:

H(y, CG) =
|Ph| · |P̃h|
|P| · |P̃|

, (20)

where P is the set of polygons of the complex CG , P̃ is the set of induced cycles of the 1-skeleton
(graph) G, Ph ⊆ is the subset of homogeneous polygons, i.e. polygons whose vertices have the
same label, and P̃h is the subset of homogeneous induced cycles. The polygon homophily reduces
to the usual (graph) homophily if edges are considered in place of polygons. With these definitions,
a complex exhibits high polygon homophily if H(y, CG) ≥ 1. In Table 10, we show the polygon
homophily H(y, CGout

) of the inferred complex CGout
, when the input graph is provided or not. As

the reader can notice combining Table 11, Table 12, and Table 10, the inferred complexes show both
graph and polygon homophily.

Feature-dependent properties. To evaluate how the latent topology evolves w.r.t. node features on
the considered datasets, we use the notion of total variation (TV) of features defined over nodes and
edges (Sardellitti et al., 2021). In particular, the total variation TV0 at the node level is a measure of
the smoothness of node features, i.e. if node features of nodes linked by an edge are similar, the node
TV will be small; the total variation TV1 at the edge level is a measure of the smoothness of edge
features, i.e. if edge features of edges belonging to the same polygon are similar, the edge TV will be
small. Given an orientated cell complex CG , its order 0 (graph) L0 and order 1 L1 Laplacians, node
and edge feature matrices X0 and X1, respectively, then the total variation at node and edge level
can be computed as:

TV0(X0, CG) = Trace{XT
0 L0X0}, (21)

TV1(X1, CG) = Trace{XT
1 L

(u)
1 X1}. (22)

In other words, TV0 is the sum of the squared variations of the node signals along the edge of the
complex, while TV1 is the sum of the squared variations (curls) of the edge signals along the polygons
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of the complex. In Table 10, we show the TV TV0(X0,in, CGin
) of the initial node features over

the input graph, the TV TV0(X0,in, CGout
) of the initial node features over the inferred graph, the

TV TV0(X0,out, CGin
) of the final node features over the input graph, the TV TV0(X0,out, CGout

) of
the final node features over the inferred graph, the TV TV1(X1,out, CGin

) of the final edge features
over the input complex (obtained again considering all the induced cycles as polygons), and the TV
TV1(X1,out, CGout

) of the final edge features over the inferred complex. As the reader can notice, the
DCM is always able to learn embeddings that are smooth over the inferred complex, both at node and
edge level, when the input graph is provided or not. Interestingly, not only the learned embeddings
are smooth, but also the input features are smoother on the 1-skeleton (graph) of the inferred complex
than on the input graph.

The above quantitative analysis, along with the qualitative information given by the various plots,
show that the DCM is able to learn complexes that jointly align with data features and data labels,
while at the same time being able to extract or retain topological information similar to the input
graph if it is useful for downstream task. These facts could be particularly useful in more involved
and tailored applications, and we plan to investigate this direction in future (more) applied works.

F MODEL ARCHITECTURE

In this appendix, we present a detailed description of the architectures employed to obtain the results
in Table 1 and Table 2. To ensure uniformity and show the performance gain without intensive
ad-hoc hyperparameters tuning (as the ones performed for the DGM (Kazi et al., 2022) and the
DGM-M (de Ocáriz Borde et al., 2023)), we maintained a constant configuration for the number
of layers, hidden dimensions, activation functions, Kmax (4), (pseudo-)similarity functions (minus
the euclidean distances among embeddings), dropout rates (0.5), and learning rates (0.01) across all
datasets. The architecture details are shown in Tables 13 and 14. We conducted training for a total of
200 epochs for the homophilic datasets, with the exception of the physics dataset, which underwent
100 epochs like the heterophilic datasets. Our experiments were performed using a single NVIDIA
RTX A6000 with 48 GB of GDDR6 memory. As mentioned in Section 4, in every experiment we
employ Graph Convolutional Neural Networks (GCNs) and Cell Complex Convolutional Neural
Network (CCCNs) as specific MP architectures at node and edge levels, respectively. We give a brief
description of GCNs and CCCNs in the following.

Remark 5. The DCM has not to be considered a novel GNN architecture that aims to achieve
SOTA performance on graph benchmarks. To the best of our knowledge, DCM is the first model that
permits learning of higher-order latent interactions while overcoming many of the LGI’s (and TDL’s)
limitations and achieving and matching SOTA results across multiple datasets. In addition, please
note that the majority of GNN and TNN architectures could be integrated into DCM as backbones at
the node and edge levels as instead of the employed GCN and CCCN.

F.1 GRAPH AND CELL COMPLEX CONVOLUTIONAL NEURAL NETWORKS

Graph Convolutional Neural Networks (GCNs) are one of the most famous and simple GNNs
architectures. In GCNs, the output features of a node are computed as a weighted sum of linearly
transformed features of its neighboring nodes. Therefore, the MP round in (4) is implemented as:

x0,int(i) = γ0

 ∑
j∈Nu(σ0

i )

ai,jx0,in(j)W

 , (23)

where W are learnable parameters and the (normalized) weights ai,j are set as ai,j = 1√
djdi

, with

di and dj being the degrees of node i and node j, respectively (Kipf & Welling, 2017a).
Table 10: LTI metrics.

TV0(X0,in, CGout) TV0(X0,in, CGin) TV0(X0,out, CGout) TV0(X0,out, CGin) TV1(X1,out, CGout) TV1(X1,out, CGin) H(y, CGout) NSG(Gin,Gout)

co
ra Graph 5736 8786 457 1912 538 871 .95 3.4 · 10−4

w/o Graph 5623 8786 316 2651 461 502 .99 1.8 · 10−4

w
is

. Graph 853 1201 396 1883 329 1087 .75 5.5 · 10−3

w/o Graph 888 1201 28 1783 258 1299 .94 7.2 · 10−3
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Table 11: Homophily level of the latent graph on homophilic graph node classification benchmarks.

Cora CiteSeer PubMed Physics CS
w/o graph 0.93 0.96 0.84 0.98 0.99
w graph 0.89 0.78 0.82 0.96 0.92
input 0.81 0.74 0.80 0.93 0.80

Table 12: Homophily level of the latent graph on heterophilic graph node classification benchmarks.

Texas Wisconsin Squirrel Chameleon
w/o graph 0.99 0.99 0.30 0.64
w graph 0.80 0.70 0.29 0.62
input 0.11 0.21 0.22 0.23

Cell Complex Convolutional Neural Networks (CCCNs) generalize GCNs to cell complexes using
the adjacencies introduced in Definition 1. In our case, the output features of an edge are computed
as a weighted sum of linearly transformed features of its neighboring edges, over the upper and lower
adjacencies. Therefore, in this paper, we implement the MP round in (7) as:

x1,out(i) = γ1

 ∑
j∈Nu(σ1

i )

au,i,jx1,int(j)Wu +
∑

j∈Nd(σ1
i )

ad,i,jx1,int(j)Wd + x1,int(j)W

 ,

(24)
where Wu, Wd, and W are learnable parameters. The weights are normalized with the same
approach of GCNs, with upper (for the au,i,js) and lower (for the ad,i,js) degrees. The skip connection
x1,int(j)W is as usual beneficial, and in the case of CCCNs it has a further theoretical justification
in terms of Hodge Decomposition and signal filtering, see (Roddenberry et al., 2022; Sardellitti et al.,
2021) for further details.

Table 13: Model Architecture.

No. Layer param. Activation LayerType
(no. input features, 32) ReLU Linear

DCM
(32, 32) ReLU Graph Conv
(32, 32) ReLU Cell Conv
(64, no. classes) Softmax Linear

Table 14: DCM Architecture.

DCM* DCM
No. Layer param. Activation Layer type
(32, 32) ReLU Linear Graph Conv
(32, 32) ReLU Linear Graph Conv
(32, 32) None Linear Graph Conv

22
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