
Published as a conference paper at ICLR 2025

PLANNING ANYTHING WITH RIGOR: GENERAL-
PURPOSE ZERO-SHOT PLANNING WITH LLM-BASED
FORMALIZED PROGRAMMING

Yilun Hao
MIT
yilunhao@mit.edu

Yang Zhang
MIT-IBM Watson AI Lab
Yang.Zhang2@ibm.com

Chuchu Fan
MIT
chuchu@mit.edu

ABSTRACT

While large language models (LLMs) have recently demonstrated strong potential
in solving planning problems, there is a trade-off between flexibility and com-
plexity. LLMs, as zero-shot planners themselves, are still not capable of directly
generating valid plans for complex planning problems such as multi-constraint or
long-horizon tasks. On the other hand, many frameworks aiming to solve complex
planning problems often rely on task-specific preparatory efforts, such as task-
specific in-context examples and pre-defined critics/verifiers, which limits their
cross-task generalization capability. In this paper, we tackle these challenges by
observing that the core of many planning problems lies in optimization problems:
searching for the optimal solution (best plan) with goals subject to constraints
(preconditions and effects of decisions). With LLMs’ commonsense, reasoning,
and programming capabilities, this opens up the possibilities of a universal LLM-
based approach to planning problems. Inspired by this observation, we propose
LLMFP, a general-purpose framework that leverages LLMs to capture key infor-
mation from planning problems and formally formulate and solve them as opti-
mization problems from scratch, with no task-specific examples needed. We apply
LLMFP to 9 planning problems, ranging from multi-constraint decision making to
multi-step planning problems, and demonstrate that LLMFP achieves on average
83.7% and 86.8% optimal rate across 9 tasks for GPT-4o and Claude 3.5 Son-
net, significantly outperforming the best baseline (direct planning with OpenAI
o1-preview) with 37.6% and 40.7% improvements. We also validate components
of LLMFP with ablation experiments and analyzed the underlying success and
failure reasons. Project page: https://sites.google.com/view/llmfp.

1 INTRODUCTION

Making complex plans subject to multiple constraints is a time- and labor-intensive process, but is
critical in many aspects of our lives such as work arrangement, business management, logistics, and
robotics. In the past, people used domain-specific tools and languages to make specific plans in their
areas, which often required a steep learning curve and were hard to adapt to other domains. When
large language models (LLMs) emerge with their versatile capabilities such as language understand-
ing, reasoning, and tool-using, using LLMs for planning has gained significant traction.

For such planning systems to be deployed in complex, real-world applications, two desirable proper-
ties need to be satisfied: 1). Zero-shot flexibility: Unlike many experimental settings where planning
tasks usually come with labeled datasets, it is very challenging to request such datasets from users in
many realistic settings. Ideally, a flexible planning system should be able to conduct planning with
only a task description provided by users, and nothing else. 2). High performance on complex tasks:
Realistic planning problems usually require multi-step, long-horizon solutions, with many explicit
and implicit constraints.

However, there is a trade-off between flexibility and task complexity, and thus existing LLM-based
planning systems are typically unable to achieve both simultaneously. On one hand, planning sys-
tems capable of performing zero-shot planning, utilizing the abundant knowledge and generalization

1

https://sites.google.com/view/llmfp

Published as a conference paper at ICLR 2025

Self Assess & Modification

solver initiation
solver = Optimize()
variable_8 initiation...
total_cost = Int('total_cost')
... other variables ...

solver.add(total_cost == Sum(…))
...more constraint assertion...

goal
solver.minimize(total_cost)

{
 …
 "variable_8": {
 "name": "total_cost",
 "SMT_variable": true,
 "number_of_variables": 1,
 "data_source": "variable_1
to variable_5",
 “value": "sum of all costs”
 "specific_requirement":
"minimize"
 }
}

Coffee company sources beans from three suppliers with fixed
capacity, roasts them at two facilities into either dark or light coffee,
and ships the roasted coffee to three retail locations…The company
aim to minimize the total cost while fulfill the demand at each retail
location.

supplier_capacity = …
coffee_needed_for_cafe = …
shipping_cost_supplier_to_roastery = …
roasting_cost = …
shipping_cost_roastery_to_cafe = …

What would be the
outcome if cafe1
experienced a 23% rise
in demand?

Natural Language Task Description Background Information Query

Definer Formulator Code Generator

Result Formatter

Minimize total cost, including …
Goal

▪ # beans shipped from … to …
▪ # dark coffee roasted in …
▪ # dark coffee shipped from … to …
▪ …

Decision Variables

▪ All decision variables ≥ 0
▪ Beans shipped from each supplier ≤

supplier capacity
▪ …

Constraints

Consider goal and all constraints?
…

1. Definer Correct?
Consider constraints, goal, and query?
…

2. Formulator Correct?
Create all needed variables?
…

3. Code Generator Correct?

No, modified

YesYes

No, modified

Plan

Runtime
Error

No, modified

Figure 1: An overview of LLMFP and how it is applied to a coffee supply chain example. All
sections in yellow are inputs, and all sections in blue are steps accomplished by LLMs. With task
description, background information, and query as inputs, LLMFP defines the goal, decision vari-
ables, and constraints of this optimization problem, identifies all necessary variables and summarizes
their key information into a JSON representation, generates codes to solve the optimization problem,
executes the codes and formats the execution results, and performs self-assessment for each step.

capabilities in LLMs, in many successful applications can only solve single-objective tasks such as
household chores, with step-by-step interactive planning and grounding (Huang et al., 2022a; Ahn
et al., 2022; Huang et al., 2022b). For complex, multi-constraint, and long-horizon tasks that involve
iterative trials and errors even for humans, LLMs still do not have the capabilities to generate valid
plans by themselves (Kambhampati et al., 2024). On the other hand, recent research efforts to em-
power LLM-based planners to solve complex tasks are often based on well-designed task-specific
in-context examples and extensive task-specific pre-defined efforts (Liu et al., 2023; Xie et al., 2023;
Li et al., 2023; Song et al., 2023; Gundawar et al., 2024), impacting their zero-shot flexibility. In
short, few existing planning systems can flexibly resolve generic complex tasks with only task de-
scriptions in natural language. Hence we ask: Can we build a universal LLM-based planning system
that can solve complex planning problems without task-specific efforts?

In this paper, we observe that, although planning problems come with drastic variations, many of
them can be recast as constrained optimization problems — The optimization problems aim to find
the optimal solution, which is equivalent to locating the best plan that satisfies the goal for planning
problems; the decision’s precondition and effect are equivalent to constraints of optimization prob-
lems. Furthermore, although solving complex planning tasks is generally beyond the capabilities of
LLMs, converting any planning tasks into optimization problems is a much more tractable problem,
and can be within the zero-shot capabilities of LLMs.

Motivated by this, we propose LLM-Based Formalized Programming (LLMFP, illustrated in
Fig. 1), a general-purpose zero-shot planning framework that leverages LLM’s strong common
reasoning, and programming capabilities to encode planning problems into optimization problems
without any task-specific examples or designs, combined with a formal planner to solve the opti-
mization problem. LLMFP takes in natural language domain description, natural language query
under this domain, and available background information or APIs as inputs, and solves the plan-
ning problem in five steps. First, LLMFP prompts LLMs to reason and propose the goal, decision
variables, and key constraints necessary for the task. Second, based on the response, LLMFP asks

2

Published as a conference paper at ICLR 2025

LLMs to formulate a representation that includes all variables needed to construct and their detailed
information and requirements. Third, with the representation, LLMs write codes to formally encode
the problem into an optimization problem. Fourth, LLMFP executes the generated codes, converts
the execution results into plans. Finally, LLMFP performs overall self-assessment and automatic
modification to fix the broken parts of the previous steps. Currently, LLMFP uses the satisfiability
modulo theory (SMT) to encode the optimization problems but can be adapted to any planners or
solvers by updating the requirements and representation format in the prompts.

We evaluate our framework with 9 diverse planning problems, ranging from single-step supply
chain problem to multi-step robot block stacking and moving. Experiment results demonstrate that
LLMFP achieves strong performance across all tasks with an average of 83.7% and 86.8% opti-
mal rates for GPT-4o and Claude 3.5 Sonnet, which greatly outperforms the baselines, including
direct plan generation with OpenAI o1-preview. We conduct ablation experiments to validate the
key components of LLMFP and investigate the underlying reasons why it is more effective than
baselines. In addition, although our framework does not require task-specific examples, we show
the ease of adding task-specific examples to one stage of LLMFP, and how it could help to clarify
unclear queries and therefore can further improve the performance within the same domain.

In summary, our key contributions are:

• We offer a novel perspective on using LLMs to solve planning problems by rigorously constructing
optimization problems from scratch, alike how human experts use optimization tools for planning.

• We propose LLMFP, a general-purpose planning framework with zero-shot generalization capa-
bility. To our knowledge, LLMFP is the first to enable LLMs to build and solve diverse types of
planning problems as optimization problems with no task-specific examples or external critics.

• LLMFP notably achieves 83.7% and 86.8% optimal rates for GPT-4o and Claude 3.5 Sonnet,
outperforming the best baseline (direct planning with OpenAI o1-preview) by 37.6% and 40.7%.
We examine the effectiveness of our framework and analyze the success and failure reasons.

2 RELATED WORKS

2.1 LLMS FOR PLANNING

The remarkable capabilities of LLMs in reasoning (Wei et al., 2022; Kojima et al., 2022; Yao et al.,
2022; 2024; Raman et al., 2024) and tool-use (Qin et al., 2023; Schick et al., 2024) brings up inter-
ests of utilizing LLMs for planning problems. Based on LLMs’s zero-shot generalization capability,
many works are proposed to perform zero-shot planning (Huang et al., 2022a; Ahn et al., 2022;
Huang et al., 2022b). However, their planning scenarios are limited to single-objective tasks such
as household cleaning and often require step-by-step interactive planning with grounding. To im-
prove LLMs planning capabilities for complex problems, chain-of-thought (CoT) prompting LLMs
to perform step-by-step reasoning (Wei et al., 2022). Recent works also propose to aid the LLM
planning with external tools (Liu et al., 2023; Guan et al., 2023; Chen et al., 2023; Li et al., 2023;
Gundawar et al., 2024; Hao et al., 2024; Chen et al., 2024). For example, (Liu et al., 2023; Xie et al.,
2023; Gundawar et al., 2024) leverages LLMs to translates problems into fixed formats and solve
with external planners, (Li et al., 2023) prompts LLM to add short codes to existing codes to account
for follow-up what-if questions, and (Gundawar et al., 2024; Chen et al., 2024) empowers LLMs to
iteratively refine plans or prompts based on feedback from external task-specific critics/verifiers/hu-
mans. However, to achieve strong performance, these methods often need extensive task-specific
pre-defined efforts. For example, CoT depends on task-specific examples to achieve strong per-
formance, planning domain definition language (PDDL) domain files (Aeronautiques et al., 1998;
Haslum et al., 2019) are required for (Liu et al., 2023), mixed-integer linear program (MILP) codes
of current domains are necessary for (Li et al., 2023), and external constraint critics are needed for
(Gundawar et al., 2024). These requirements limit their generalization capabilities to new domains.

2.2 LLM + SOLVER

As existing LLMs do not have the capability to perform long-horizon reasoning for complex
tasks (Achiam et al., 2023; Valmeekam et al., 2022; 2023; Kambhampati et al., 2024), many works
propose to take advantages of both LLMs and external solvers by combining them for reasoning

3

Published as a conference paper at ICLR 2025

or planning. (Wu et al., 2022; He-Yueya et al., 2023; Pan et al., 2023; Ye et al., 2024) combines
LLM with symbolic solvers to solve logical reasoning problems. While most logical reasoning
problems are single-step satisfaction problems with clear constraint descriptions, LLMFP aims to
solve complex planning problems, which could include implicit constraints not described in the task
description and could be sequentially long-horizon tasks with defined actions. In addition, LLMFP
proposes a general approach, which does not require task-specific examples or task-specific efforts.
(Li et al., 2023) teaches LLMs to add constraints to existing MILP codes. (Li et al., 2024) asks the
developer to express planning problems into automaton and plan based on it. (Manas et al., 2024)
uses LLMs to translate problem into linear temporal logic and solves with optimization solver. (Liu
et al., 2023; Guan et al., 2023; Zhou et al., 2024; Xie et al., 2023) leverages PDDL planner to aid
the planning processes. Except for the natural language task description, they require human efforts
to design solver-related specifications and task-specific examples, which is not needed for LLMFP.

3 LLMFP

LLMFP aims to resolve generic planning problems. For example, consider a coffee supply chain
problem, where a coffee company sources beans from three suppliers with fixed capacity, roasts
them at two facilities into dark or light coffee and ships the roasted coffee to three retail locations to
fulfill their demands. Then a planning problem involves accomplishing the task at the cheapest cost.

To achieve this, LLMFP takes the following inputs from users, as shown in Figure 1 (top panels).

• Natural Language Task Description d. A natural language description that details the problem
settings and the planning objective, such as the above description of the coffee problem.

• Background Information & API i. A list of background information about the tasks as well as
information on APIs that the planner can use. An example of the background information for the
coffee task is the variables containing specific numbers of supplier capacities, cafe demands, and
costs for shipping and roasting.

• User Query q. The question that either describes the detailed initial and/or goal states or adds/-
modifies existing requirements of the tasks. In the coffee planning task, one example query is
‘What would be the outcome if cafe1 experienced a 23% rise in demand’.

Example inputs for all 9 tasks can be found in Appendix A.8. Note that LLMFP does not require
any task-specific examples from the users. Considering the diversity of user requests, LLMFP needs
to accommodate a large variety of domains, planning problem setups, user queries, constraints, and
complexity levels, which poses a great challenge.

3.1 OVERVIEW

Devising solutions for the vast diversity of different complex planning problems seems prohibitive
even for humans, let alone LLMs. However, despite the diversity of the planning problems, a plan-
ning problem can generally be cast as a constrained optimization problem. Formally, a constrained
optimization, P = {x, f(·), g(·),h(·)}, is defined as minx f(x), s.t., g(x) ≤ 0,h(x) = 0. x rep-
resents the decision variables; f(·) represents the objective function; g(·) represents the (multiple)
inequality constraints; h(·) represents the (multiple) equality constraints. In the coffee supply prob-
lem, x includes the amount of coffee beans shipped from each supplier to each roastery, and from
each roastery to each cafe, f describes the total cost of shipping, and g and h include the clearing
conditions for each facility. A detailed description of the variables and constraints for the coffee
supply problem can be found in Appendix A.9.2.

Once a planning problem is formulated as the constrained optimization problem, it can be rigor-
ously solved by solvers such as the SMT solver. Therefore, we propose an pipeline that solves the
planning problem by converting them into constrained optimization problems and then solving them
using the SMT solver. Our pipeline consists of the following steps, as shown in Fig. 1. ❶ DEFINER:
LLMFP first prompts an LLM to define the constrained optimization problem from the user inputs,
P = D(d, i) (Sec. 3.2). ❷ FORMULATOR: LLMFP asks LLM to think about the necessary vari-
ables and steps to build when programming, and formulate a representation to summarize all key
information of these variables (Sec. 3.3). ❸ CODE GENERATOR: Given this representation, LLMs
generate codes that initialize all necessary variables, assert constraints, and add goals (Sec. 3.4).

4

Published as a conference paper at ICLR 2025

❹ RESULT FORMATTER: After LLMFP executes the generated codes, it prompts LLMs to con-
vert the execution result into a fixed format and provide a short assessment of the execution results
(Sec. 3.5). ❺ SELF ASSESSMENT AND MODIFICATION: LLMFP assesses each step based on
the execution result, and modifies the first incorrect step (Sec. 3.6). The generated plan is delivered
when it passes self-assessments of all steps. Please refer to Appendix A.9 and A.10 for example
outputs and prompts of all steps in LLMFP.

3.2 DEFINER

The first step of building an optimization problem is to identify the goal, decision variables, and
constraints of the problem from the user-supplied task description d and background information
i, i.e., P = D(d, i). The definer function D is accomplished by prompting the LLM to express in
a natural language format (See Figure 1 for an example), where the prompt skeleton includes ❶ a
description of what goal, decision variables, and constraints mean and ❷ an instruction to output
the aforementioned information, which is invariant across tasks. The detailed prompt is listed in
Appendix A.10.2.

While generating the goals and decision variables are straightforward, generating the constraints
is challenging, because certain constraints are not explicitly stated and can only be inferred by
commonsense reasoning. We refer to these as the implicit constraints.

For example, in the coffee supply chain task example, the implicit constraints include ‘the roasted
coffee in each roastery does not exceed the beans it receives’, ‘the shipped coffee from each roastery
does not exceed the coffee it roasts’, and importantly but easily overlooked, ‘all numbers of shipped
and roasted beans and coffee need to be non-negative integer’.

To facilitate uncovering the implicit constraints, we include in the prompts (under the description
of constraints) a three-step instruction to derive the constraints: ❶ Identify all decision variables
in this task, ❷ for each pair of decision variables, consider relations (explicit, implicit, underlying
assumption, unmentioned commonsense) between them to make sure all variables are connected,
and ❸ provide a constraint reasoning first before answering. This effectively helps LLMs to better
identify implicit constraints for multi-constraint planning problems. Since for multi-step planning
problems the task description needs to explicitly define the preconditions and effects of each action,
there will be no implicit constraint so this step is omitted.

3.3 FORMULATOR

Before turning the optimization problem P into an executable code to run the SMT solver, the
FORMULATOR is called to supplement P with additional information regarding each variable in x
that is necessary to ensure the correctness of the generated code. Formally, the FORMULATOR is
defined as R = F(P, d, i, q), where the output R is a JSON representation that describes N fields of
information for each variable in x, i.e., R =

⋃
i{xi : field1(xi)}, . . . ,fieldN (xi)}. Examples

of the JSON representation are shown in Fig. 2.

Each field describes the information that governs the declaration and instantiation of each variable
in the code, such as whether the variable is continuous, binary, or integer, what data structures they
need to be arranged into, etc. The definition of fields is different for single-step and multi-step
problems. In what follows, we will describe the fields in each problem type.

Single-Step Multi-Constraint Problem As shown in Fig. 1 and Fig. 2, for each variable, R includes
6 fields to summarize the information related to this variable. The name field indicates the variable
name. Since we are using SMT as the optimization solver, the SMT_variable field indicates
whether the variable is an SMT or a normal variable. SMT variables are different from normal vari-
ables in that they don’t hold specific values upfront, rather, they are symbolic variables to represent
unknown values. The number_of_variables field represents the length of the variable. The
data_source field denotes the dependencies of the variable. The value field further specifies
the value of the variable. It could either be a real number or list, dictionary descriptions, or any de-
scription of operations to do with the data source. The specific_requirement field is where
we point to the constraints or goals related to this variable. For the coffee supply chain task, the
total cost has a length of 1, the data_source is all shipping costs and roasting costs, the value
is a string “sum of all costs”, and the specific requirement is “minimize”. With this intermediate

5

Published as a conference paper at ICLR 2025

{
 "variable_1": {
 "name": "beans_shipped",
 "SMT_variable": true,
 "number_of_variables": 6,
 "data_source": "capacity_in_supplier,
shipping_cost_from_supplier_to_roastery",
 "value": "amount of coffee beans shipped from
each supplier to each roastery",
 "specific_requirement": "must not exceed
supplier's capacity"
 },
 "variable_2": {
 "name": "light_roasted",
 "SMT_variable": true,
 "number_of_variables": 2,
 "data_source": "roasting_cost_light",
 "value": "amount of light coffee roasted at each
roastery",
 "specific_requirement": "total amount of coffee
beans received by each roastery must equal total
amount of coffee roasted"
 },
 …
 "variable_6": {
 "name": "total_cost",
 "SMT_variable": true,
 "number_of_variables": 1,
 "data_source": "variable_1, variable_2,
variable_3, variable_4, variable_5",
 "value": "sum of shipping, roasting, and shipping
roasted coffee costs",
 "specific_requirement": "minimize"
 },
}

{
 "objects": {
 "variable_1": {
 "name": "objects",
 "SMT_variable": false,
 "number_of_variables": 1,
 "data_source": "query",
 "value": "all objects in the problem…”,
 "specific_requirement": null
 }
 },
 "predicates": {
 "variable_2": {
 "name": "on",
 "SMT_variable": false,
 "number_of_variables": 1,
 "data_source": "query, variable_1",
 "value": "a dictionary of boolean variables
representing whether a block is on another block at a
timestep…”,
 "specific_requirement": initialize step 0…”
 },
 …
 },
 "actions": {
 "variable_7": {
 "name": "pickup",
 "SMT_variable": false,
 "number_of_variables": 1,
 "data_source": "variable_1",
 "value": "a dictionary of boolean variables
representing whether pickup is performed on a block…”,
 "specific_requirement": null
 },
 …

Example Fomulator output for multi-constraint task Coffee Example Fomulator output for multi-step task Blocksworld

Figure 2: Example FORMULATOR output for multi-constraint Coffee and multi-step Blocksworld.

step between DEFINER and CODE GENERATOR, LLMFP is capable of obtaining a more detailed,
well-formulated, and overall coding plan. We teach LLMs to formulate variables into this represen-
tation by including two simple examples in the prompt. These two examples are not task-specific
examples of any of our testing tasks and we do not modify these two examples across tasks.

Multi-Step Planning Problem Since multiple steps are involved in multi-step planning problems,
the FORMULATOR not only needs to deal with relationships between variables, but also needs to
update the states of variables across different timesteps. All the variables are divided into five sec-
tions, representing the five stages for defining the variables: objects, predicates, actions,
update, goal. The variables within each section are appended with the same six fields as intro-
duced above. The objects stage declares all objects in the scenario. The predicates stage
defines the predicates, which represent the properties of objects and the relationships between them.
The actions stage initializes variables to represent all actions. The update stage adds assertions
to existing action variables to account for the preconditions and effects of actions. The goal stage
adds constraint to existing predicate variables to encode the goal. As shown in Fig. 2, the example
on the right includes different stages and variables within each stage. The variable in predicates
stage initializes a dictionary to represent whether a block is on another block at a certain timestep.
The variable in actionstage initializes a dictionary to represent if action pickup is performed. For
multi-step planning tasks, we replace the examples with a multi-step task example, and similarly, it
is not a task-specific example and we do not modify it across tasks.

The formulator function F is enabled by prompting an LLM, where the prompt includes ❶ A brief
instruction for the FORMULATOR, ❷ Example input-output pairs of FORMULATOR as demonstra-
tions, and ❸ The user-provided task information and DEFINER’s output. The detailed prompt is
listed in Appendix A.10.2. Note that although example input-output pairs are used, they are task-
agnostic examples fixed for all the planning tasks. No task-specific examples are needed.

3.4 CODE GENERATOR

With R, now we have all the information needed to build an optimization problem with codes.
In the CODE GENERATOR’s prompt, we explain the meanings of different stages and fields in R

6

Published as a conference paper at ICLR 2025

and ask LLMs to follow Python and Z3 SMT syntax (De Moura & Bjørner, 2008). By including
user inputs and results from DEFINER and FORMULATOR, with no examples, LLM could reliably
generate reasonable, executable, and correct Python codes. Then, LLMFP executes the codes and
returns to re-generation if there are runtime errors. We set maximum re-generation times to be 5.

3.5 RESULT FORMATTER

Since the variable names are decided by LLMs and have chances to be very different across queries,
after code generation, we use a RESULT FORMATTER to ask LLM to convert the execution result
to a fixed output format. For example, the output for the coffee task would be a JSON includes: ❶
the number of coffee beans shipped from each supplier to each roastery, ❷ the number of light and
dark coffee roasted in each roastery, and ❸ the number of light and dark coffee shipped from each
roastery to each cafe. After filling in this result, we prompt the LLM to provide a brief evaluation
of the result based on whether the result achieves the goal, satisfies constraints, and makes sense
in common sense. Taking commonsense into consideration is important because sometimes if a
necessary constraint is missing from the DEFINER step, it could result in unreasonable execution
result that is unrealistic in commonsense. For example, for the coffee task, if the DEFINER does not
include the non-negative constraint, to minimize the cost, the solver could propose negative units of
shipped coffee. Detecting these unrealistic plans is helpful for SELF ASSESS & MODIFICATION.

3.6 SELF ASSESS & MODIFICATION

With the execution result and evaluation, LLMFP perform self-assessment to reason about the cor-
rectness and provide ratings for the DEFINER, FORMULATOR, and CODE GENERATOR. If the
assessment marks all three steps to be correct, this plan will be delivered as the final output. Oth-
erwise, the assessment will reason about how to modify this step, and provide a modification by
itself. This modification will replace the output of the incorrect step and LLMFP will loop back to
continue the next steps from there again. That is, if the SELF ASSESSOR thinks the FORMULATOR
output is incorrect, it will generate a JSON representation R′ by itself, and the framework will use
this R′ to enter CODE GENERATOR again. We set the maximum number of loops to be 5.

3.7 CHOICE OF SOLVER

As a framework that formulates and solves planning problems as optimization problems, LLMFP
can be adapted to use any planner or solver by modifying the requirements in prompt to follow the
syntax of new solvers. In this work, we compare with popular PDDL and MILP solvers and choose
SMT solver with following reasons: SMT allows explicit goal and constraint assertion from scratch,
which can solve both single-step multi-constraint problems and multi-step problems, while PDDL
solvers require rigidly formatted PDDL domain and problem files, which limits its applicability
for non-PDDL problems. SMT is complete and sound, guaranteeing optimal plans, while PDDL
planners lack completeness guarantees. Additionly, for all optimization solvers like SMT and MILP,
building optimization problems involves the same steps: defining the goal, constraints, and decision
variables, and writing codes to encode relationships between decision variables. Thus, utilizing any
optimization planner has a similar process. We show how easily our framework could adapt to use
MILP by including prompt differences and output examples in Appendix A.10.3. We selected SMT
over MILP because the SMT Z3 solver is publicly available and more accessible to all users than
the Gurobi MILP solver, which requires licenses and limits the number of devices per license.

4 EXPERIMENTAL RESULTS

4.1 DOMAINS

We test on 9 planning problems, which includes 5 multi-constraint decision making tasks,Coffee,
Workforce, Facility, Task Allocation, and Warehouse, and 4 multi-step tasks, Blocksworld, Mys-
tery Blocksworld, Movie, and Gripper (Li et al., 2023; Valmeekam et al., 2024; Stein & Koller,
2023). Task descriptions and complexity analysis are included in Appendix A.1. The queries are
either what-if questions that change/add constraints to the existing scenarios or different task initial
and goal conditions. Task inputs including example queries are given in Appendix A.8.

7

Published as a conference paper at ICLR 2025

Table 1: Optimal rate (%) comparison of LLMFP with baselines on 5 multi-constraint problems.

Method Coffee Workforce Facility Task Allocation Warehouse Average

DirectGPT-4O 0.8 2.6 0.0 0.0 0.0 0.7
DirectO1-PREVIEW 25.9 47.6 4.8 4.0 66.0 29.7
CoTGPT-4O 0.0 5.6 0.0 0.0 16.0 4.3
CodeGPT-4O 17.7 75.8 53.9 0.0 8.0 31.1
Code SMTGPT-4O 0.0 10.8 0.6 0.0 2.0 2.7
LLMFP GPT-4O 64.7 92.2 70.7 96.0 72.0 79.1

DirectCLAUDE 3.5 SONNET 0.0 0.0 0.0 0.0 0.0 0.0
CoTCLAUDE 3.5 SONNET 7.1 0.0 0.0 0.0 14.0 4.2
CodeCLAUDE 3.5 SONNET 59.8 71.9 47.3 0.0 42.0 44.2
Code SMTCLAUDE 3.5 SONNET 75.6 36.8 49.7 86.0 64.0 62.4
LLMFP CLAUDE 3.5 SONNET 80.5 88.7 48.2 96.0 90.0 80.7

Table 2: Optimal rate (%) comparison of LLMFP with baselines on 4 multi-step problems.

Method Blocksworld Mystery Blocksworld Movie Gripper Average

DirectGPT-4O 41.5 0.8 85.7 0.0 32.0
DirectO1-PREVIEW 88.4 31.9 100.0 52.0 68.1
CoTGPT-4O 39.9 2.7 81.0 0.0 30.9
CodeGPT-4O 0.0 0.3 0.0 0.0 0.1
Code SMTGPT-4O 0.0 0.0 0.0 4.0 1.0
LLMFP GPT-4O 96.2 77.7 100.0 76.0 87.5

DirectCLAUDE 3.5 SONNET 43.2 0.5 100.0 12.0 38.9
CoTCLAUDE 3.5 SONNET 52.8 2.8 100.0 28.0 45.9
CodeCLAUDE 3.5 SONNET 0.0 0.0 0.0 0.0 0.0
Code SMTCLAUDE 3.5 SONNET 0.0 0.0 0.0 0.0 0.0
LLMFP CLAUDE 3.5 SONNET 93.0 98.0 100.0 76.0 91.8

4.2 LLMFP PERFORMANCE

We evaluate LLMFP on 9 tasks with GPT-4o (gpt) and Claude 3.5 Sonnet (cla) with temperature 0.
Each task comes with natural language task descriptions, queries, background information, APIs.
LLMFP takes these inputs and outputs plans with no task-specific examples. We use optimal rate as
the evaluation metric, measuring whether plans are optimal for given the task and query. We also
include success rate as another metric and results in A.3.

Baselines We compare LLMFP against 1) Direct: LLM direct plan generation, 2) CoT: chain-of-
thought prompting (Wei et al., 2022) by asking LLMs to reason before generating the final answer,
3) Code: prompts LLM to generate Python codes to solve the problem, allowing the use of any
package or solver, and 4) Code SMT: prompts LLM to generate Python codes using Z3 SMT solver,
the same tool we use in LLMFP. For all baselines, we use both GPT-4o and Claude 3.5 Sonnet
and also include a direct plan generation baseline with OpenAI o1-preview (o1p). All baselines are
zero-shot with no task-specific examples. All baselines have the same input information as LLMFP,
including task description, task background information or info collection API, and query. We also
provide all baselines with formatters to convert their generated plans to fixed formats for better
evaluation. Please refer to Sec. A.10 for prompts of baselines.

Results and Analysis We include the optimal rate comparison of LLMFP and baselines on 5 multi-
constraint problems and 4 multi-step problems in Table 1 and 2. There are four key takeaways:

First, LLMFP achieves strong performance across all 9 tasks, significantly outperforming all base-
lines. For GPT-4o, LLMFP achieves an average of 83.7% optimal rate across 9 tasks (79.1% for 5
multi-constraint problems and 87.5% for 4 multi-step problems). For Claude 3.5 Sonnet, LLMFP
achieve an 86.8% optimal rate across 9 tasks (80.7% for 5 multi-constraint problems and 91.8% for 4
multi-step problems). For 5 multi-constraint problems, LLMFP GPT-4O and LLMFP CLAUDE 3.5 SONNET

8

Published as a conference paper at ICLR 2025

outperform best baselines CodeGPT-4O and Code SMTCLAUDE 3.5 SONNET by a large margin of 48.0%
and 18.3%. For 4 multi-step problems, LLMFP GPT-4O and LLMFP CLAUDE 3.5 SONNET outperform
DirectO1-PREVIEW and CoTCLAUDE 3.5 SONNET by an average of 19.4% and 45.9%. This highlights both
the effectiveness and the generalization capability of LLMFP.

Second, among baselines, Code works better for multi-constraint problems, while Direct and CoT
work better for multi-step problems. This validates that the skills required for solving different
tasks are different. For multi-constraint problems, as heavy calculations are required to test every
possible solution, it is hard for LLMs to directly plan, even with the strongest o1-preview model. For
multi-step problems, since Code tries to use a PDDL planner, which requires LLM to generate fixed-
format PDDL domain and problem files, it almost always fails to generate and call them correctly.
While it is easier for LLMs to directly devise plans as the preconditions and effects of each action
are easier to reason about than calculations. This further proves that LLMFP can tackle problems
that are fundamentally different because it uses a universal and formal approach for all tasks.

Third, for Direct and CoT, Mystery Blocksworld’s performance degrades largely compared to
Blocksworld, though they are fundamentally same problems. Changing predicate and action names
to illogical names makes LLMs hard to understand the problem and generate reasonable plans.
However, LLMFP still can obtain an overall strong optimal rate of 77.7% and 98.0% on Mystery
Blocksworld for GPT-4o and Claude 3.5 Sonnet. This shows LLMFP is robust to obfuscated prob-
lems, as it can encode the problem as long as the problem is clearly defined regardless of the names.

Fourth, for multi-constraint problems, Code SMTCLAUDE 3.5 SONNET improves 18.2% compared to
CodeCLAUDE 3.5 SONNET, though Code SMTGPT-4O performs poorly. This showcases the strong cod-
ing capability of Claude 3.5 Sonnet, especially the capability to understand and utilize the SMT
solver. At the same time, it showcases the instability for different LLMs to reach strong perfor-
mance, motivating the need of frameworks like LLMFP to overcome existing limitations of LLMs.

To summarize, LLMFP is capable of solving all 9 tasks with strong performance and is robust to
fundamentally different and obfuscated problems. We show the performance of LLMFP across
iterations, time and cost statistics, and failure analysis in Appendix A.2, A.4, and A.6.

4.3 EFFECTIVENESS OF LLMFP COMPONENTS

We then validate each component of LLMFP with ablation experiments on 9 tasks. We examine
the effectiveness of DEFINER, FORMULATOR, and SELF ASSESS & MODIFICATION by removing
these components from our framework one at a time and comparing with LLMFP. We do not re-
move CODE GENERATOR and RESULT FORMATTER because they are the necessary components of
LLMFP to deliver outputs. We use GPT-4o as the LLMs and optimal rate as the evaluation metric.

Results and Analysis We include the optimal rate performance comparison of LLMFP and baselines
on 9 problems in Table 3. From Table 3 there are two key takeaways:

First, removing any of the 3 components from LLMFP negatively affects the performance. For
multi-constraint problems, removing DEFINER, FORMULATOR, and SELF ASSESS & MODIFICA-
TION lowers the optimal rate by 15.4%, 22.2%, and 21.9%. For multi-step problems, removing
FORMULATOR and SELF ASSESS & MODIFICATION reduces the optimal rate by 87.4% and 12.4%.

Second, for different problems, the most effective components are different. Coffee degrades the
most for No DEFINER; Warehouse and all multi-step problems drop the most for No FORMULATOR;
and Workforce decreases the most for No SELF ASSESS & MODIFICATION. This again validates
the diversity of the 9 problems and how they require different efforts to be successfully solved. Thus,
LLMFP is an overall framework that could aid the process of planning from all aspects.

To summarize, all three components in LLMFP are effective and could account for diverse problems
by providing comprehensive aids to solve planning problems.

4.4 LLMFP WITH TASK-SPECIFIC EXAMPLE

Although LLMFP is capable of achieving strong performance on a wide range of problems with
no task-specific example, we test LLMFP by only replacing the two examples in FORMULATOR to
one task-specific example on Coffee task to see how much the task-specific example could further

9

Published as a conference paper at ICLR 2025

Table 3: Optimal rate (%) comparison when removing some key components of LLMFP on all 9
tasks. LLMs used are GPT-4o.

Domain No Definer No Formulator No Self Assess & Modification LLMFP

Coffee 8.6 56.4 55.3 64.7
Workforce 84.4 80.5 27.3 92.2

Facility 61.6 53.7 53.7 70.7
Task Allocation 74.0 92.0 96.0 96.0

Warehouse 90 2.0 54.0 72.0

Average 63.7 56.9 57.2 79.1

Blocksworld N/A 0.2 95.3 96.2
Mystery Blocksworld N/A 0.0 74.4 77.7

Movie N/A 0.0 66.7 100.0
Gripper N/A 0.0 64.0 76.0

Average N/A 0.1 75.1 87.5

Table 4: Optimal rate (%) comparison of LLMFP and LLMFP with one task-specific example in
Formulator on Coffee task. Sets represent different types of what-if questions. LLMs are GPT-4o.

Method Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Average

LLMFP 58.3 70.9 11.8 42.4 80.0 83.3 81.5 61.2
LLMFP TASK-SPECIFIC 78.3 72.7 70.6 84.8 91.4 100.0 100.0 85.4

improve LLMFP. Queries of Coffee tasks are what-if questions and are categorized into 7 sets. Each
set is a type of question. For example, every query in Set 1 asks about what if the demand in some
cafes increases some amount. For each set, we include one task-specific example in FORMULATOR
prompt, test LLMFP TASK-SPECIFIC over this set, and compare with LLMFP over this set. We use GPT-
4o for LLMs. From the results in Table 4, we observe that on average, LLMFP TASK-SPECIFIC improves
the performance of LLMFP by 24.2%. The performance of Set 3 increases the most. This set asks
queries like “What led to the decision to use supplier3 for the roasting facility at roastery1?”. It
is both plausible to test “using supplier3” or to test “not using supplier3” to answer the question.
However, the ground truth answer for this type of question is to “not using supplier 3”. They are
confusing queries even for humans to understand, let alone LLMs. Thus, for these queries, adding
task-specific examples significantly improves the performance. To summarize, LLMFP can achieve
strong performance with no task-specific example, but easily adding task-specific examples only to
FORMULATOR improves the performance, especially when the task or query is not clearly presented.

5 CONCLUSION

To account for the challenging trade-off between flexibility and task complexity for LLM planning,
we observe that the core of many planning problems lies in optimization problems and propose a
universal approach for LLMs to solve planning problems. We propose LLMFP, a general-purpose
LLM-based framework that captures key information from planning problems and formally formu-
lates and solves them as optimization problems, with no task-specific examples needed. We test
LLMFP on 9 diverse planning tasks with two LLMs, proving LLMFP can achieve strong perfor-
mance over fundamentally different tasks and showing the effectiveness of components in LLMFP.

Limitations LLMFP needs clear and detailed task descriptions and queries. It is hard for LLMFP
to define the problems’ goals and constraints if the task description is ambiguous or missing some
important information. In addition, since LLMFP solves encoded planning problems with optimiza-
tion solvers, the capability of LLMFP depends on the strength of the solvers. For massive databases
with numerous feasible plans, the speed for solvers to search for optimal plans is slow. Ways to
mitigate this is to introduce heuristics to prioritize a portion of the choices or to switch from solving
optimization problems to satisfaction problems for planning tasks that do not require optimality.

10

Published as a conference paper at ICLR 2025

6 ACKNOWLEDGMENTS

This work was supported by ONR under Award N00014-22-1-2478 and MIT-IBM Watson AI Lab.
However, this article solely reflects the opinions and conclusions of its authors.

REFERENCES

Claude 3.5 sonnet. https://www.anthropic.com/news/claude-3-5-sonnet. Ac-
cessed: 2024-06-20.

Hello gpt-4o. https://openai.com/index/hello-gpt-4o/. Accessed: 2024-05-13.

Introducing openai o1-preview. https://openai.com/index/
introducing-openai-o1-preview/. Accessed: 2024-09-12.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Constructions Aeronautiques, Adele Howe, Craig Knoblock, ISI Drew McDermott, Ashwin Ram,
Manuela Veloso, Daniel Weld, David Wilkins Sri, Anthony Barrett, Dave Christianson, et al.
Pddl— the planning domain definition language. Technical Report, Tech. Rep., 1998.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Yongchao Chen, Jacob Arkin, Yang Zhang, Nicholas Roy, and Chuchu Fan. Autotamp: Au-
toregressive task and motion planning with llms as translators and checkers. arXiv preprint
arXiv:2306.06531, 2023.

Yongchao Chen, Jacob Arkin, Yilun Hao, Yang Zhang, Nicholas Roy, and Chuchu Fan. Prompt
optimization in multi-step tasks (promst): Integrating human feedback and preference alignment.
arXiv preprint arXiv:2402.08702, 2024.

Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International conference
on Tools and Algorithms for the Construction and Analysis of Systems, pp. 337–340. Springer,
2008.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-
trained large language models to construct and utilize world models for model-based task plan-
ning. Advances in Neural Information Processing Systems, 36:79081–79094, 2023.

Atharva Gundawar, Mudit Verma, Lin Guan, Karthik Valmeekam, Siddhant Bhambri, and Subbarao
Kambhampati. Robust planning with llm-modulo framework: Case study in travel planning.
arXiv preprint arXiv:2405.20625, 2024.

Naresh Gupta and Dana S Nau. On the complexity of blocks-world planning. Artificial intelligence,
56(2-3):223–254, 1992.

Yilun Hao, Yongchao Chen, Yang Zhang, and Chuchu Fan. Large language models can plan your
travels rigorously with formal verification tools. arXiv preprint arXiv:2404.11891, 2024.

Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, Christian Muise, Ronald Brachman, Francesca
Rossi, and Peter Stone. An introduction to the planning domain definition language, volume 13.
Springer, 2019.

Joy He-Yueya, Gabriel Poesia, Rose E Wang, and Noah D Goodman. Solving math word problems
by combining language models with symbolic solvers. arXiv preprint arXiv:2304.09102, 2023.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International Conference on
Machine Learning, pp. 9118–9147. PMLR, 2022a.

11

https://www.anthropic.com/news/claude-3-5-sonnet
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/introducing-openai-o1-preview/
https://openai.com/index/introducing-openai-o1-preview/

Published as a conference paper at ICLR 2025

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. arXiv preprint arXiv:2207.05608, 2022b.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Kaya Stechly, Mudit Verma, Siddhant
Bhambri, Lucas Saldyt, and Anil Murthy. Llms can’t plan, but can help planning in llm-modulo
frameworks. arXiv preprint arXiv:2402.01817, 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Beibin Li, Konstantina Mellou, Bo Zhang, Jeevan Pathuri, and Ishai Menache. Large language
models for supply chain optimization. arXiv preprint arXiv:2307.03875, 2023.

Zelong Li, Wenyue Hua, Hao Wang, He Zhu, and Yongfeng Zhang. Formal-llm: Integrat-
ing formal language and natural language for controllable llm-based agents. arXiv preprint
arXiv:2402.00798, 2024.

Bo Liu, Yuqian Jiang, Xiaohan Zhang, Qiang Liu, Shiqi Zhang, Joydeep Biswas, and Peter Stone.
Llm+ p: Empowering large language models with optimal planning proficiency. arXiv preprint
arXiv:2304.11477, 2023.

Kumar Manas, Stefan Zwicklbauer, and Adrian Paschke. Cot-tl: Low-resource temporal knowl-
edge representation of planning instructions using chain-of-thought reasoning. arXiv preprint
arXiv:2410.16207, 2024.

Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-lm: Empower-
ing large language models with symbolic solvers for faithful logical reasoning. arXiv preprint
arXiv:2305.12295, 2023.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru
Tang, Bill Qian, et al. Toolllm: Facilitating large language models to master 16000+ real-world
apis. arXiv preprint arXiv:2307.16789, 2023.

Shreyas Sundara Raman, Vanya Cohen, Ifrah Idrees, Eric Rosen, Raymond Mooney, Stefanie Tellex,
and David Paulius. Cape: Corrective actions from precondition errors using large language mod-
els. In 2024 IEEE International Conference on Robotics and Automation (ICRA), pp. 14070–
14077. IEEE, 2024.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36, 2024.

Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun Chao, and Yu Su.
Llm-planner: Few-shot grounded planning for embodied agents with large language models. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2998–3009,
2023.

Katharina Stein and Alexander Koller. Autoplanbench:: Automatically generating benchmarks for
llm planners from pddl. arXiv preprint arXiv:2311.09830, 2023.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. Large lan-
guage models still can’t plan (a benchmark for llms on planning and reasoning about change). In
NeurIPS 2022 Foundation Models for Decision Making Workshop, 2022.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the
planning abilities of large language models-a critical investigation. Advances in Neural Informa-
tion Processing Systems, 36:75993–76005, 2023.

Karthik Valmeekam, Matthew Marquez, Alberto Olmo, Sarath Sreedharan, and Subbarao Kamb-
hampati. Planbench: An extensible benchmark for evaluating large language models on planning
and reasoning about change. Advances in Neural Information Processing Systems, 36, 2024.

12

Published as a conference paper at ICLR 2025

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and
Christian Szegedy. Autoformalization with large language models. Advances in Neural Informa-
tion Processing Systems, 35:32353–32368, 2022.

Yaqi Xie, Chen Yu, Tongyao Zhu, Jinbin Bai, Ze Gong, and Harold Soh. Translating natural lan-
guage to planning goals with large-language models. arXiv preprint arXiv:2302.05128, 2023.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. Satlm: Satisfiability-aided language models
using declarative prompting. Advances in Neural Information Processing Systems, 36, 2024.

Zhehua Zhou, Jiayang Song, Kunpeng Yao, Zhan Shu, and Lei Ma. Isr-llm: Iterative self-refined
large language model for long-horizon sequential task planning. In 2024 IEEE International
Conference on Robotics and Automation (ICRA), pp. 2081–2088. IEEE, 2024.

13

Published as a conference paper at ICLR 2025

PLANNING ANYTHING WITH RIGOR: GENERAL-PURPOSE ZERO-SHOT
PLANNING WITH LLM-BASED FORMALIZED PROGRAMMING

1 Introduction 1

2 Related Works 3

2.1 LLMs for Planning . 3

2.2 LLM + Solver . 3

3 LLMFP 4

3.1 Overview . 4

3.2 Definer . 5

3.3 Formulator . 5

3.4 Code Generator . 6

3.5 Result Formatter . 7

3.6 Self Assess & Modification . 7

3.7 Choice of Solver . 7

4 Experimental Results 7

4.1 Domains . 7

4.2 LLMFP Performance . 8

4.3 Effectiveness of LLMFP Components . 9

4.4 LLMFP with Task-Specific Example . 9

5 Conclusion 10

6 Acknowledgments 11

A Appendix 15

A.1 Domains and Complexity Analysis . 15

A.2 LLMFP Performance over Iterations . 18

A.3 Additional Metric Performance: Success rate . 19

A.4 Time and Cost Statistics and Analysis . 20

A.5 Baselines Failure Case Analysis . 22

A.6 LLMFP Failure Case Analysis . 24

A.7 Baselines with Explicit Optimal Requirements . 26

A.8 Inputs on 9 tasks . 27

A.9 Example Outputs on Coffee tasks . 35

A.10 Prompts . 43

14

Published as a conference paper at ICLR 2025

A APPENDIX

A.1 DOMAINS AND COMPLEXITY ANALYSIS

We test on 9 planning problems, including 5 multi-constraint decision making tasks and 4 multi-step
tasks (Li et al., 2023; Valmeekam et al., 2024; Stein & Koller, 2023):

• Coffee Coffee company sources beans from three suppliers with fixed capacity, roasts them at
two facilities into dark or light coffee, and ships the roasted coffee to three retail locations. The
company aims to minimize the total shipping and roasting cost while fulfilling the demand at each
retail location. There are 266 different queries of 7 types in the dataset.

• Workforce Assign workers to shifts; each worker may or may not be available on a particular day.
The goal is to minimize the total payments to workers while fulfilling the shift requirements for
two weeks. There are 231 different queries of 5 types in the dataset.

• Facility A company currently ships its product from 5 plants to 4 warehouses. It is considering
closing some plants to reduce costs. The goal is to decide which plant(s) to close to minimize
transportation and fixed costs. There are 165 different queries of 4 types in the dataset.

• Task Allocation Given tasks and three robots skilled in different tasks, the goal is to assign tasks
to robots to minimize finish time. The finish time counts when the last robot stops working. There
are 50 different queries describing the number of different tasks. This task and its data and queries
are created by us.

• Warehouse The robots need to finish tasks by visiting stations that are capable of accomplishing
corresponding tasks. The goal is to find the list of stations while minimizing the total distance
traveled. There are 50 different queries that include the random-length list of tasks to finish. This
task and its data and queries are created by us.

• Blocksworld The robot has four actions: pickup, putdown, stack, and unstack. The goal is to
stack the blocks in the scene from their initial setup to a specific order with minimum steps. There
are 602 different queries that describe blocks’ initial conditions and goal states.

• Mystery Blocksworld An obfuscated version of Blocksworld. The action and predicate names
are replaced with names that logically make no sense. There are 602 different queries that describe
objects’ initial conditions and goal states.

• Movie The goal is to get the required snacks, watch the movie, and recover the movie and counter
to the original state with minimum steps. There are 21 different queries that describe objects’
initial conditions and goal states.

• Gripper There are robots and balls in different rooms. Each robot, with two grippers, can pick,
drop, and move balls between rooms. The goal is to place balls in specific rooms with minimum
steps. There are 25 different queries describing objects’ initial conditions and goal states.

The queries for Coffee, Workforce, and Facility are what-if questions that change or add constraints
to the existing scenarios. The queries of the rest tasks are different task initial and goal conditions.
Task inputs including example queries are given in Appendix A.8.

Mathematical Representation We use the benchmark from (Li et al., 2023) for the first 3 problems
(Coffee, Workforce, and Facility), in which these 3 problems are built as Mixed-integer linear pro-
gramming (MILP) problems. As an example, here is the problem definition of Coffee as a MILP
problem (Defined in Page 6-7 from (Li et al., 2023)):

xs,r is the number of units purchased from supplier s for roasting facility r, and yLr,ℓ and yDr,ℓ is the
amount of light and dark roast sent to retail location ℓ from roasting facility r. Cs is the capacity
for each supplier s, and DL

ℓ and DD
ℓ are demand for light and dark roast for each retail location ℓ.

There is a cost cs,r for each unit purchased from supplier s for roasting facility r, a shipping cost of
gr,ℓ for each unit sent to retail location ℓ from roasting facility r, and a roasting cost hL

r and hD
r per

15

Published as a conference paper at ICLR 2025

unit of light roast and dark roast respectively in facility r.

minimize

∑
s,r

xs,r · cs,r +
∑
r,ℓ

yLr,ℓ · hL
r,ℓ +

∑
r,ℓ

yDr,ℓ · hD
r +

∑
r,ℓ

(
yLr,ℓ + yDr,ℓ

)
· gr,ℓ

subject to∑

r

xs,r ≤ Cs, ∀s (Supplier capacity constraint)∑
s

xs,r =
∑
ℓ

(
yLr,ℓ + yDr,ℓ

)
, ∀r (Conservation of flow constraint)∑

r

yLr,ℓ ≥ DL
ℓ , ∀ℓ (Light coffee demand constraint)∑

r

yDr,ℓ ≥ DD
ℓ , ∀ℓ (Dark coffee demand constraint)

xs,r, y
L
r,ℓ, y

D
r,ℓ ∈ Z+, ∀s, r, ℓ (Integrality constraint)

Complexity Analysis

The Coffee problem can be framed as a max-flow problem, which can be solved in polynomial time.
Specifically, some algorithms can solve the max-flow problem with O(V E) or O(V 2E)

The Workforce problem, with no additional constraint, can also be framed as a max-flow problem.
However, different types of constraints are added by users to form different instances. Some types
of queries can increase the complexity. For example, ”What if Gu and Bob cannot work on the
same day?”. Adding constraints to introduce conflicting workers turns the problem to be as hard
as a maximum independent set problem(also NP-Hard), where we add an edge between conflicted
workers, and finding the maximum indentpendent set.

The facility problem is a NP-Hard problem Capacited Facility Location Problem(CFLP). The formal
definition of CFLP is as below:

min

n∑
i=1

m∑
j=1

cijdjyij +

n∑
i=1

fixi

s.t.
n∑

i=1

yij = 1 for all j = 1, . . . ,m

m∑
j=1

djyij ≤ uixi for all i = 1, . . . , n

yij ≥ 0 for all i = 1, . . . , n and j = 1, . . . ,m

xi ∈ {0, 1} for all i = 1, . . . , n

where xi = 1 if facility i is open, and xi = 0 otherwise. yij for i = 1, . . . , n and j = 1, . . . ,m,
which represents the fraction of the demand dj filled by facility i.

For the Task Allocation problem, since it is equivalent to a multi-agent traveling salesman prob-
lem(agent=robots, tasks=cities), it reduces from the classic traveling salesman problem (TSP) and
thus is also NP-hard.

For the Warehouse problem, as TSP is a special case when one station can be used to finish one
specific task and there are no extra stations, the Warehouse problem is at least as complex as TSP,
thus is also NP-hard.

For multi-step problems, Blocksworld is proved to be a NP-hard problem (Gupta & Nau, 1992), so
same for Mystery Blocksworld as it is the same problem with obfuscated names. Although there is
no existing proof, Movie has 13 predicates and 9 possible actions, and Gripper has 4 types of objects
(rooms, objects, robots, grippers), 4 predicates, and 3 possible actions. These show that they are not
simple straightforward tasks.

16

Published as a conference paper at ICLR 2025

LLMFP Performance on Sokoban To further test capability of LLMFP on even more challenging
tasks, we tested LLMFP on the Sokoban environment, a NP-Hard problem with large maps thus
needs more variables. We created an evaluation set containing 15 queries describing the game setup
and goals with different map sizes and number of boxes. We have five queries with 5x5 maps and
1 box, five queries with 6x6 maps and 1 box, and five queries with 5x5 maps and 2 boxes. The
evaluation results are presented in the following table.

Table 5: Optimal rates (%) comparison of LLMFP with baselines on Sokoban task.

DirectGPT-4O DirectO1-PREVIEW CoTGPT-4O CodeGPT-4O Code SMTGPT-4O LLMFP GPT-4O

0.0 26.7 0.0 0.0 0.0 80.0

As can be observed, LLMFP achieves a success rate of 80%, outperforming the baselines. The new
results, along with other problems, showcase the potential of LLMFP to solve complex problems.

The major failure mode is: when the generated codes initialize the adjacent predicate, it only ini-
tializes adjacent positions to be True but fails to initialize unmentioned positions to be False (since
the query only mentions position x and position y are adjacent), so the solver would set the non-
adjacent positions to adjacent to get solution with fewer steps. In addition, although LLMFP is
demonstrated to be capable of correctly encoding and solving the Sokoban problem, it is true that
there are many more variables in the Sokoban problem than in other tasks because the problem is
represented with a map with a large number of different positions. This slows down the speed of
the SMT solver. To mitigate this problem, some potential solutions include 1) introducing methods
to estimate the lower and upper bounds of step numbers needed and start from there, 2) developing
heuristics to prioritize some possible options first, and 3) developing methods that put attention on a
part of the map and ignore the unnecessary positions in the map. We would love to extend our work
to explore these directions to make our framework more efficient.

17

Published as a conference paper at ICLR 2025

A.2 LLMFP PERFORMANCE OVER ITERATIONS

Fig. 3 shows the performance of LLMFP over 5 iterations. The key observation is: number of it-
erations of Self Assess & Midification stage enables LLMFP to further improve the optimal rates,
although we can observe that LLMFP does not need extensive iterations to achieve an overall satis-
fying performance.

1 2 3 4 5
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Op
tim

al
 R

at
e

Coffee

1 2 3 4 5
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Op
tim

al
 R

at
e

Workforce

1 2 3 4 5
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Op
tim

al
 R

at
e

Facility

1 2 3 4 5
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Op
tim

al
 R

at
e

Task Allocation

1 2 3 4 5
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Op
tim

al
 R

at
e

Warehouse

1 2 3 4 5
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Op
tim

al
 R

at
e

Blocksworld

1 2 3 4 5
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Op
tim

al
 R

at
e

Mystery Blocksworld

1 2 3 4 5
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Op
tim

al
 R

at
e

Movie

1 2 3 4 5
Iteration

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Op
tim

al
 R

at
e

Gripper

LLMFP_GPT-4o LLMFP_Claude-3.5-Sonnet

Figure 3: Optimal rates of models across LLMFP Iterations

18

Published as a conference paper at ICLR 2025

A.3 ADDITIONAL METRIC PERFORMANCE: SUCCESS RATE

In addition to the optimal rate, we also include another metric, success rate to evaluate baselines and
LLMFP. We include the result in Table 6 and Table 7.

Note that although for multi-constraint problems the optimization goal is described in the task de-
scription, we exclude the optimization goal when calculating the success rate and only evaluate
whether the plan fulfills the task setup and the query. This would largely decrease the difficulty of
multi-constraint problems. For example, even assigning all tasks to one robot is considered a success
for the task allocation task. Thus, the success rates of all baselines for multi-constraint problems are
significantly higher than the optimal rates. However, although the success rates of LLMFP almost
remains the same as optimal rates since the SMT solver guarantees to output the optimal result with
correct encoding, the performance of LLMFP still outperforms other baselines, with an average of
86.4%, 18.1% higher than the best baseline.

While for the multi-step problems, considering all initial conditions, predicate and action definitions,
and goals are the same, developing a reasonable and correct plan is not significantly easier than
developing an optimal plan with the least number of steps. Thus, the success rates of baselines are
improved, but not significantly, compared to the optimal rates.

Table 6: Success rate (%) comparison of LLMFP with baselines on 5 multi-constraint problems.

Method Coffee Workforce Facility Task Allocation Warehouse Average

DirectGPT-4O 5.6 54.5 31.7 100.0 42.0 46.8
DirectO1-PREVIEW 26.3 92.6 41.5 94.0 86.0 68.1
CoTGPT-4O 17.7 72.3 31.7 100.0 82.0 60.7
CodeGPT-4O 18.8 76.2 64.6 92.0 90.0 68.3
Code SMTGPT-4O 0.0 10.8 1.2 0.0 34.0 9.2
LLMFP GPT-4O 64.7 92.2 79.3 100.0 96.0 86.4

DirectCLAUDE 3.5 SONNET 5.3 91.3 36.0 100.0 76.0 61.7
CoTCLAUDE 3.5 SONNET 10.9 60.6 1.2 100.0 96.0 53.7
CodeCLAUDE 3.5 SONNET 61.3 89.2 59.1 100.0 60.0 73.9
CodeCLAUDE 3.5 SONNET 77.1 39.0 59.1 90.0 74.0 67.8
LLMFP CLAUDE 3.5 SONNET 80.5 88.7 61.6 100.0 92.0 84.6

Table 7: Success rate (%) comparison of LLMFP with baselines on 4 multi-step problems.

Method Blocksworld Mystery Blocksworld Movie Gripper Average

DirectGPT-4O 56.1 1.0 90.5 16.0 40.9
DirectO1-PREVIEW 90.9 37.9 100.0 76.0 76.2
CoTGPT-4O 62.0 3.0 95.2 10.0 42.5
CodeGPT-4O 0.0 0.3 0.0 0.0 0.1
Code SMTGPT-4O 0.2 0.0 0.0 4.0 1.0
LLMFP GPT-4O 96.2 77.7 100.0 76.0 87.5

DirectCLAUDE 3.5 SONNET 54.5 0.5 100.0 56.0 52.7
CoTCLAUDE 3.5 SONNET 76.1 3.2 100.0 72.0 62.8
CodeCLAUDE 3.5 SONNET 0.0 0.0 0.0 0.0 0.0
Code SMTCLAUDE 3.5 SONNET 0.0 0.0 4.0 0.0 1.0
LLMFP CLAUDE 3.5 SONNET 93.4 98.0 100.0 76.0 91.8

19

Published as a conference paper at ICLR 2025

A.4 TIME AND COST STATISTICS AND ANALYSIS

Table 8 and Tabel 9 show the wall time comparison of all methods for GPT-4o on 9 tasks. From the
results, we could observe that the time taken for LLMFP, although longer than most of the baselines,
is within reasonable ranges. Especially, for multi-constraint problems, it is shorter than Direct with
o1-preview because of the inherent difficulty for LLMs to solve these combinatorial optimization
problems.

Table 10 shows the detailed time statistics of all components of LLMFP for GPT-4o on 9 tasks.
We could observe that for both LLM querying time and solver running time, all stages of LLMFP
requires reasonable runtime. The longest runtime is prompting FORMULATOR it is time-consuming
to reason about all needed variables and information to form representation formulation.

Table 8: Average wall time (s) per query comparison for 5 multi-constraint problems with GPT-4o.

Method Coffee Workforce Facility Task Allocation Warehouse Average

DirectGPT-4O 8.8 2.2 2.1 1.8 0.9 3.2
DirectO1-PREVIEW 104.2 63.9 77.7 70.5 63.7 76.0
CoTGPT-4O 16.9 12.0 6.0 9.6 7.4 10.4
CodeGPT-4O 30.6 10.0 8.2 5.7 7.1 12.3
Code SMTGPT-4O 30.0 15.3 10.3 15.0 8.3 15.8
LLMFP GPT-4O 87.1 55.1 29.9 62.3 28.9 52.7

Table 9: Average wall time (s) per query comparison for 4 multi-step problems with GPT-4o.

Method Blocksworld Mystery Blocksworld Movie Gripper Average

DirectGPT-4O 0.7 0.7 0.5 8.8 2.7
DirectO1-PREVIEW 26.3 87.9 25.7 23.8 40.9
CoTGPT-4O 2.1 4.0 1.0 10.2 4.3
CodeGPT-4O 19.7 8.9 7.3 8.2 11.0
Code SMTGPT-4O 9.1 8.5 10.6 12.9 10.3
LLMFP GPT-4O 43.3 48.3 58.6 141.6 73.0

Table 10: Average time (s) spent per query for all components of LLMFP GPT-4O on all 9 tasks.

Domain Definer Formulator Solver Formatter Code Gen. Self Assess & Mod.

Coffee 5.6 10.8 17.1 0.1 14.2 11.3
Workforce 3.4 5.1 8.3 11.0 3.1 7.8

Facility 3.8 7.5 6.4 0.7 4.3 4.0
Task Allocation 8.6 23.8 5.2 0.2 6.5 5.9

Warehouse 3.9 3.1 6.2 0.2 4.1 3.3

Blocksworld N/A 21.0 14.6 0.6 1.9 3.4
Mys. Blocksworld N/A 24.3 14.6 0.6 2.3 4.1

Movie N/A 21.2 9.9 0.3 2.1 10.6
Gripper N/A 18.3 16.0 6.9 11.2 7.0

20

Published as a conference paper at ICLR 2025

Table 11 shows the average cost comparison of all methods on the coffee task, and Table 12, and
13 shows the cost statistics of LLMFP over all 9 tasks. We observe that although LLMFP is more
costly than most of the baselines, it is cheaper than Direct with o1-preview with better performance.
In addition, the average cost per query for all 9 tasks is around 0.1 dollar, indicating LLMFP is not
very costly.

Table 11: Average cost ($) per query comparison of LLMFP GPT-4O on the Coffee task.

DirectGPT-4O DirectO1-PREVIEW CoTGPT-4O CodeGPT-4O Code SMTGPT-4O LLMFP GPT-4O

0.008 0.536 0.013 0.023 0.024 0.139

Table 12: Average cost ($) per query of LLMFP GPT-4O on 5 multi-constraint problems.

Coffee Workforce Facility Task Allocation Warehouse

0.139 0.140 0.083 0.081 0.085

Table 13: Average cost ($) per query of LLMFP GPT-4O on 4 multi-step problems.

Blocksworld Mystery Blocksworld Movie Gripper

0.122 0.105 0.131 0.128

21

Published as a conference paper at ICLR 2025

A.5 BASELINES FAILURE CASE ANALYSIS

Here we describe the major failure cases for the baselines. Please refer to Appendix A.9 for example
outputs.

A.5.1 DIRECT, DIRECTO1-PREVIEW , AND COT

For multi-constraint tasks, since they involve various constraints, intensive calculations, and numer-
ous possible solutions, LLMs still do not have the capability to directly solve the optimal solution
considering all constraints. They either fail to understand or consider some important constraints or
fail to optimize the goal. Although utilizing stronger o1-preview or taking advantages of prompting
techniques like CoT could result in less mistakes, the major underlying failure reasons are similar.

For multi-step tasks, the major failure cases are the failure to deliver reasonable plans considering
preconditions and effects of all actions accurately.

A.5.2 CODE

For multi-constraint tasks, the major failure cases are 1) failing to consider all necessary constraints,
2) failing to consider or understand the query, and 3) overwriting the given API.

For multi-step tasks, the major failure cases are 1) failing to correctly represent the problem, includ-
ing the problem setup, predicates, and actions, 2) failing to write codes with correct logic or syntax.

A.5.3 CODE SMT

For multi-constraint tasks, the major failure cases are same as Code.

For multi-step tasks, the major failure cases are 1) Poor SMT Utilization: including failing to dis-
tinguish And and Implies, to correctly use SMT Array or Function, or to write correct SMT syntax
(or Python syntax sometimes), and 2) Poor Problem Understanding: failing to initialize the initial
value of unmentioned predicates (eg. when the query says blocks a, b, d are clear, codes also need
to initialize c to be not clear), to assert one action per step, or to update unchanged variables for next
step

A.5.4 THEORETICAL INSIGHTS

Overall, LLMs are good at understanding the syntax and semantics of planning problems as opti-
mization problems but are not good at solving optimization problems directly. Specifically, next-
token prediction is fundamentally different from deterministic algorithms for optimization. There’s
a growing belief that next token prediction cannot truly model human thought and cannot support
human-like capabilities of understanding a problem, imagining, curating, and backtracking plans
before executing [1-3]. Specifically, the claim that next token predictions are “ill-suited for planning
tasks” is supported by works [4-7], which tested the planning capabilities of LLMs on various plan-
ning tasks. These works empirically show that in addition to identifying patterns in language and
predicting the next word in a sequence, LLMs still can not truly understand a problem and thus do
not have the capability to perform intense calculations to optimize for any objectives. Thus, this is a
major reason why baselines are not capable of solving the complex planning problems in our paper.
However, since LLMFP teaches LLMs to build the optimization problem step by step and calls the
external solver to solve for a plan, this bypasses the need to devise a plan by LLMs themselves.

To support this claim that LLMs cannot understand and solve an optimization problem, we conduct
an experiment on the Coffee task that, instead of using natural language task descriptions as inputs,
we directly map this Coffee task to an optimization problem and use the formal mathematical def-
inition of this problem as the inputs to LLMs. Thus, LLMs do not need to understand the problem
and find the underlying constraints, as a formal definition is given and could be directly solved.

We tested Direct with the most powerful LLM OpenAI o1-preview model on all queries of Coffee,
which only achieves an optimal rate of 34.2%. Compared to its 25.9% optimal rate with natural
language task description, this is not a significant improvement, given all goals and constraints are
clearly formally specified in the new setting. This is consistent with the conclusion that LLMs still

22

Published as a conference paper at ICLR 2025

cannot solve optimization problems by themselves, even given a formal representation. LLMFP
enables LLMs to formalize planning problems as optimization problems. Since SMT solvers can
guarantee to return correct answers given correct input, the high optimal and success rate of LLMFP
indicates that LLMFP allows LLM to parse the correct syntax and semantics information of a plan-
ning problem from its natural language description to a formal mathematical description. Such
translation is also non-trivial when no task-specific examples are provided. As shown in our newly
added baseline approach Code SMT as shown in Table 1 and 2, when we directly ask LLMs to
translate and encode the natural language task description in an SMT format, the optimal rate is low,
with an average of 2.7% and 62.4% for multi-constraint tasks, and 1.0% and 0.0% for multi-step
tasks across two LLMs GPT-4o and Claude 3.5 Sonnet.

23

Published as a conference paper at ICLR 2025

A.6 LLMFP FAILURE CASE ANALYSIS

Here we analyze the major failure cases for all 9 tasks.

A.6.1 COFFEE

There are two major failure cases for Coffee tasks:

First, some queries are not clearly presented, indicating ambiguous information. Queries of Coffee
tasks are what-if questions and are categorized into 7 sets. Each set is a type of question. We notice
that the type “supply-roastery” asks queries like “What led to the decision to use supplier3 for the
roasting facility at roastery1?”. To answer this question, it is both plausible to test “using supplier3”
or to test “not using supplier3” to see the performance. However, the ground truth answer for this
type of questions is to “not using supplier 3”. As confusing queries even for human, they are hard
for LLMs to understand. Thus, for these queries, LLMFP sometimes generate codes with opposite
meanings as what is expected.

Second, sometimes LLMFP DEFINER fails to consider all implicit constraints. The most easily
neglectable implicit constraints are 1) the beans roasted in each roastery do not exceed the beans it
receives, and 2) the beans ship from each roastery do not exceed the coffee it roasts. When any of
the two constraints are missing, to minimize the cost, the model will automatically set the shipped
beans or roasted coffee to be 0, assuming the company delivers coffee without sourcing beans or
roasting coffee.

A.6.2 WORKFORCE

There are two major failure cases for Coffee tasks:

First, sometimes LLMFP fails to understand the queries. Some of the queries asks questions like
‘Can Gu transition from Sun14 to Sun7 for work purposes?’. The meaning is to force Gu to work
on Sun7 and take rest on Sun14. However, sometimes LLMFP builds variables to test both taking
and not taking this transition, and returns solutions with less costs.

Second, sometimes when the solution space is large, it is hard to find the optimal solution within
maximum runtime set for solver. We set the maximum solver runtime to be 15 minutes, which is
exceeded when solving some hard queries.

A.6.3 FACILITY

Similarly as the first failure case of Coffee, some queries are not clearly presented. The queries are
like “What justifies the opening of plant 0?”, which is confusing even for humans. Both opening
plant 0 and closing plant 0 to report the costs make sense to answer this query. However, the ground
truth meaning of this query is to close plant 0.

A.6.4 TASK ALLOCATION

LLMFP only fails one query in Task Allocation. The reason is the FORMULATOR generates wrong
values for robot finish time.

A.6.5 WAREHOUSE

The major failure case for Warehouse is CODE GENERATOR overwrites the provided API
get_distance and provide 1 as the output during Code Generation. Thus, the distance between
each station is mistakenly set to be 1.

A.6.6 BLOCKSWORLD

One major failure case for Blocksworld is CODE GENERATOR fails to initialize the states of predi-
cates correctly and thoroughly. Since the query will only meantion the predicates that are true, for
example, block 1 is on block 2, but when initializing, LLMFP needs to initialize both mentioned
states but also unmentioned states that are false. For example, block 2 is not on block 1. However,
CODE GENERATOR sometimes fails to consider all unmentioned states.

24

Published as a conference paper at ICLR 2025

A.6.7 MYSTERY BLOCKSWORLD

Similarly as Blocksworld, Mystery Blocksworld has same failure case. For Mystery Blocksworld,
since the predicate and action names are not meaningful, more this kind of errors are made by GPT-
4o. However, Claude seems to have better reasoning capability to support it from making more these
errors.

A.6.8 MOVIE

There is no failure case for Movie.

A.6.9 GRIPPER

The major failure case for Gripper is when the solver fails to find the solution because there are some
code generation errors, the SELF ASSESS & MODIFICATION sometimes would think it is because
the timestep is not enough, thus adding another loop within the original loop. However, this would
result in the program to execute forever.

25

Published as a conference paper at ICLR 2025

A.7 BASELINES WITH EXPLICIT OPTIMAL REQUIREMENTS

For all methods including LLMFP and baselines, we implicitly mention the goal of each multi-
constraint task in the task description. For example, for the Coffee task, the task description “...The
company’s objective is to minimize the total cost, including shipping beans, roasting, and shipping
roasted coffee, while ensuring that all coffee produced meets or exceeds the demand at each retail
location” implicitly shows the goal is to find the plan that minimizes the total cost.

While for multi-step problems, the methods are not explicitly instructed to provide optimal solutions.
Since SMT solver guarantees to find the solution if there exists one, it can rigorously show the
solution does not exist for smaller timesteps and increase timestep, thus can always find the optimal
solution if the formulation and generated codes are correct. This is an advantage of incorporating a
complete and sound solver like SMT in our framework.

However, to better understand the capabilities of baselines, we modify the prompts to explicitly
instruct them to find the optimal solution and re-evaluate them on the 4 multi-step problems. We
add Opt to the name of the baselines to represent the baselines with explicit optimal instructions.

Table 14 shows the optimal rate of baselines with explicit instruction on finding the optimal plan.
Compared with Table 2, we could observe that some baselines achieve better performance (from
average 0.1% to 16.4% for Code OptGPT-4O, and from average 30.9% to 36.7% for CoT OptGPT-4O),
while some achieve slightly worse performance(average 68.1% to 67.0% for Direct OptO1-PREVIEW).
However, despite the changes due to the explicit instruction to find the optimal plan, LLMFP still
could largely outperform all baselines.

Table 14: Optimal rate (%) comparison of LLMFP with baselines that explicitly instructed to gen-
erate optimal plans on 4 multi-step problems.

Method Blocksworld Mystery Blocksworld Movie Gripper Average

Direct OptGPT-4O 35.2 0.8 100.0 0.0 34.0
Direct OptO1-PREVIEW 80.9 39.0 100.0 48.0 67.0
CoT OptGPT-4O 33.4 2.3 95.2 16.0 36.7
Code OptGPT-4O 0.0 3.8 61.9 0.0 16.4
Code SMT OptGPT-4O 0.0 0.0 0.0 0.0 0.0
LLMFP GPT-4O 96.2 77.7 100.0 76.0 87.5

Direct OptCLAUDE 3.5 SONNET 40.9 1.5 100 20.0 40.6
CoT OptCLAUDE 3.5 SONNET 52.5 4.5 100 20.0 44.2
Code OptCLAUDE 3.5 SONNET 0.0 0.0 0.0 0.0 0.0
Code SMT OptCLAUDE 3.5 SONNET 0.0 0.0 0.0 0.0 0.0
LLMFP CLAUDE 3.5 SONNET 93.0 98.0 100.0 76.0 91.8

26

Published as a conference paper at ICLR 2025

A.8 INPUTS ON 9 TASKS

We include the inputs, which includes task description, background information or API, and example
queries, for all 9 tasks in Fig. 4 - Fig. 12:

Task Description:
A coffee production company sources beans from three suppliers, roasts them at one of two facilities
into either dark or light coffee, and ships the roasted coffee to three retail locations. Each supplier has a
limited capacity. Each roastery, with no existing inventory, can roast one unit coffee bean into one unit
of dark or light coffee. The retail locations have specific demands for dark and light coffee, with no
existing inventory. The company's objective is to minimize the total cost, including shipping beans,
roasting, and shipping roasted coffee, while ensuring that all coffee produced meets or exceeds the
demand at each retail location.

Background Information or API:
capacity_in_supplier = {'supplier1': 150, 'supplier2': 50, 'supplier3': 100}
light_coffee_needed_for_cafe = {'cafe1': 20, 'cafe2': 30, 'cafe3': 40}
dark_coffee_needed_for_cafe = {'cafe1': 20, 'cafe2': 20, 'cafe3': 100}
shipping_cost_from_supplier_to_roastery = {
 ('supplier1', 'roastery1'): 5,
 ('supplier1', 'roastery2'): 4,
 ('supplier2', 'roastery1'): 6,
 ('supplier2', 'roastery2'): 3,
 ('supplier3', 'roastery1'): 2,
 ('supplier3', 'roastery2'): 7
}
roasting_cost_light = {'roastery1': 3, 'roastery2': 5}
roasting_cost_dark = {'roastery1': 5, 'roastery2': 6}
shipping_cost_from_roastery_to_cafe = {
 ('roastery1', 'cafe1'): 5,
 ('roastery1', 'cafe2'): 3,
 ('roastery1', 'cafe3'): 6,
 ('roastery2', 'cafe1'): 4,
 ('roastery2', 'cafe2'): 5,
 ('roastery2', 'cafe3'): 2
}
math package: function math.ceil() to round UP float to int and math.floor() to round DOWN float to int
Expect output format

Example Query:
Set 1: What is the potential impact of a 29% increase in demand at cafe cafe2?
Set 2: What if demand for light coffee at cafe cafe1 increased by 23%?
Set 3: Why are we using supplier supplier2 for roasting facility roastery2?
Set 4: Assume cafe cafe2 can exclusively buy coffee from roasting facility roastery2, and conversely,
roasting facility roastery2 can only sell its coffee to cafe cafe2. How does that affect the outcome?
Set 5: What if roasting facility roastery2 can only be used for cafe cafe2?
Set 6: What if supplier supplier3 can now provide only half of the quantity?
Set 7: The per-unit cost from supplier supplier3 to roasting facility roastery2 is now 1. How does that
affect the total cost?

Coffee

Figure 4: Task description, background information or API, and example queries for Coffee

27

Published as a conference paper at ICLR 2025

Task Description:
Assign workers to work day for two weeks (day1 - 14); each work day (shift) requires different number
of workers, and each worker may or may not be available on a particular day. The goal is to find the
work arrangement of every day that fulfills both worker availability and the shift requirement while
minimizing the total payment to workers.

Background Information or API:
Number of workers required for each day, each key is a different day include both day in a week and
the real date. Mon1 means Monday and 1st day for this month.
shift_requirement = {
 "Mon1": 1, "Tue2": 1, "Wed3": 2, "Thu4": 2, "Fri5": 2, "Sat6": 3, "Sun7": 2,
 "Mon8": 1, "Tue9": 1, "Wed10": 1, "Thu11": 2, "Fri12": 3, "Sat13": 3, "Sun14": 2,
}
Worker availability
availability = {
 "Amy": ["Tue2", "Wed3", "Fri5", "Sun7", "Tue9", "Wed10", "Thu11", "Fri12", "Sat13", "Sun14"],
 "Bob": ["Mon1", "Tue2", "Fri5", "Sat6", "Mon8", "Thu11", "Sat13"],
 "Cathy": ["Wed3", "Thu4", "Fri5", "Sun7", "Mon8", "Tue9", "Wed10", "Thu11", "Fri12", "Sat13",
"Sun14"],
 "Dan": ["Tue2", "Wed3", "Fri5", "Sat6", "Mon8", "Tue9", "Wed10", "Thu11", "Fri12", "Sat13",
"Sun14"],
 "Ed": ["Mon1", "Tue2", "Wed3", "Thu4", "Fri5", "Sun7", "Mon8", "Tue9", "Thu11", "Sat13",
"Sun14"],
 "Fred": ["Mon1", "Tue2", "Wed3", "Sat6", "Mon8", "Tue9", "Fri12", "Sat13", "Sun14"],
 "Gu": ["Mon1", "Tue2", "Wed3", "Fri5", "Sat6", "Sun7", "Mon8", "Tue9", "Wed10", "Thu11",
"Fri12", "Sat13", "Sun14"],
 }
Amount each worker is paid to work one day
worker_pay = {
 "Amy": 10, "Bob": 12, "Cathy": 10, "Dan": 8, "Ed": 8, "Fred": 9, "Gu": 11,
}
Expected output format

Example Query:
Set 1: Can Gu's work schedule be adjusted from Sun7 to Tue2?
Set 2: What about the scenario where Gu is promoted and starts earning 15 dollars an hour?
Set 3: What if Gu's shift capacity is capped at 6?
Set 4: If I need 4 more people specifically on Mondays, how can I accommodate that?
Set 5: What occurs if Gu and Bob are prevented from working on the same day?

Workforce

Figure 5: Task description, background information or API, and example queries for Workforce

28

Published as a conference paper at ICLR 2025

Task Description:
A company currently ships its product from 5 plants (Names: Plant 0, Plant 1, Plant 2, Plant 3, Plant 4)
to 4 warehouses (Names: Warehouse 0, Warehouse 1, Warehouse 2, Warehouse 3). Each plant has
capacity and each warehouse has demand. It is considering closing some plants to reduce costs. The
goal is to find out which plant(s) should the company close and optimal transportation units from each
plant to warehouse in order to minimize total cost, which includes transportation and fixed costs.

Background Information or API:
Warehouse demand in thousands of units
demand = [15, 18, 14, 20]

Plant capacity in thousands of units
capacity = [20, 22, 17, 19, 18]

Fixed costs for each plant
fixedCosts = [12000, 15000, 17000, 13000, 16000]

Transportation costs per thousand units
transCosts = [[4000, 2500, 1200, 2200],
 [2000, 2600, 1800, 2600],
 [3000, 3400, 2600, 3100],
 [2500, 3000, 4100, 3700],
 [4500, 4000, 3000, 3200]]
math package: function math.ceil() to round UP float to int and math.floor() to round DOWN float to int
Expected output format

Example Query:
Set 1: If we were to close Plant 3, what might be the potential impact?
Set 2: Why is the edge from plant 3 to warehouse 3 not considered for selection?
Set 3: What would happen if plant 3's opening cost is reduced by 50%?
Set 4: What would happen if the demand were to rise by 4?

Facility

Figure 6: Task description, background information or API, and example queries for Facility

29

Published as a conference paper at ICLR 2025

Task Description:
Given a list of tasks (Number_A Task A, Number_B Task B, Number_C Task C) and three
heterogeneous robots (Robot A, Robot B, Robot C) that are skilled at different tasks, the goal is to find
the way to assign different number of tasks to different robots and finish the tasks with minimized finish
time. The three robots could work in parallel, but the finish time counts the time when the last robot
stops working.

Background Information or API:
Finish time for each robot-task pair
robot_work_time_for_tasks = {
 ('Robot A', 'Task A'): 24,
 ('Robot A', 'Task B'): 89,
 ('Robot A', 'Task C'): 38,
 ('Robot B', 'Task A'): 27,
 ('Robot B', 'Task B'): 58,
 ('Robot B', 'Task C'): 56,
 ('Robot C', 'Task A'): 18,
 ('Robot C', 'Task B'): 57,
 ('Robot C', 'Task C'): 49,
}
Max(variable_list) function that takes a list as input and outputs the max of this list of variables.
Expected output format

Example Query:
Number of Task A is 54; Number of Task B is 57; Number of Task C is 74.

Task Allocation

Figure 7: Task description, background information or API, and example queries for Task Allocation

Task Description:
The robots need to finish N tasks one by one by visiting N stations (repeatable) that are capable of
accomplishing corresponding tasks. The robot to start at origin, finish N given tasks with given order,
and return back to origin. The goal is to find the list of N stations while minimizing the total distance
travelled.

Background Information or API:
Each row is the stations that could be used to accomplish the task
station_task_info = {
 'Task 0': [2, 3, 4, 7, 9],
 'Task 1': [1, 2],
 'Task 2': [1, 5],
 'Task 3': [3, 4],
 'Task 4': [5, 8],
 'Task 5': [0, 4, 5, 6],
 'Task 6': [3, 6, 8, 9],
 'Task 7': [0, 1],
 'Task 8': [2, 7, 8],
 'Task 9': [7, 9]
}
get_distance(station_1: Int(), station_2: Int()) to calculate the distance: Real() between two stations(use
index 10 to represent origin)
Expected output format

Example Query:
Number of Tasks is 7. The Task ids needs to be accomplished are: [6, 9, 0, 2, 4, 3, 5]

Warehouse

Figure 8: Task description, background information or API, and example queries for Warehouse

30

Published as a conference paper at ICLR 2025

Task Description:
The robot has four actions: pickup, putdown, stack, and unstack. The domain assumes a world where
there are a set of blocks that can be stacked on top of each other, an arm that can hold one block at a
time, and a table where blocks can be placed.
The actions defined in this domain include:
pickup: allows the arm to pick up a block if the block is clear, the block is on_table, and the arm is
empty. After the pickup action, the arm will be holding the block thus not empty, and the block will no
longer be on_table or clear.
putdown: allows the arm to put down a block if the arm is holding a block. After the putdown action, the
arm will be empty thus not holding the block, and the block will be on_table and clear.
stack: allows the arm to stack a block on top of another block if the arm is holding the top block and the
bottom block is clear. After the stack action, the arm will be empty thus not holding the block, the top
block will be clear and on top of the bottom block, and the bottom block will no longer be clear.
unstack: allows the arm to unstack a block from on top of another block if the top block is on the bottom
block, the arm is empty, and the top block is clear. After the unstack action, the arm will be holding the
top block thus not empty, the top block will no longer be on top of the bottom block and not clear, and
the bottom block will be clear.

Background Information or API:
update_data(solver) that helps to update the unchanged predicate variables

Example Query:
You have 4 blocks.
b is on top of c.
c is on top of d.
d is on top of a.
a is on the table.
b is clear.
Your arm is empty.
Your goal is to move the blocks.
a should be on top of c.
d should be on top of a.

Blocksworld

Figure 9: Task description, background information or API, and example queries for Blocksworld

31

Published as a conference paper at ICLR 2025

Task Description:
I am playing with a set of objects. The objects can be province or not, planet or not, pain or not, and one
object could craves another object. The world has a harmony state. I have four actions: attack, succumb,
overcome, and feast.
The actions defined in this domain include:
attack: allows to attack an object if the object is province, the object is planet, and harmony is true. After
the attack action, the object is pain, the object will no longer be on province or planet, and harmony is
not true.
succumb: allows to succumb an object if the object is pain. After the succumb action, the object is no
longer pain and harmony is true, and the object will be on the province and planet.
overcome: allows to overcome an object from another object if the first object is pain and the second
object is province. After the overcome action, harmony become true, the first object will not pain, the
first object will be province and craves the second object, and the second object will no longer be
province.
feast: allows to feast an object from another object if the first object is province, the first object craves
the second object, and harmony is true. After the feast action, harmony becomes not true, the first object
will be pain, the first object no longer craves the second object and not province, and the second object
will be province.

Background Information or API:
update_data(solver) that helps to update the unchanged predicate variables

Example Query:
You have 4 objects.
b craves c.
c craves d.
d craves a.
a is planet.
b is province.
harmony is true.
Your goal is to play with the objects to achieve:
a should craves c.
d should craves a.

Mystery Blocksworld

Figure 10: Task description, background information or API, and example queries for Mystery
Blocksworld

32

Published as a conference paper at ICLR 2025

Task Description:
You work to play a movie. You want to get several objects as snacks (objects could be chips, dip, pop,
cheese, crackers), and have movie_rewound and set counter_at_zero at the end. You have nine actions:
rewind-movie, reset-counter, start-movie, undo-rewind, get-chips, get-dip, get-pop, get-cheese, and get-
crackers.
The actions defined in this domain include:
start-movie: allows to start movie if counter_at_zero. After the start-movie action, counter_at_zero is no
longer true, and counter_at_other_than_zero is true.
rewind-movie: allows to rewind movie if counter_at_other_than_zero. After the rewind-movie action,
movie_rewound is true.
undo-rewind: allows to undo movie rewind if movie_rewound is true. After the undo-rewind action,
movie_rewound is no longer true.
reset-counter: allows to reset counter if counter_at_other_than_zero. After the reset-counter action,
counter_at_other_than_zero is no longer true, and counter_at_zero is true.
get-chips: allows to get an object if counter_at_zero is true, movie_rewound is not true, and this object
is chips. After the get-chips action, have_chips is true.
get-dip: allows to get an object if counter_at_zero is true, movie_rewound is not true, and this object is
dip. After the get-dip action, have_dip is true.
get-pop: allows to get an object if counter_at_zero is true, movie_rewound is not true, and this object is
pop. After the get-pop action, have_pop is true.
get-cheese: allows to get an object if counter_at_zero is true, movie_rewound is not true, and this object
is cheese. After the get-cheese action, have_cheese is true.
get-crackers: allows to get an object if counter_at_zero is true, movie_rewound is not true, and this
object is crackers. After the get-crackers action, have_crackers is true.

Background Information or API:
update_data(solver) that helps to update the unchanged predicate variables

Example Query:
You have 5 objects.
object_0 is chips.
object_1 is dip.
object_2 is pop.
object_3 is cheese.
object_4 is crackers.
counter-at-zero is true.
Your goal is to achieve:
movie-rewound
counter-at-zero
have-dip

Movie

Figure 11: Task description, background information or API, and example queries for Movie

33

Published as a conference paper at ICLR 2025

Task Description:
You control robots, each with a left and a right gripper that can move balls between different rooms.
There are three actions defined in this domain:
move: allows a robot to move from one room to another room if the robot is at room_from. After the
move action, the robot is no longer at room_from, and the robot will be at room_to.
pick: allows a robot to pick up a ball with a gripper in a room if the robot is at this room, the ball is at
this room, and the gripper is free. After the pick action, the robot carry the ball, this gripper of the robot
is not free, and the ball will not at the room.
drop: allows a robot to drop a ball with a gripper in a room if the robot carry this ball, the robot is at the
room. After the drop action, the robot will not carry the ball, this gripper of the robot will be free, and
the ball will at the room.

Background Information or API:
update_data(solver) that helps to update the unchanged predicate variables

Example Query:
You have 1 robot. The robots' grippers are free.
You have 4 rooms.
You have 7 balls.
robot1 is at room1.
robot1 is at room1.
ball1 is at room1.
ball2 is at room2.
ball3 is at room2.
ball4 is at room2.
ball5 is at room2.
ball6 is at room3.
ball7 is at room2.
Your goal is to achieve:
ball1 should be at room3.
ball2 should be at room3.
ball3 should be at room4.
ball4 should be at room1.
ball5 should be at room4.
ball6 should be at room4.
ball7 should be at room2.

Gripper

Figure 12: Task description, background information or API, and example queries for Gripper

34

Published as a conference paper at ICLR 2025

A.9 EXAMPLE OUTPUTS ON COFFEE TASKS

In this section, we include the outputs of all models for the query “What is the potential impact of a
29% increase in demand at cafe cafe2?”. The optimal solution has total cost to be 2612.

A.9.1 BASELINES

We include the outputs of four baselines for Coffee task in Fig. 13 - Fig. 15, and analyze the failure
reason in the figure descriptions:

{
 "suppliers": {
 "supplier_1_ship_to_roastery_1": 0,
 "supplier_1_ship_to_roastery_2": 95,
 "supplier_2_ship_to_roastery_1": 0,
 "supplier_2_ship_to_roastery_2": 50,
 "supplier_3_ship_to_roastery_1": 100,
 "supplier_3_ship_to_roastery_2": 0,
 "supplier_1_total_supplied_beans": 95,
 "supplier_2_total_supplied_beans": 50,
 "supplier_3_total_supplied_beans": 100
 },
 "roasteries": {
 "roastery_1_dark_coffee": 1,
 "roastery_1_light_coffee": 99,
 "roastery_2_dark_coffee": 145,
 "roastery_2_light_coffee": 0,
 "roastery_1_total_roasted_beans": 100,
 "roastery_2_total_roasted_beans": 145
 },
 "cafe": {
 "roastery_1_ship_dark_to_cafe_1": 0,
 "roastery_1_ship_light_to_cafe_1": 20,
 "roastery_1_ship_dark_to_cafe_2": 1,
 "roastery_1_ship_light_to_cafe_2": 39,
 "roastery_1_ship_dark_to_cafe_3": 0,
 "roastery_1_ship_light_to_cafe_3": 40,
 "roastery_2_ship_dark_to_cafe_1": 20,
 "roastery_2_ship_light_to_cafe_1": 0,
 "roastery_2_ship_dark_to_cafe_2": 25,
 "roastery_2_ship_light_to_cafe_2": 0,
 "roastery_2_ship_dark_to_cafe_3": 100,
 "roastery_2_ship_light_to_cafe_3": 0,
 "total_dark_coffee_received_cafe_1": 20,
 "total_dark_coffee_received_cafe_2": 26,
 "total_dark_coffee_received_cafe_3": 100,
 "total_light_coffee_received_cafe_1": 20,
 "total_light_coffee_received_cafe_2": 39,
 "total_light_coffee_received_cafe_3": 40
 },
 "total_cost": 2767
}

Direct_o1-preview Output
```json
{
    "suppliers": {
        "supplier_1_ship_to_roastery_1": 100,
        "supplier_1_ship_to_roastery_2": 50,
        "supplier_2_ship_to_roastery_1": 50,
        "supplier_2_ship_to_roastery_2": 0, 
        "supplier_3_ship_to_roastery_1": 100,
        "supplier_3_ship_to_roastery_2": 0,
        "supplier_1_total_supplied_beans": 150,
        "supplier_2_total_supplied_beans": 50, 
        "supplier_3_total_supplied_beans": 100
    },
    "roasteries": {
        "roastery_1_dark_coffee": 120, 
        "roastery_1_light_coffee": 130, 
        "roastery_2_dark_coffee": 20, 
        "roastery_2_light_coffee": 30, 
        "roastery_1_total_roasted_beans": 250,
        "roastery_2_total_roasted_beans": 50
    },
    "cafe": {
        "roastery_1_ship_dark_to_cafe_1": 20,
        "roastery_1_ship_light_to_cafe_1": 20,
        "roastery_1_ship_dark_to_cafe_2": 20,
        "roastery_1_ship_light_to_cafe_2": 30,
        "roastery_1_ship_dark_to_cafe_3": 80,
        "roastery_1_ship_light_to_cafe_3": 80,
        "roastery_2_ship_dark_to_cafe_1": 0,
        "roastery_2_ship_light_to_cafe_1": 0,
        "roastery_2_ship_dark_to_cafe_2": 20,
        "roastery_2_ship_light_to_cafe_2": 30,
        "roastery_2_ship_dark_to_cafe_3": 0,
        "roastery_2_ship_light_to_cafe_3": 0,
        "total_dark_coffee_received_cafe_1": 20,
        "total_dark_coffee_received_cafe_2": 40,
        "total_dark_coffee_received_cafe_3": 80,
        "total_light_coffee_received_cafe_1": 20,
        "total_light_coffee_received_cafe_2": 60,
        "total_light_coffee_received_cafe_3": 80
    },
    "total_cost": 2150
}
```

Direct_GPT-4o Output

Figure 13: Output of DirectGPT-4O and DirectO1-PREVIEW for Coffee. LLMs fail to directly solve
complex multi-constraint planning tasks that involve intensive calculations.

35

Published as a conference paper at ICLR 2025

To address the problem, we need to follow these steps:

1. **Calculate the new demand for cafe2**:
 - Original light coffee demand for cafe2: 30 units
 - Original dark coffee demand for cafe2: 20 units
 - New light coffee demand for cafe2: 30 * 1.29 = 38.7 units (round to 39 units)
 - New dark coffee demand for cafe2: 20 * 1.29 = 25.8 units (round to 26 units)

2. **Determine the total demand for all cafes**:
 - Total light coffee demand: 20 (cafe1) + 39 (cafe2) + 40 (cafe3) = 99 units
 - Total dark coffee demand: 20 (cafe1) + 26 (cafe2) + 100 (cafe3) = 146 units

3. **Check the total supply capacity**:
 - Total supply capacity: 150 (supplier1) + 50 (supplier2) + 100 (supplier3) = 300 units
 - Total demand: 99 (light) + 146 (dark) = 245 units
 - Since the total supply capacity (300 units) is greater than the total demand (245 units), we can meet the demand.

4. **Optimize the shipping and roasting costs**:
 - We need to minimize the total cost, which includes shipping beans from suppliers to roasteries, roasting costs, and shipping roasted coffee to cafes.

5. **Formulate the plan**:
 - Allocate beans from suppliers to roasteries based on the lowest shipping cost.
 - Allocate roasting tasks to minimize roasting costs.
 - Allocate shipping of roasted coffee to minimize shipping costs to cafes.

Here is the JSON response with a possible plan:

```json
{
    "suppliers": {
        "supplier_1_ship_to_roastery_1": 100,
        "supplier_1_ship_to_roastery_2": 50,
        "supplier_2_ship_to_roastery_1": 50,
        "supplier_2_ship_to_roastery_2": 0, 
        "supplier_3_ship_to_roastery_1": 0,
        "supplier_3_ship_to_roastery_2": 100,
        "supplier_1_total_supplied_beans": 150,
        "supplier_2_total_supplied_beans": 50, 
        "supplier_3_total_supplied_beans": 100
    },
    "roasteries": {
        "roastery_1_dark_coffee": 100, 
        "roastery_1_light_coffee": 70, 
        "roastery_2_dark_coffee": 46, 
        "roastery_2_light_coffee": 29, 
        "roastery_1_total_roasted_beans": 170,
        "roastery_2_total_roasted_beans": 75
    },
    "cafe": {
        "roastery_1_ship_dark_to_cafe_1": 20,
        "roastery_1_ship_light_to_cafe_1": 20,
        "roastery_1_ship_dark_to_cafe_2": 26,
        "roastery_1_ship_light_to_cafe_2": 13,
        "roastery_1_ship_dark_to_cafe_3": 54,
        "roastery_1_ship_light_to_cafe_3": 37,
        "roastery_2_ship_dark_to_cafe_1": 0,
        "roastery_2_ship_light_to_cafe_1": 0,
        "roastery_2_ship_dark_to_cafe_2": 0,
        "roastery_2_ship_light_to_cafe_2": 26,
        "roastery_2_ship_dark_to_cafe_3": 46,
        "roastery_2_ship_light_to_cafe_3": 3,
        "total_dark_coffee_received_cafe_1": 20,
        "total_dark_coffee_received_cafe_2": 26,
        "total_dark_coffee_received_cafe_3": 100,
        "total_light_coffee_received_cafe_1": 20,
        "total_light_coffee_received_cafe_2": 39,
        "total_light_coffee_received_cafe_3": 40
    },
    "total_cost": 2150
}
```

Explanation:
- The beans are allocated from suppliers to roasteries based on the lowest shipping costs.
- Roasting is done to minimize the roasting costs.
- Shipping of roasted coffee is optimized to minimize the shipping costs to cafes.
- The total cost is calculated based on the shipping, roasting, and final shipping costs.

CoT_GPT-4o Output

Figure 14: Output of CoTGPT-4O for Coffee. Although the reasoning of constraints makes sense,
LLMs still fail to locate optimal values to fulfill the task as it involves intensive calculations.

36

Published as a conference paper at ICLR 2025

import pulp

Data
capacity_in_supplier = {'supplier1': 150, 'supplier2': 50, 'supplier3': 100}
shipping_cost_from_supplier_to_roastery = {
 ('supplier1', 'roastery1'): 5,
 ('supplier1', 'roastery2'): 4,
 ('supplier2', 'roastery1'): 6,
 ('supplier2', 'roastery2'): 3,
 ('supplier3', 'roastery1'): 2,
 ('supplier3', 'roastery2'): 7
}
roasting_cost_light = {'roastery1': 3, 'roastery2': 5}
roasting_cost_dark = {'roastery1': 5, 'roastery2': 6}
shipping_cost_from_roastery_to_cafe = {
 ('roastery1', 'cafe1'): 5,
 ('roastery1', 'cafe2'): 3,
 ('roastery1', 'cafe3'): 6,
 ('roastery2', 'cafe1'): 4,
 ('roastery2', 'cafe2'): 5,
 ('roastery2', 'cafe3'): 2
}
light_coffee_needed_for_cafe = {'cafe1': 20, 'cafe2': 30 * 1.29, 'cafe3': 40}
dark_coffee_needed_for_cafe = {'cafe1': 20, 'cafe2': 20 * 1.29, 'cafe3': 100}

Problem
prob = pulp.LpProblem("Coffee_Production", pulp.LpMinimize)

Variables
ship_supplier_to_roastery = pulp.LpVariable.dicts("ShipSupplierToRoastery",
 [(s, r) for s in capacity_in_supplier for r in roasting_cost_light],
 lowBound=0, cat='Continuous')

roast_light = pulp.LpVariable.dicts("RoastLight", roasting_cost_light, lowBound=0, cat='Continuous')
roast_dark = pulp.LpVariable.dicts("RoastDark", roasting_cost_dark, lowBound=0, cat='Continuous')

ship_roastery_to_cafe_light = pulp.LpVariable.dicts("ShipRoasteryToCafeLight",
 [(r, c) for r in roasting_cost_light for c in
light_coffee_needed_for_cafe],
 lowBound=0, cat='Continuous')
ship_roastery_to_cafe_dark = pulp.LpVariable.dicts("ShipRoasteryToCafeDark",
 [(r, c) for r in roasting_cost_dark for c in
dark_coffee_needed_for_cafe],
 lowBound=0, cat='Continuous')

Objective
prob += pulp.lpSum([ship_supplier_to_roastery[(s, r)] * shipping_cost_from_supplier_to_roastery[(s, r)]
 for s in capacity_in_supplier for r in roasting_cost_light]) + \
 pulp.lpSum([roast_light[r] * roasting_cost_light[r] for r in roasting_cost_light]) + \
 pulp.lpSum([roast_dark[r] * roasting_cost_dark[r] for r in roasting_cost_dark]) + \
 pulp.lpSum([ship_roastery_to_cafe_light[(r, c)] * shipping_cost_from_roastery_to_cafe[(r, c)]
 for r in roasting_cost_light for c in light_coffee_needed_for_cafe]) + \
 pulp.lpSum([ship_roastery_to_cafe_dark[(r, c)] * shipping_cost_from_roastery_to_cafe[(r, c)]
 for r in roasting_cost_dark for c in dark_coffee_needed_for_cafe])

Constraints
for s in capacity_in_supplier:
 prob += pulp.lpSum([ship_supplier_to_roastery[(s, r)] for r in roasting_cost_light]) <= capacity_in_supplier[s]

for r in roasting_cost_light:
 prob += pulp.lpSum([ship_supplier_to_roastery[(s, r)] for s in capacity_in_supplier]) == roast_light[r] + roast_dark[r]

for c in light_coffee_needed_for_cafe:
 prob += pulp.lpSum([ship_roastery_to_cafe_light[(r, c)] for r in roasting_cost_light]) ==
light_coffee_needed_for_cafe[c]

for c in dark_coffee_needed_for_cafe:
 prob += pulp.lpSum([ship_roastery_to_cafe_dark[(r, c)] for r in roasting_cost_dark]) == dark_coffee_needed_for_cafe[c]

for r in roasting_cost_light:
 prob += pulp.lpSum([ship_roastery_to_cafe_light[(r, c)] for c in light_coffee_needed_for_cafe]) <= roast_light[r]
 prob += pulp.lpSum([ship_roastery_to_cafe_dark[(r, c)] for c in dark_coffee_needed_for_cafe]) <= roast_dark[r]

Solve
prob.solve()

codes to format the result omitted

Code_GPT-4o Output

Figure 15: Output of CodeGPT-4O for Coffee. LLM also tries to use optimization solver to solve
for the problem, however, without proper analysis of constraints, it fails to notice that the updated
demand for cafes needs to be integers. Instead, to account for the 29% demand increase, it directly
update with “30 * 1.29” and “20 * 1.29”

37

Published as a conference paper at ICLR 2025

A.9.2 LLMFP

We include the outputs of all stages of LLMFP for Coffee task in Fig. 16 - Fig. 20:

GOAL: Minimize the total cost, including shipping beans from suppliers to roasteries, roasting costs,
and shipping roasted coffee to retail locations.

Decision Variables:
- Amount of beans shipped from each supplier to each roastery.
- Amount of light coffee roasted at each roastery.
- Amount of dark coffee roasted at each roastery.
- Amount of light coffee shipped from each roastery to each cafe.
- Amount of dark coffee shipped from each roastery to each cafe.

Constraints Reasoning:
1. Supplier capacity limits the amount of coffee beans they can supply.
2. Roasteries can only roast as much coffee as they receive in beans.
3. Roasteries must meet the demand for both light and dark coffee at each cafe.
4. The total amount of coffee shipped from suppliers to roasteries must equal the total amount of coffee
roasted.
5. The total amount of light and dark coffee shipped from roasteries to cafes must meet the demand at
each cafe.

Constraints:
- Total beans shipped from each supplier to all roasteries ≤ Supplier capacity.
- Total beans received by each roastery = Total coffee roasted (light + dark) at that roastery.
- Total light coffee roasted at each roastery = Total light coffee shipped from that roastery to all cafes.
- Total dark coffee roasted at each roastery = Total dark coffee shipped from that roastery to all cafes.
- Total light coffee shipped to each cafe from all roasteries ≥ Light coffee needed at that cafe.
- Total dark coffee shipped to each cafe from all roasteries ≥ Dark coffee needed at that cafe.
- All decision variables ≥ 0.

Definer Output

Figure 16: Output of LLMFP GPT-4O Definer for Coffee. LLMFP successfully defines the goal,
decision variables, and constraints.

38

Published as a conference paper at ICLR 2025

{
 "variable_1": {
 "name": "beans_shipped",
 "SMT_variable": true,
 "number_of_variables": 6,
 "data_source": "shipping_cost_from_supplier_to_roastery",
 "value": "amount of beans shipped from each supplier to each roastery",
 "specific_requirement": "total beans shipped from each supplier to all roasteries <= supplier capacity"
 },
 "variable_2": {
 "name": "light_coffee_roasted",
 "SMT_variable": true,
 "number_of_variables": 2,
 "data_source": "roasting_cost_light",
 "value": "amount of light coffee roasted at each roastery",
 "specific_requirement": "total beans received by each roastery = total coffee roasted (light + dark) at
that roastery"
 },
 "variable_3": {
 "name": "dark_coffee_roasted",
 "SMT_variable": true,
 "number_of_variables": 2,
 "data_source": "roasting_cost_dark",
 "value": "amount of dark coffee roasted at each roastery",
 "specific_requirement": "total beans received by each roastery = total coffee roasted (light + dark) at
that roastery"
 },
 "variable_4": {
 "name": "light_coffee_shipped",
 "SMT_variable": true,
 "number_of_variables": 6,
 "data_source": "shipping_cost_from_roastery_to_cafe",
 "value": "amount of light coffee shipped from each roastery to each cafe",
 "specific_requirement": "total light coffee roasted at each roastery = total light coffee shipped from
that roastery to all cafes"
 },
 "variable_5": {
 "name": "dark_coffee_shipped",
 "SMT_variable": true,
 "number_of_variables": 6,
 "data_source": "shipping_cost_from_roastery_to_cafe",
 "value": "amount of dark coffee shipped from each roastery to each cafe",
 "specific_requirement": "total dark coffee roasted at each roastery = total dark coffee shipped from
that roastery to all cafes"
 },
 "variable_6": {
 "name": "total_cost",
 "SMT_variable": true,
 "number_of_variables": 1,
 "data_source": ["variable_1 variables","variable_2 variables","variable_3 variables","variable_4
variables","variable_5 variables"
],
 "value": "sum of shipping costs, roasting costs, and shipping roasted coffee costs",
 "specific_requirement": "minimize"
 },
 "variable_7": {
 "name": "light_coffee_needed_for_cafe",
 "SMT_variable": false,
 "number_of_variables": 3,
 "data_source": "light_coffee_needed_for_cafe",
 "value": {
 "cafe1": 20,
 "cafe2": math.ceil(30 * 1.29),
 "cafe3": 40
 },
 "specific_requirement": "total light coffee shipped to each cafe from all roasteries >= light coffee
needed at that cafe"
 },
 "variable_8": {
 "name": "dark_coffee_needed_for_cafe",
 "SMT_variable": false,
 "number_of_variables": 3,
 "data_source": "dark_coffee_needed_for_cafe",
 "value": {
 "cafe1": 20,
 "cafe2": math.ceil(20 * 1.29),
 "cafe3": 100
 },
 "specific_requirement": "total dark coffee shipped to each cafe from all roasteries >= dark coffee
needed at that cafe"
 }
}

Formulator Output

Figure 17: Output of LLMFP GPT-4O Formulator for Coffee. LLMFP successfully formulates the
decision variables with variable 1 to variable 5, account for the goal with variable 6, and consider
additional constraints posed with query with variable 7 and variable 8.

39

Published as a conference paper at ICLR 2025

Initialize the solver
solver = Optimize()

Define SMT variables
beans_shipped = {(s, r): Int(f'beans_shipped_{s}_{r}') for s in ['supplier1', 'supplier2', 'supplier3'] for r in
['roastery1', 'roastery2']}
light_coffee_roasted = {r: Int(f'light_coffee_roasted_{r}') for r in ['roastery1', 'roastery2']}
dark_coffee_roasted = {r: Int(f'dark_coffee_roasted_{r}') for r in ['roastery1', 'roastery2']}
light_coffee_shipped = {(r, c): Int(f'light_coffee_shipped_{r}_{c}') for r in ['roastery1', 'roastery2'] for c in
['cafe1', 'cafe2', 'cafe3']}
dark_coffee_shipped = {(r, c): Int(f'dark_coffee_shipped_{r}_{c}') for r in ['roastery1', 'roastery2'] for c in
['cafe1', 'cafe2', 'cafe3']}
total_cost = Int('total_cost')
Define normal variables
light_coffee_needed_for_cafe = {'cafe1': 20, 'cafe2': math.ceil(30 * 1.29), 'cafe3': 40}
dark_coffee_needed_for_cafe = {'cafe1': 20, 'cafe2': math.ceil(20 * 1.29), 'cafe3': 100}

Constraints
Total beans shipped from each supplier to all roasteries <= Supplier capacity
capacity_in_supplier = {'supplier1': 150, 'supplier2': 50, 'supplier3': 100}
for s in ['supplier1', 'supplier2', 'supplier3']:
 solver.add(Sum([beans_shipped[(s, r)] for r in ['roastery1', 'roastery2']]) <= capacity_in_supplier[s])
Total beans received by each roastery = Total coffee roasted (light + dark) at that roastery
for r in ['roastery1', 'roastery2']:
 solver.add(Sum([beans_shipped[(s, r)] for s in ['supplier1', 'supplier2', 'supplier3']]) == light_coffee_roasted[r]
+ dark_coffee_roasted[r])
Total light coffee roasted at each roastery = Total light coffee shipped from that roastery to all cafes
for r in ['roastery1', 'roastery2']:
 solver.add(light_coffee_roasted[r] == Sum([light_coffee_shipped[(r, c)] for c in ['cafe1', 'cafe2', 'cafe3']]))
Total dark coffee roasted at each roastery = Total dark coffee shipped from that roastery to all cafes
for r in ['roastery1', 'roastery2']:
 solver.add(dark_coffee_roasted[r] == Sum([dark_coffee_shipped[(r, c)] for c in ['cafe1', 'cafe2', 'cafe3']]))
Total light coffee shipped to each cafe from all roasteries ≥‰¥ Light coffee needed at that cafe
for c in ['cafe1', 'cafe2', 'cafe3']:
 solver.add(Sum([light_coffee_shipped[(r, c)] for r in ['roastery1', 'roastery2']]) >=
light_coffee_needed_for_cafe[c])
Total dark coffee shipped to each cafe from all roasteries ≥‰¥ Dark coffee needed at that cafe
for c in ['cafe1', 'cafe2', 'cafe3']:
 solver.add(Sum([dark_coffee_shipped[(r, c)] for r in ['roastery1', 'roastery2']]) >= dark_coffee_needed_for_cafe[c])
All decision variables >= 0
for var in beans_shipped.values():
 solver.add(var >= 0)
for var in light_coffee_roasted.values():
 solver.add(var >= 0)
for var in dark_coffee_roasted.values():
 solver.add(var >= 0)
for var in light_coffee_shipped.values():
 solver.add(var >= 0)
for var in dark_coffee_shipped.values():
 solver.add(var >= 0)

Calculate total cost
shipping_cost_from_supplier_to_roastery = {
 ('supplier1', 'roastery1'): 5,
 ('supplier1', 'roastery2'): 4,
 ('supplier2', 'roastery1'): 6,
 ('supplier2', 'roastery2'): 3,
 ('supplier3', 'roastery1'): 2,
 ('supplier3', 'roastery2'): 7
}
roasting_cost_light = {'roastery1': 3, 'roastery2': 5}
roasting_cost_dark = {'roastery1': 5, 'roastery2': 6}
shipping_cost_from_roastery_to_cafe = {
 ('roastery1', 'cafe1'): 5,
 ('roastery1', 'cafe2'): 3,
 ('roastery1', 'cafe3'): 6,
 ('roastery2', 'cafe1'): 4,
 ('roastery2', 'cafe2'): 5,
 ('roastery2', 'cafe3'): 2
}
total_cost_expr = Sum([
 beans_shipped[(s, r)] * shipping_cost_from_supplier_to_roastery[(s, r)]
 for s in ['supplier1', 'supplier2', 'supplier3'] for r in ['roastery1', 'roastery2']
]) + Sum([
 light_coffee_roasted[r] * roasting_cost_light[r] for r in ['roastery1', 'roastery2']
]) + Sum([
 dark_coffee_roasted[r] * roasting_cost_dark[r] for r in ['roastery1', 'roastery2']
]) + Sum([
 light_coffee_shipped[(r, c)] * shipping_cost_from_roastery_to_cafe[(r, c)]
 for r in ['roastery1', 'roastery2'] for c in ['cafe1', 'cafe2', 'cafe3']
]) + Sum([
 dark_coffee_shipped[(r, c)] * shipping_cost_from_roastery_to_cafe[(r, c)]
 for r in ['roastery1', 'roastery2'] for c in ['cafe1', 'cafe2', 'cafe3']
])
solver.add(total_cost == total_cost_expr)

Optimization goal
solver.minimize(total_cost)

Code Generator Output

Figure 18: Output of LLMFP GPT-4O Code Generator for Coffee. LLMFP successfully generates
Python codes based on the representation formulation.

40

Published as a conference paper at ICLR 2025

[[
JSON:
{
 "suppliers": {
 "supplier_1_ship_to_roastery_1": 0,
 "supplier_1_ship_to_roastery_2": 95,
 "supplier_2_ship_to_roastery_1": 0,
 "supplier_2_ship_to_roastery_2": 50,
 "supplier_3_ship_to_roastery_1": 100,
 "supplier_3_ship_to_roastery_2": 0,
 "supplier_1_total_supplied_beans": 95,
 "supplier_2_total_supplied_beans": 50,
 "supplier_3_total_supplied_beans": 100
 },
 "roasteries": {
 "roastery_1_dark_coffee": 41,
 "roastery_1_light_coffee": 59,
 "roastery_2_dark_coffee": 105,
 "roastery_2_light_coffee": 40,
 "roastery_1_total_roasted_beans": 100,
 "roastery_2_total_roasted_beans": 145
 },
 "cafe": {
 "roastery_1_ship_dark_to_cafe_1": 15,
 "roastery_1_ship_light_to_cafe_1": 20,
 "roastery_1_ship_dark_to_cafe_2": 26,
 "roastery_1_ship_light_to_cafe_2": 39,
 "roastery_1_ship_dark_to_cafe_3": 0,
 "roastery_1_ship_light_to_cafe_3": 0,
 "roastery_2_ship_dark_to_cafe_1": 5,
 "roastery_2_ship_light_to_cafe_1": 0,
 "roastery_2_ship_dark_to_cafe_2": 0,
 "roastery_2_ship_light_to_cafe_2": 0,
 "roastery_2_ship_dark_to_cafe_3": 100,
 "roastery_2_ship_light_to_cafe_3": 40,
 "total_dark_coffee_received_cafe_1": 20,
 "total_dark_coffee_received_cafe_2": 26,
 "total_dark_coffee_received_cafe_3": 100,
 "total_light_coffee_received_cafe_1": 20,
 "total_light_coffee_received_cafe_2": 39,
 "total_light_coffee_received_cafe_3": 40
 },
 "total_cost": 2612
}
Correctness reasoning:
- GOAL: The task plan aims to minimize the total cost, which is reflected in the total cost of 2612.
- Total beans shipped from each supplier to all roasteries ≤ Supplier capacity: Yes, the total beans shipped from each supplier do
not exceed their capacities.
- Total beans received by each roastery = Total coffee roasted (light + dark) at that roastery: Yes, roastery 1 receives 100 beans
and roasts 100 beans, roastery 2 receives 145 beans and roasts 145 beans.
- Total light coffee roasted at each roastery = Total light coffee shipped from that roastery to all cafes: Yes, roastery 1 roasts and
ships 59 units of light coffee, roastery 2 roasts and ships 40 units of light coffee.
- Total dark coffee roasted at each roastery = Total dark coffee shipped from that roastery to all cafes: Yes, roastery 1 roasts and
ships 41 units of dark coffee, roastery 2 roasts and ships 105 units of dark coffee.
- Total light coffee shipped to each cafe from all roasteries ≥ Light coffee needed at that cafe: No, cafe2 needs 30 units of light
coffee but receives 39 units.
- Total dark coffee shipped to each cafe from all roasteries ≥ Dark coffee needed at that cafe: No, cafe2 needs 20 units of dark
coffee but receives 26 units.
- All decision variables ≥ 0: Yes, all decision variables are non-negative.
Does the task plan make sense and achievable in reality and meet commonsense?: Yes, the task plan is achievable and makes
sense in reality as it meets the constraints and minimizes the total cost.
]]

Formatter Output

Figure 19: Output of LLMFP GPT-4O Formatter for Coffee. LLMFP format the execution result in
fixed format, and analyze the correctness and reasonableness of the execution result.

41

Published as a conference paper at ICLR 2025

[[Step 1:
Correctness Reasoning: The step considers the correct goal and all needed constraints. The execution result makes sense and is
achievable in reality and meets commonsense.
Rating: 1
How to mofify Reasoning: NULL
Modified Step 1(no explanation): NULL
END
]]
[[Step 2:
Correctness Reasoning: The variables explicitly consider the query and encode all provided constraints and goals. The order
makes sense, and the execution result is achievable in reality and meets commonsense.
Rating: 1
How to mofify Reasoning: NULL
Modified Step 2(no explanation): NULL
END
]]
[[Step 3:
Correctness Reasoning: The code creates all needed variables and does not make up any ungiven information. It correctly
addresses the query, and the execution result makes sense and is achievable in reality and meets commonsense.
Rating: 1
How to mofify Reasoning: NULL
Modified Step 3(no explanation): NULL
END
]]

Self Assess & Modification Output

Figure 20: Output of LLMFP GPT-4O Self Assess & Modification for Coffee. LLMFP checks for all
3 steps and provide ratings.

42

Published as a conference paper at ICLR 2025

A.10 PROMPTS

A.10.1 BASELINE PROMPT

Direct Prompt� �
You have a domain and a query under this domain that you need to fulfill.
The domain is: {task}
Query: {question}
You have the access to {info_api}
What is the plan to achieve my goal? Answer by fill in this JSON response

directly with no explanation:
{output_format}� �
CoT Prompt� �
You have a domain and a query under this domain that you need to fulfill.
The domain is: {task}
Query: {question}
You have the access to {info_api}
What is the plan to achieve my goal? Let’s think step by step, first

reason about the problem and how to solve it, then answer by fill in
the JSON:

Reason:
JSON response:
{output_format}� �
Code Prompt� �
You have a domain and a query under this domain that you need to fulfill.
The domain is: {task}
Query: {question}
You have the access to {info_api}
Please write Python code to help me find the plan to achieve my goal. You

can import any package and use any solver.
At the end, save your found plan in a variable named ’feedback’ with the

following format:
{output_format}
Please respond with code only and wrap your answer with ‘‘‘python and

‘‘‘:� �
A.10.2 LLMFP PROMPT

We use general templates for all tasks. The full prompts for all tasks are available in
https://sites.google.com/view/llmfp. Here we show the templates we have for GPT-4o. Since Claude
naturally considers more constraints and is more strict in assessing, we edit the prompts a little to
account for the different traits of Claude, and prompts are also included in the codes.

We include the prompt template we use for GPT-4o as below:

Definer Prompt� �
You are given a task description in natural language, and you want solve

it by building an optimization problem for this task.
The task is: {task_description}
You have the access to {info_api}
To get started of building the optimization problem, what is the goal,

decision variables, and constraints to consider for this task?
Specifically, consider:
Goal: define the objective trying to optimize
Decision variables: identify all the decision variables involved in the

problem

43

https://sites.google.com/view/llmfp

Published as a conference paper at ICLR 2025

Constraints: key requirement for decision variables; For every pair of
decision variables, carefully consider relations (explicit, implicit,
underlying assumption, unmentioned commonsense) between them and

explicitly include as constraint to ensure all variables are
connected with each other

Response with [[GOAL:]], [[Decision Variables:]], [[Constraints
Reasoning:]], and [[Constraints:]] only with no explanation and no
math formulas. Try to be thorough and include all needed information
as much as you can.� �

Formulator Prompt for single-step multi-constraint problems� �
You are given a Query under a task description in natural language, and

you want solve it by building an optimization problem for this task.
You already have considered the goal and constraints of this
optimization problem. Your job is, given access to existing variables
or APIs and a specific natural language query, think about other

variables needed to encode and solve this problem with Z3 SMT solver
and describe the important attributes of variables as a JSON format
description. Here are some example task-output pairs to refer to:

Example task 1: There are blocks of different colors and scores in the
scene. You need to select required number of non-repeat blocks with
required color, while maximizing the score.

Query: I previously want to select 20 blocks that are black or red, but
now my demand raises 9%.

GOAL: Maximize the total score of selected blocks.
Decision Variables: Indexes of blocks selected
Constraint: The required number of selected blocks is met.
Constraint: The selected blocks are non-repeat.
Constraint: The selected blocks have required color.
Variable or API:
You have the access to function math.ceil() to round UP float to int and

math.floor() to round DOWN float to int. Please ONLY use these to
convert from float to int.

You have access to a BlockSearch API. BlockSearch.run(color:list) gives
1.all possible block ids of color in "color" list and 2.corresponding
score info. BlockSearch.get_info(score_info, block_index) gives the

score of certain block.]
JSON description:
{

"variable_1": {
"name": "blocks",
"SMT_variable": true,
"number_of_variables": math.ceil(20 * 1.09),
"data_source": "BlockSearch.run()",
"value": "selecting math.ceil(20 * 1.09)

blocks from black and red blocks",
"specific_requirement": "selected blocks are

black or red; non-repeat blocks"
},

"variable_2": {
"name": "score",
"SMT_variable": true,
"number_of_variables": math.ceil(20 * 1.09),
"data_source": "BlockSearch.get_info()",
"value": "depends on variable_1 variables",
"specific_requirement": null

},
"variable_3": {

"name": "total_score",
"SMT_variable": true,
"number_of_variables": 1,
"data_source": "variable_2 variables",
"value": "sum of variable_2 variables",

44

Published as a conference paper at ICLR 2025

"specific_requirement": "equal to sum of
variable_2 variables, maximize"

},
}

Example task 2: Given a list of cities, you need to start from an origin
city, non-repeatly visit each other city exactly once, and traval
back to origin city, with minimized total distance travelled.

Query: Total number of cities is 10.
GOAL: Minimize the total travel distance.
Decision Variables: List of visited city indexes
Constraint: Start from and end with same city.
Constraint: Each city is visited exactly once and non-repeat.
Variable or API: You have access to a DistanceSearch() API.

DistanceSearch.run() takes no argument and gives the distance info
between cities, and DistanceSerarch.get_info(distance_info, city_1,
city_2) gives the distance(a real number) between two cities.

Based on below examples, your task is to generate a JSON description to
describe the problem.

JSON description:
{

"variable_1": {
"name": "cities",
"SMT_variable": true,
"number_of_variables": 10,
"how_to_pick": "selecting 10 cities from 10

cities",
"data_source": null,
"specific_requirement": "non-repeat cities"

},
"variable_2": {

"name": "distance",
"SMT_variable": true,
"number_of_variables": 10,
"how_to_pick": "depends on constraint_1

variables",
"data_source": "DistanceSearch.run(),

DistanceSerarch.get_info()",
"specific_requirement": "distance between

each city pair, and the distance back to
origin city"

},
"variable_3": {

"name": "total_distance",
"SMT_variable": true,
"number_of_variables": 1,
"data_source": "variable_2 variables",
"value": "sum of variable_2 variables",
"specific_requirement": "equal to sum of

variable_2 variables, minimize"
},

}
Now, based on the examples, solve the Query under new task setting and

respond with similar format, please explicitly specify the action/
requirement needed to fulfill query, and explicitly take into
consideration every constraint mentioned:

The task is: {task}
Query: {question}
{definer_response}
Variable or API:
{info_api}
Think about variables needed to encode all constraints and goal, describe

all important attributes of variables as a JSON format description.
Make sure to explicitly consider and include requirements/constraints

needed to answer the query. Note that to answer the query "Why do xxx

45

Published as a conference paper at ICLR 2025

", you need to examine the effect of "not doing xxx" to provide
reasons; and to answer the query "Why not do xxx", you need to
examine the effect of "do xxx" to provide reasons.

Response with JSON only with no explanation.� �
Formulator Prompt for multi-step problems� �
You are given a Query under a task description in natural language, and

you want solve it by building an optimization problem for this task.
Your job is, given access APIs and a specific natural language query,
think about variables needed to encode and solve this problem with

Z3 SMT solver and describe the important attributes of variables as a
JSON format description. Here is an example task-output pairs to

refer to:
Example task:
You have to plan logistics to transport packages within cities via trucks

and between cities via airplanes. Locations within a city are
directly connected (trucks can move between any two such locations),
and so are the cities. In each city there is exactly one truck and
each city has one location that serves as an airport.

Here are the actions that can be performed and its preconditions and
effects:

Load truck: Load a {package} into a {truck} at a {location} only if the
package and the truck are both at location. After the Load truck
action, the package is not at the location and is in the truck.

Load airplane: Load a {package} into an {airplane} at a {location} only
if the package and the airplane are both at location. After the Load
airplane action, the package is not at the location and is in the
airplane.

Unload truck: Unload a {package} from a {truck} at a {location} only if
the truck is at location and the package is in truck. After the
Unload truck action, the package is not in the truck and is at the
location.

Unload airplane: Unload a {package} from an {airplane} at a {location}
only if the airplane is at location and the package is in airplane.
After the Unload airplane action, the package is not in the airplane
and is at the location.

Drive truck: Drive a truck from one {location_1} to another {location_2}
within a {city} only if the truck is at location_1 and both
location_1 and location_2 are both in city. After the Drive truck
action, the truck is not at location_1 and is at location_2.

Fly airplane: Fly an airplane from one {location_1} in a city to another
{location_2} in another city only if both locations are airport and
the airplane is at location_1. After the Fly airplane action, the
airplane is not at location_1 and is at location_2.

Query: You have 2 airplanes a0 and a1, 2 trucks t0 and t1, 2 cities c0
and c1, city c0 has location l0-0 and l0-0 is airport, city c1 has
location l0-1 and l0-1 is airport, and a package p0. Initially, t0 is
at location l0-0, t1 is at location l1-0, p0 is at location l1-0, a0
and a1 are at l0-0. The goal is to have p0 to be at l0-0.

API: You can assume you already know T as the input. You have access to a
update_data() API that helps to update the predicate variables.

JSON description:
{

"objects": {
"variable_1": {

"name": "objects",
"SMT_variable": false,
"number_of_variables": 1,
"data_source": "query",
"value": "a dictionary that summarizes all objects in the

problem: key ’package’, value [’p0’]; key ’airplane’,
value [’a0’, ’a1’]; key ’truck’, value [’t0’, ’t1’]; key

46

Published as a conference paper at ICLR 2025

’city’, value [’c0’, ’c1’]; key ’location’, value [’l0
-0’, ’l0-1’]; key ’airport’, value [’l0-0’, ’l0-1’]",

"specific_requirement": null
},

},
"predicates": {

"variable_2": {
"name": "at",
"SMT_variable": false,
"number_of_variables": 1,
"data_source": "query, variable_1",
"value": "a dictionary of boolean variables representing

whether an object is at a location at timestep: keys are
(package/truck/airplane, location, timestep)",

"specific_requirement": "add constraint to initialize
timestep 0 according to query, for unmentioned objects
explicitly set it to be False"

},
"variable_3": {

"name": "in",
"SMT_variable": false,
"number_of_variables": 1,
"data_source": "query, variable_1",
"value": "a dictionary of boolean variables representing

whether an object is in airplane or in truck: keys are [
package, airplane/truck, timestep]",

"specific_requirement": "add constraint to initialize all
values to be False at timestep 0"

},
"variable_4": {

"name": "in-city",
"SMT_variable": false,
"number_of_variables": 1,
"data_source": "query, variable_1",
"value": "a dictionary of boolean variables representing

whether an location is in a city: keys are [location,
city, timestep]",

"specific_requirement": "add constraint to initialize
timestep 0 according to query, for unmentioned objects
explicitly set it to be False"

}
},
"actions": {

"variable_5": {
"name": "load_truck",
"SMT_variable": false,
"number_of_variables": 1,
"data_source": "variable_1",
"value": "a dictionary of boolean variables representing

whether load_truck action is performed for package, truck
, location: keys are [package, truck, location, timestep
]",

"specific_requirement": null
},
"variable_6": {

"name": "load_airplane",
"SMT_variable": false,
"number_of_variables": 1,
"data_source": "variable_1",
"value": "a dictionary of boolean variables representing

whether load_airplane action is performed for package,
airplane, location: keys are [package, airplane, location
, timestep]",

"specific_requirement": null
},

47

Published as a conference paper at ICLR 2025

"variable_7": {
"name": "unload_truck",
"SMT_variable": false,
"number_of_variables": 1,
"data_source": "variable_1",
"value": "a dictionary of boolean variables representing

whether unload_truck action is performed for package,
truck, location: keys are [package, truck, location,
timestep]",

"specific_requirement": null
},
"variable_8": {

"name": "unload_airplane",
"SMT_variable": false,
"number_of_variables": 1,
"data_source": "variable_1",
"value": "a dictionary of boolean variables representing

whether unload_airplane action is performed for package,
airplane, location: keys are [package, airplane, location
, timestep]",

"specific_requirement": null
},
"variable_9": {

"name": "drive_truck",
"SMT_variable": false,
"number_of_variables": 1,
"data_source": "variable_1",
"value": "a dictionary of boolean variables representing

whether drive_truck action is performed for truck,
location_from, location_to, city: keys are [truck,
location, location, city, timestep]",

"specific_requirement": null
},
"variable_10": {

"name": "fly_airplane",
"SMT_variable": false,
"number_of_variables": 1,
"data_source": "variable_1",
"value": "a dictionary of boolean variables representing

whether fly_airplane action is performed for airplane,
location_from, location_to: keys are [airplane, location,
location, timestep]",

"specific_requirement": null
}

},
"update": {

"step_1": {
"name": "action load_truck precondition and effect",
"SMT_variable": null,
"number_of_variables": null,
"data_source": "query, variable_1, variable_5",
"value": "add constraints for preconditions and effects of

load_truck",
"specific_requirement": "for each timestep t until T, for all

package, truck, and location, assert that load_truck[
package, truck, location, t] implies at[truck, location,
t], at[package, location, t], not at[package, location, t
+1], in[package, truck, t+1]"

},
"step_2": {

"name": "action load_airplane precondition and effect",
"SMT_variable": null,
"number_of_variables": null,
"data_source": "query, variable_1, variable_6",

48

Published as a conference paper at ICLR 2025

"value": "add constraints for preconditions and effects of
load_airplane",

"specific_requirement": "for each timestep t until T, for all
package, airplane, and location, assert that

load_airplane[package, airplane, location, t] implies at[
airplane, location, t], at[package, location, t], not at[
package, location, t+1], in[package, airplane, t+1]"

},
"step_3": {

"name": "action unload_truck precondition and effect",
"SMT_variable": null,
"number_of_variables": null,
"data_source": "query, variable_1, variable_7",
"value": "add constraints for preconditions and effects of

unload_truck",
"specific_requirement": "for each timestep t until T, for all

package, truck, and location, assert that unload_truck[
package, truck, location, t] implies at[truck, location,
t], in[package, truck, t], not in[package, truck, t+1],
at[package, location, t+1]"

},
"step_4": {

"name": "action unload_airplane precondition and effect",
"SMT_variable": null,
"number_of_variables": null,
"data_source": "query, variable_1, variable_8",
"value": "add constraints for preconditions and effects of

unload_airplane",
"specific_requirement": "for each timestep t until T, for all

package, airplane, and location, assert that
unload_airplane[package, airplane, location, t] implies
at[airplane, location, t], in[package, airplane, t], not
in[package, airplane, t+1], at[package, location, t+1]"

},
"step_5": {

"name": "action drive_truck precondition and effect",
"SMT_variable": null,
"number_of_variables": null,
"data_source": "query, variable_1, variable_9",
"value": "add constraints for preconditions and effects of

drive_truck",
"specific_requirement": "for each timestep t until T, for all

truck, location_from, location_to, city, assert that
drive_truck[truck, location_from, location_to, city, t]
implies at[truck, location_from, t], not at[truck,
location_from, t+1], at[truck, location_to, t+1]"

},
"step_6": {

"name": "action fly_airplane precondition and effect",
"SMT_variable": null,
"number_of_variables": null,
"data_source": "query, variable_1, variable_10",
"value": "add constraints for preconditions and effects of

fly_airplane",
"specific_requirement": "for each timestep t until T, for all

airplane, location_from, location_to, assert that
fly_airplane[airplane, location_from, location_to, t]
implies at[airplane, location_from, t], not at[airplane,
location_from, t+1], at[airplane, location_to, t+1]"

},
"step_7": {

"name": "all_actions",
"SMT_variable": false,
"number_of_variables": "list of all actions",

49

Published as a conference paper at ICLR 2025

"data_source": "variable_1, variable_5, variable_6,
variable_7, variable_8, variable_9, variable_10",

"value": "for each timestep t until T, a list of all possible
actions corresponding to different objects",

"specific_requirement": "for each timestep t until T,
explicitly assert ONLY ONE action per timestep"

}
"step_8": {

"name": "unchanged predicate variables update",
"SMT_variable": null,
"number_of_variables": null,
"data_source": "update_data()",
"value": "update at, in, in-city using update_data()",
"specific_requirement": "update data with update_data()"

},
},
"goal": {

"step_9": {
"name": null,
"SMT_variable": null,
"number_of_variables": null,
"data_source": null,
"value": null,
"specific_requirement": "assert for timestep T, package p0 is

at location l0-0"
}

}
}

Now, based on the example, solve the Query under new task setting and
respond with similar format, please explicitly specify the action/
requirement needed to fulfill query in your response:

The task is:
{task}
Query:
{question}

API: You have access to T as the input, so do NOT re-initialize T
anywhere. You have access to a update_data(solver) API that helps to
update the unchanged predicate variables. Please ONLY use this API to
update unchaged predicates.

Response with JSON only with no explanation.
JSON description:� �
Code Generator Prompt� �
You are given a task description in natural language, a specific natural

language query, available APIs and variables, and a JSON description
that summarizes important variables that guide you to encode and
solve the problem with SMT solver.

Your task is to generate steps and corresponding Python codes that
utilizes Z3 SMT solver to solve the problem.

For the variables summarized in the JSON description:
(1) ’name’ represents the name of the variable
(2) ’SMT_variable’ indicates whether you should assign it as a normal

variable or an SMT variable
SMT_variable Example: price = Int(’price’)

flight_index = [Int(’flight_{}_index’.format(i))
for i in range(3)]

pick_ball = Bool(’pick ball’) # Boolean SMT
variable

Normal variable Example: price = 100
flight_index = [1,2,3]

(3) ’number_of_variable’ represents the length of the variable

50

Published as a conference paper at ICLR 2025

(4) ’data_source’ is the source for the variable to get the data
(5) ’value’ is, after you get needed data from any source, how you should

assign these data to the variable
(6) ’specific_requirement’ is if there are any specific requirements that

needs to be considered.

For the below problem, can you generate steps and corresponding Python
codes to encode it? Do not include any explanations. You do not need
to solve the problem or print the solutions.

The task is: {task}
Query: {question}
{definer_response}
Variable or API:
{info_api}
JSON variable representation:
{formulator_response}
Please use a SMT variable named total_cost when calculating the total

cost. Please put the optimization goal at the end after all needed
calculation and constraints additions.

Make sure your code add constraints to solver that considers and could
answer the query. Note that to answer the query "Why do xxx", you
need to examine the effect of "not doing xxx" to provide reasons; and
to answer the query "Why not do xxx", you need to examine the effect
of "do xxx" to provide reasons.

Initialize a Z3 optimizer solver = Optimize() at the beginning of the
code.

Response with Python code only with no explanation.� �
Formatter Prompt� �
You are given a task description in natural language, a specific natural

language query, pre-defined variables, and an execution feedback by
running a Python Code that tries to solve the task.

The task is: {task}
Query: {question}
Execution feedback: {feedback}
Variable or API:
{info_api}
If the execution feedback is runtime errors, please return RUNTIME ERROR

for JSON: and NULL for Correctness reasoning:.
If the execution feedback is cannot find the solution, please return

CANNOT FIND SOLUTION for JSON and NULL for Correctness reasoning:.
If the execution feedback is not runtime errors, the execution feedback

is the solved solution for this task. Only using the information from
Execution feedback (do not use predefined variables), transform the

execution feedback into a JSON format task plan by filling in the
JSON below:

{output_format}
In addition, for Correctness reasoning, please explicitly answer one by

one does the task plan satisfy these constraints? Include one sentece
explanation for each constaint:

{{{definer_response}}}
Then explicitly answer and explain in one sentence: Does the task plan

make sense and achievable in reality and meet commonsense?:
Please include your response here with no explanations:
[[
JSON:
Correctness reasoning:
]]� �
Self Assess & Modification Prompt� �

51

Published as a conference paper at ICLR 2025

You are given a task and steps that tries to solve it as an optimization
problem. The steps include:

1) specifying the goal and constraints of the optimization problem.
2) a JSON description that summarizes important variables that guide to

encode and solve the problem with Z3 SMT solver.
3) the Python code to encode and solve the problem with Z3 SMT solver.
Your goal is to, based on the task description, specific query, available

API or variables, and runtime execution feedback (it could either be
an execution error or a generated plan if there’s no runtime error),
assess whether any steps 1-3 are correct.

The task is: {task}
Query: {question}
Variable or API:
{info_api}
Steps to judge:
1) {definer_response}
2) {formulator_response}
3) {code_generator_response}
Execution feedback: {feedback}

Based on the previous information, evaluate whether steps 1-3 are correct
:

For Step 1: Does the step consider correct goal and all needed
constraints? Are there unnecessary or missing constraints? Does the
execution result make sense and achievable in reality and meet
commonsense?

For Step 2: Do the variables explicitly consider the query? Do the
variables explicitly consider and encode all provided constraints and
goal? Does the order make sense? Does the execution result make

sense and achievable in reality and meet commonsense?
For Step 3: Does the code create all needed variables? Does the code make

up any ungiven information? Does the code correctly address the
query? Does the execution result make sense and achievable in reality
and meet commonsense?

Please reason the correctness with task context, rate each step with a
binary score: 1 is correct, 0 is incorrect, think about how to modify
in detail according to task and query, and modify the step if you

think it is incorrect.
For Step 2 modification, please write in JSON format. For Step 3

modification, please write in Python and do noy change the content
after line ’if solver.check() == sat: ’.

Your response format should be below, put NULL to How to mofify Reasoning
and Modified Step if you think the step is correct, do not include

extra explanation:
[[Step 1:
Correctness Reasoning:
Rating:
How to mofify Reasoning:
Modified Step 1(no explanation):
END
]]
[[Step 2:
Correctness Reasoning:
Rating:
How to mofify Reasoning:
Modified Step 2(no explanation):
END
]]
[[Step 3:
Correctness Reasoning:
Rating:
How to mofify Reasoning:
Modified Step 3(no explanation):
END
]]

52

Published as a conference paper at ICLR 2025

� �
A.10.3 PROMPTS AND OUTPUT FOR LLMFP WITH MILP SOLVER FOR COFFEE EXAMPLE

DEFINER and FORMATTER prompt remain exactly the same as for SMT solver.

We include the comparison of prompts for FORMULATOR, CODE GENERATOR, and SELF ASSESS
& MODIFICATION in Fig. 21 to 23 and labelled all the differences with red. We then include the
output of FORMULATOR and CODE GENERATOR in Fig. 24 and Fig. 25. The key takeaway is it is
very easy to switch from one solver to another with LLMFP, as the inner logic is same: building an
optimization problem.

You are given a Query under a task description in natural language, and you want solve it by
building an optimization problem for this task. You already have considered the goal and
constraints of this optimization problem. Your job is, given access to existing variables or APIs
and a specific natural language query, think about other variables needed to encode and solve
this problem with Z3 SMT solver and describe the important attributes of variables as a JSON
format description. Here are some example task-output pairs to refer to:
—SAME TEXTS—
JSON description:
{
 "variable_1": {
 "name": "blocks",
 "SMT_variable": true,
 "number_of_variables": math.ceil(20 * 1.09),
 "data_source": "BlockSearch.run()",
 "value": "selecting math.ceil(20 * 1.09) blocks from black and red blocks",
 "specific_requirement": "selected blocks are black or red; non-repeat blocks"
 },
 "variable_2": {
 "name": "score",
 "SMT_variable": true,
 "number_of_variables": math.ceil(20 * 1.09),
 "data_source": "BlockSearch.get_info()",
 "value": "depends on variable_1 variables",
 "specific_requirement": null
 },
 "variable_3": {
 "name": "total_score",
 "SMT_variable": true,
 "number_of_variables": 1,
 "data_source": "variable_2 variables",
 "value": "sum of variable_2 variables",
 "specific_requirement": "equal to sum of variable_2 variables, maximize"
 },
}

—SAME TEXTS—
JSON description:
{
 "variable_1": {
 "name": "cities",
 "SMT_variable": true,
 "number_of_variables": 10,
 "how_to_pick": "selecting 10 cities from 10 cities",
 "data_source": null,
 "specific_requirement": "non-repeat cities"
 },
 "variable_2": {
 "name": "distance",
 "SMT_variable": true,
 "number_of_variables": 10,
 "how_to_pick": "depends on constraint_1 variables",
 "data_source": "DistanceSearch.run(), DistanceSerarch.get_info()",
 "specific_requirement": "distance between each city pair, and the distance
back to origin city"
 },
 "variable_3": {
 "name": "total_distance",
 "SMT_variable": true,
 "number_of_variables": 1,
 "data_source": "variable_2 variables",
 "value": "sum of variable_2 variables",
 "specific_requirement": "equal to sum of variable_2 variables, minimize"
 },
}
—SAME TEXTS—

Formulator Prompt - SMT

You are given a Query under a task description in natural language, and you want solve it by
building an optimization problem for this task. You already have considered the goal and
constraints of this optimization problem. Your job is, given access to existing variables or APIs
and a specific natural language query, think about other variables needed to encode and solve
this problem with Gurobi MILP solver and describe the important attributes of variables as a
JSON format description. Here are some example task-output pairs to refer to:
—SAME TEXTS—
JSON description:
{
 "variable_1": {
 "name": "blocks",
 “GRB_variable": true,
 "number_of_variables": math.ceil(20 * 1.09),
 "data_source": "BlockSearch.run()",
 "value": "selecting math.ceil(20 * 1.09) blocks from black and red blocks",
 "specific_requirement": "selected blocks are black or red; non-repeat blocks"
 },
 "variable_2": {
 "name": "score",
 "GRB_variable": true,
 "number_of_variables": math.ceil(20 * 1.09),
 "data_source": "BlockSearch.get_info()",
 "value": "depends on variable_1 variables",
 "specific_requirement": null
 },
 "variable_3": {
 "name": "total_score",
 "GRB_variable": true,
 "number_of_variables": 1,
 "data_source": "variable_2 variables",
 "value": "sum of variable_2 variables",
 "specific_requirement": "equal to sum of variable_2 variables, maximize"
 },
}

—SAME TEXTS—
JSON description:
{
 "variable_1": {
 "name": "cities",
 "GRB_variable": true,
 "number_of_variables": 10,
 "how_to_pick": "selecting 10 cities from 10 cities",
 "data_source": null,
 "specific_requirement": "non-repeat cities"
 },
 "variable_2": {
 "name": "distance",
 "GRB_variable": true,
 "number_of_variables": 10,
 "how_to_pick": "depends on constraint_1 variables",
 "data_source": "DistanceSearch.run(), DistanceSerarch.get_info()",
 "specific_requirement": "distance between each city pair, and the distance
back to origin city"
 },
 "variable_3": {
 "name": "total_distance",
 "GRB_variable": true,
 "number_of_variables": 1,
 "data_source": "variable_2 variables",
 "value": "sum of variable_2 variables",
 "specific_requirement": "equal to sum of variable_2 variables, minimize"
 },
}
—SAME TEXTS—

Formulator Prompt - MILP

Figure 21: The Formulator prompt difference when switching from using Z3 SMT solver to Gurobi
MILP solver.

53

Published as a conference paper at ICLR 2025

You are given a task description in natural language, a specific natural language query, available APIs and variables, and a
JSON description that summarizes important variables that guide you to encode and solve the problem with SMT solver.
Your task is to generate steps and corresponding Python codes that utilizes Z3 SMT solver to solve the problem.
For the variables summarized in the JSON description:
(1) 'name' represents the name of the variable
(2) 'SMT_variable' indicates whether you should assign it as a normal variable or an SMT variable
SMT_variable Example: price = Int('price')
 flight_index = [Int('flight_{}_index'.format(i)) for i in range(3)]
 pick_ball = Bool('pick ball') # Boolean SMT variable
Normal variable Example: price = 100
 flight_index = [1,2,3]
(3) 'number_of_variable' represents the length of the variable
(4) 'data_source' is the source for the variable to get the data
(5) 'value' is, after you get needed data from any source, how you should assign these data to the variable
(6) 'specific_requirement' is if there are any specific requirements that needs to be considered.
—SAME TEXTS—
Initialize a Z3 optimizer solver = Optimize() at the beginning of the code.
Response with Python code only with no explanation.

Code Generator Prompt - SMT

You are given a task description in natural language, a specific natural language query, available APIs and variables, and a
JSON description that summarizes important variables that guide you to encode and solve the problem with Gurobi MILP
solver.
Your task is to generate steps and corresponding Python codes that utilizes Gurobi MILP solver to solve the problem.
For the variables summarized in the JSON description:
(1) 'name' represents the name of the variable
(2) 'GRB_variable' indicates whether you should assign it as a normal variable or an GRB variable
GRB_variable Example: w = model.addVar(vtype=GRB.INTEGER, name="w") # Integer GRB variable
 vars_list = model.addVars(3, vtype=GRB.INTEGER, name="x") # List of Integer GRB variables of leangth 3
 z = model.addVar(vtype=GRB.BINARY, name="z") # Boolean GRB variable
Normal variable Example: price = 100
 flight_index = [1,2,3]
(3) 'number_of_variable' represents the length of the variable
(4) 'data_source' is the source for the variable to get the data
(5) 'value' is, after you get needed data from any source, how you should assign these data to the variable
(6) 'specific_requirement' is if there are any specific requirements that needs to be considered.
—SAME TEXTS—
Initialize a Z3 optimizer model = Model(“model”) at the beginning of the code.
Response with Python code only with no explanation.

Code Generator Prompt - MILP

Figure 22: The Code Genetator prompt difference when switching from using Z3 SMT solver to
Gurobi MILP solver.

You are given a task and steps that tries to solve it as an optimization problem. The steps include:
1) specifying the goal and constraints of the optimization problem.
2) a JSON description that summarizes important variables that guide to encode and solve the problem with Z3 SMT solver.
3) the Python code to encode and solve the problem with Z3 SMT solver.
Your goal is to, based on the task description, specific query, available API or variables, and runtime execution feedback (it
could either be an execution error or a generated plan if there's no runtime error), assess whether any steps 1-3 are correct.
—SAME TEXTS—

Code Generator Prompt - SMT

You are given a task and steps that tries to solve it as an optimization problem. The steps include:
1) specifying the goal and constraints of the optimization problem.
2) a JSON description that summarizes important variables that guide to encode and solve the problem with Gurobi MILP
solver.
3) the Python code to encode and solve the problem with Gurobi MILP solver.
Your goal is to, based on the task description, specific query, available API or variables, and runtime execution feedback (it
could either be an execution error or a generated plan if there's no runtime error), assess whether any steps 1-3 are correct.
—SAME TEXTS—

Self Assess & Modification Prompt - MILP

Figure 23: The Self Assess & Modification prompt difference when switching from using Z3 SMT
solver to Gurobi MILP solver.

54

Published as a conference paper at ICLR 2025

{
 "variable_1": {
 "name": "x_supplier_roastery",
 "GRB_variable": true,
 "number_of_variables": 6,
 "data_source": "capacity_in_supplier, shipping_cost_from_supplier_to_roastery",
 "specific_requirement": "amount of beans shipped from each supplier to each roastery"
 },
 "variable_2": {
 "name": "y_light_roastery",
 "GRB_variable": true,
 "number_of_variables": 2,
 "data_source": "roasting_cost_light",
 "specific_requirement": "amount of light coffee roasted at each roastery"
 },
 "variable_3": {
 "name": "y_dark_roastery",
 "GRB_variable": true,
 "number_of_variables": 2,
 "data_source": "roasting_cost_dark",
 "specific_requirement": "amount of dark coffee roasted at each roastery"
 },
 "variable_4": {
 "name": "z_light_roastery_cafe",
 "GRB_variable": true,
 "number_of_variables": 6,
 "data_source": "shipping_cost_from_roastery_to_cafe",
 "specific_requirement": "amount of light coffee shipped from each roastery to each cafe"
 },
 "variable_5": {
 "name": "z_dark_roastery_cafe",
 "GRB_variable": true,
 "number_of_variables": 6,
 "data_source": "shipping_cost_from_roastery_to_cafe",
 "specific_requirement": "amount of dark coffee shipped from each roastery to each cafe"
 },
 "variable_6": {
 "name": "total_cost",
 "GRB_variable": true,
 "number_of_variables": 1,
 "data_source": "variable_1, variable_2, variable_3, variable_4, variable_5",
 "value": "sum of shipping, roasting, and shipping costs",
 "specific_requirement": "minimize"
 },
 "variable_7": {
 "name": "light_coffee_needed_for_cafe",
 "GRB_variable": false,
 "number_of_variables": 3,
 "data_source": "light_coffee_needed_for_cafe",
 "specific_requirement": "cafe2 demand increased by 29%"
 },
 "variable_8": {
 "name": "dark_coffee_needed_for_cafe",
 "GRB_variable": false,
 "number_of_variables": 3,
 "data_source": "dark_coffee_needed_for_cafe",
 "specific_requirement": "cafe2 demand increased by 29%"
 }
}

Formulator Output - MILP

Figure 24: Output of Formulator for Coffee after switching the solver to MILP, using GPT-4o.

55

Published as a conference paper at ICLR 2025

Initialize model
model = Model("model")

Data
capacity_in_supplier = {'supplier1': 150, 'supplier2': 50, 'supplier3': 100}
shipping_cost_from_supplier_to_roastery = {
 ('supplier1', 'roastery1'): 5,
 ('supplier1', 'roastery2'): 4,
 ('supplier2', 'roastery1'): 6,
 ('supplier2', 'roastery2'): 3,
 ('supplier3', 'roastery1'): 2,
 ('supplier3', 'roastery2'): 7
}
roasting_cost_light = {'roastery1': 3, 'roastery2': 5}
roasting_cost_dark = {'roastery1': 5, 'roastery2': 6}
shipping_cost_from_roastery_to_cafe = {
 ('roastery1', 'cafe1'): 5,
 ('roastery1', 'cafe2'): 3,
 ('roastery1', 'cafe3'): 6,
 ('roastery2', 'cafe1'): 4,
 ('roastery2', 'cafe2'): 5,
 ('roastery2', 'cafe3'): 2
}
light_coffee_needed_for_cafe = {'cafe1': 20, 'cafe2': 30, 'cafe3': 40}
dark_coffee_needed_for_cafe = {'cafe1': 20, 'cafe2': 20, 'cafe3': 100}

Increase demand for cafe2 by 29%
light_coffee_needed_for_cafe['cafe2'] = math.ceil(light_coffee_needed_for_cafe['cafe2'] * 1.29)
dark_coffee_needed_for_cafe['cafe2'] = math.ceil(dark_coffee_needed_for_cafe['cafe2'] * 1.29)

Decision Variables
x_supplier_roastery = model.addVars(shipping_cost_from_supplier_to_roastery.keys(), vtype=GRB.CONTINUOUS,
name="x_supplier_roastery")
y_light_roastery = model.addVars(roasting_cost_light.keys(), vtype=GRB.CONTINUOUS, name="y_light_roastery")
y_dark_roastery = model.addVars(roasting_cost_dark.keys(), vtype=GRB.CONTINUOUS, name="y_dark_roastery")
z_light_roastery_cafe = model.addVars(shipping_cost_from_roastery_to_cafe.keys(), vtype=GRB.CONTINUOUS,
name="z_light_roastery_cafe")
z_dark_roastery_cafe = model.addVars(shipping_cost_from_roastery_to_cafe.keys(), vtype=GRB.CONTINUOUS,
name="z_dark_roastery_cafe")

Constraints
Sum of beans shipped from each supplier to all roasteries ≤‰¤ supplier capacity
for supplier in capacity_in_supplier:
 model.addConstr(sum(x_supplier_roastery[supplier, roastery] for roastery in roasting_cost_light.keys()) <=
capacity_in_supplier[supplier])

Sum of beans received by each roastery from all suppliers = sum of light and dark coffee roasted at that roastery
for roastery in roasting_cost_light.keys():
 model.addConstr(sum(x_supplier_roastery[supplier, roastery] for supplier in capacity_in_supplier.keys()) ==
y_light_roastery[roastery] + y_dark_roastery[roastery])

Sum of light coffee roasted at each roastery = sum of light coffee shipped from that roastery to all cafes
for roastery in roasting_cost_light.keys():
 model.addConstr(y_light_roastery[roastery] == sum(z_light_roastery_cafe[roastery, cafe] for cafe in
light_coffee_needed_for_cafe.keys()))

Sum of dark coffee roasted at each roastery = sum of dark coffee shipped from that roastery to all cafes
for roastery in roasting_cost_dark.keys():
 model.addConstr(y_dark_roastery[roastery] == sum(z_dark_roastery_cafe[roastery, cafe] for cafe in
dark_coffee_needed_for_cafe.keys()))

Sum of light coffee shipped to each cafe from all roasteries ≥‰¥ light coffee needed for that cafe
for cafe in light_coffee_needed_for_cafe:
 model.addConstr(sum(z_light_roastery_cafe[roastery, cafe] for roastery in roasting_cost_light.keys()) >=
light_coffee_needed_for_cafe[cafe])

Sum of dark coffee shipped to each cafe from all roasteries ≥‰¥ dark coffee needed for that cafe
for cafe in dark_coffee_needed_for_cafe:
 model.addConstr(sum(z_dark_roastery_cafe[roastery, cafe] for roastery in roasting_cost_dark.keys()) >=
dark_coffee_needed_for_cafe[cafe])

Objective: Minimize the total cost
total_cost = model.addVar(vtype=GRB.CONTINUOUS, name="total_cost")
model.addConstr(total_cost ==
 sum(shipping_cost_from_supplier_to_roastery[supplier, roastery] * x_supplier_roastery[supplier, roastery] for
supplier, roastery in shipping_cost_from_supplier_to_roastery.keys()) +
 sum(roasting_cost_light[roastery] * y_light_roastery[roastery] for roastery in roasting_cost_light.keys()) +
 sum(roasting_cost_dark[roastery] * y_dark_roastery[roastery] for roastery in roasting_cost_dark.keys()) +
 sum(shipping_cost_from_roastery_to_cafe[roastery, cafe] * z_light_roastery_cafe[roastery, cafe] for roastery, cafe
in shipping_cost_from_roastery_to_cafe.keys()) +
 sum(shipping_cost_from_roastery_to_cafe[roastery, cafe] * z_dark_roastery_cafe[roastery, cafe] for roastery, cafe in
shipping_cost_from_roastery_to_cafe.keys())
)

model.setObjective(total_cost, GRB.MINIMIZE)

Optimize model
model.optimize()

Code Generator Output -MILP

Figure 25: Output of Code Generator for Coffee after switching the solver to MILP, using GPT-4o.

56

Published as a conference paper at ICLR 2025

A.10.4 PARAPHRASED PROMPTS AND PERFORMANCE

To prove the flexibility of our prompt, we also paraphrase our NL task description and re-test the
framework with a paraphrased description. The paraphrasing is performed by LLMs.

One example paraphrased description is:� �
In this blocksworld problem, a robot arm can perform four actions: pickup

, putdown, stack, and unstack. The environment consists of blocks
that can be stacked, a single-block capacity arm, and a table.

Pickup: The arm can lift a block if it’s clear, on the table, and the arm
is empty. This results in the arm holding the block, which is no

longer on the table or clear.
Putdown: If the arm is holding a block, it can place it on the table.

This leaves the arm empty and the block on the table and clear.
Stack: The arm can place a block it’s holding onto another clear block.

This empties the arm, makes the top block clear and on the bottom
block, while the bottom block becomes unclear.

Unstack: If a clear block is on another block and the arm is empty, it
can lift the top block. This results in the arm holding the top block
(no longer clear or on the bottom block), while the bottom block

becomes clear.� �
With LLM-paraphrased random task descriptions, we test on 50 queries in Blockworld with Claude
3.5 Sonnet and shows LLMFP is still able to correctly generate 46/50 plans, reaching a high optimal
rate of 92%, significantly outperforming baselines. This shows our framework is not sensitive to
the specific wordings of the task description, as long as they have adequate information. We can
add more paraphrasing examples to show the robustness of LLMFP to different user inputs, if the
reviewer finds it helpful to show the generalizability of LLMFP.

Table 15: Optimal rate (%) comparison of LLMFP with baselines with paraphrased prompts on
Blocksworld with Claude 3.5 Sonnet

DirectGPT-4O CoTGPT-4O CodeGPT-4O Code SMTGPT-4O LLMFP GPT-4O

32.0 46.0 0.0 0.0 92.0

57

	Introduction
	Related Works
	LLMs for Planning
	LLM + Solver

	LLMFP
	Overview
	Definer
	Formulator
	Code Generator
	Result Formatter
	Self Assess & Modification
	Choice of Solver

	Experimental Results
	Domains
	LLMFP Performance
	Effectiveness of LLMFP Components
	LLMFP with Task-Specific Example

	Conclusion
	Acknowledgments
	Appendix
	Domains and Complexity Analysis
	LLMFP Performance over Iterations
	Additional Metric Performance: Success rate
	Time and Cost Statistics and Analysis
	Baselines Failure Case Analysis
	LLMFP Failure Case Analysis
	Baselines with Explicit Optimal Requirements
	Inputs on 9 tasks
	Example Outputs on Coffee tasks
	Prompts

