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CONTENTS

The following items are included in the supplementary material:

• Details of Selected Benchmarks in Sec. A.

• More implementation details in Sec. B.

• More detailed experiments results, e.g., comparison of CBS
with other active learning methods and random selection
under various labeling budget when applied them to L2P [15]
and DualPrompt [14] in Sec. C.

• Further analysis of the effectiveness of CBS and the utiliza-
tion of unlabeled data. in Sec. D.

• Limitation and future work in Sec. E.

A DETAILS OF BENCHMARKS
We conduct experiments on selected five publicly available im-
age classification datasets, i.e., CUB-200 [13], CIFAR-100 [6], mini-
ImageNet [11], DTD [2] and Flowers102 [7], to evaluation our CBS.
The first three datasets are commonly utilized for evaluation in CIL
or FSCIL, while the latter two datasets are more challenging classi-
fication datasets usually adopted to evaluate for vision-language
model [8]. We evenly divide each dataset into multiple subsets to
construct incremental sessions, and the details are present in the
supplementary materials.

• CUB-200 is a dataset designed for fine-grained classifica-
tion, comprises approximately 6,000 training images across
200 bird species. We evenly divide the 200 classes into 10
incremental sessions, with each session containing 20 classes
and each class containing about 30 unlabeled images.

• CIFAR-100 consists of 100 general classes, each of which
contains 50, 000 training images. We evenly divide the 100
classes into 5 incremental sessions, with each session contain-
ing 20 classes and each class containing about 500 unlabeled
images.

• mini-ImageNet is a small set of ImageNet [11], which has
50, 000 training images from 100 chosen classes. We evenly
divide the 100 classes into 5 incremental sessions, with each
session containing 20 classes and each class containing about
500 unlabeled images.

• DTD is a collection of 47 different texture with 2,820 training
images. We evenly divide the first 40 classes into 2 incre-
mental sessions, with each session containing 20 classes and
each class containing about 60 unlabeled images.

• Flowers102 is designed for fine-grained flower classification,
consists of 102 flower classes, with a total of 4,093 training
images. We evenly divide the first 100 classes into 5 incre-
mental sessions, with each session containing 20 classes and
each class containing about 40 unlabeled images.

In addition, we also evaluate the effectiveness of CBS on datasets
that the unlabeled pool are inherently class-imbalanced (e.g., CIFAR-
100-LT). Specifically, we transform the unlabeled pool in each ses-
sion of CIFAR-100 into a long-tail distribution [16] with an imbal-
ance ratio of 10 to build the class-inherently imbalanced unlabeled
pool, and the test set remains unchanged.

B IMPLEMENTATION DETAILS
All experiments are conducted with PyTorch on NVIDIA RTX
2080Ti GPU. We implement ACIL pipeline based on the PyTorch
implementations of L2P, DualPrompt, and LP-DiF, respectively. For
each CIL method, we incorporate our proposed CBS and compared
active learning methods with it. On each dataset, we conduct experi-
ments under the annotation budget size 𝐵 ∈ {40, 60, 80, . . . , 200} for
each session, respectively. Note that our method selects 𝐵 samples
at once for each session, whereas some compared active learning
algorithms are based on multiple rounds to selection, labeling, and
training. Therefore, for these methods, we maintain their multi-
round pipeline and make them select 20 samples in each round for
labeling until the number of selected samples reaches 𝐵. For the
optimizer and learning rate, we maintained consistency with the
original implementations of L2P, DualPrompt, and LP-DiF when
applying all the active learning methods. When applying CBS, all
incremental learners train for 50 epochs in each session. When ap-
plying other active learning methods, we follow their multi-round
training and labeling paradigm. To achieve both fairness and train-
ing efficiency, these methods train for 20 epochs in each of the first
𝑅 − 1 rounds and 50 epochs in the 𝑅-th round, where 𝑅 = 𝐵/20.
Thus, we ensure that the methods we compare have sufficiently
training epochs.

C MORE DETAILED EXPERIMENTS RESULTS
Comparison under various labeling budget. In main paper

we have reported the Avg curves of our CBS and comparison with
counterparts applied to LP-DiF [5] under various labeling bud-
get 𝐵 in Fig. 2. Here we report the corresponding results when
apply CBS and comparison with counterparts to L2P [15] and Du-
alPrompt [14], as shown in Fig. A and Fig. B. Generally, one can
obtain the following observations: 1) For both L2P and DualPrompt,
for each dataset, compared to existing SOTA active learning meth-
ods and random selection, our proposed CBS achieved the best
or comparable performance under any specified labeling budget.
Especially under lower labeling budget, e.g., 𝐵 = 40 or 𝐵 = 60, the
performance of CBS is significantly higher than other counterparts.
2) For both L2P andDualPrompt, our CBS achieves the highestMean

2024-04-20 07:42. Page 1 of 1–7.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference’17, July 2017, Washington, DC, USA Trovato et al. and Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

(a) Mean over five datasets (b) CUB-200 (c) CIFAR-100
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Figure A: Avg curves of our CBS and comparison with counterparts applied to L2P [15] on five datasets (i.e., (b) to (f)) under
various labeling budget 𝐵. (a) shows the mean Avg curves over five datasets.

Avg over five datasets under each labeling budget compared to all
the counterparts. The above results, along with those of LP-DiF in
the main paper, fully demonstrate that our CBS can be plug-and-
played with these methods which are based on pretrained models
with prompt tuning techniques, and show its superiority for ACIL
tasks compared to other active learning methods.

Further analysis the class balance of selected examples.
In main paper we have analyzed the class balance of selected ex-
amples by our CBS and other counterparts in terms of the “classes
discovery ratio”. The “classes discovery ratio” reflects whether the
samples selected by the active learning method can cover more
categories. Here we report a more intuitive quantitative metric,
i.e., the “class-imbalanced ratio”, to demonstrate the class balance
of samples selected by different methods. The “class-imbalanced
ratio” is calculated by dividing the number of samples of the class
with the most samples selected by the active learning method in
that session by the number of samples of the class with the least
samples. The lower the class-imbalanced ratio, the more it indicates
that the samples selected by the active learning method are more
balanced across classes. Fig. C shows the comparison of CBS and
other counterparts applied to LP-DiF in terms of “class-imbalanced
ratio” on CUB-200 under various labeling budget. Each curve rep-
resents a specific active learning method, and each point on the
curve indicates the class-imbalanced ratio of this method at the

corresponding session. Clearly, our CBS demonstrated the low-
est class-imbalanced ratio in most sessions under various labeling
budget settings. Specifically, when the labeling budget is low, our
CBS outperforms other methods by a substantial margin, which
explains why CBS achieves a higher Avg when the labeling bud-
get is low compared to other methods in Fig. 2. In addition, we
observed that many classic active learning methods exhibit very
high imbalance rates compared to random selection, which also
explains why the performance of these methods is lower than that
of random selection.

Results on CIFAR-100-LT. Consider that the key idea of our
CBS is to ensure the distribution of selected samples closely mirrors
the distribution of the entire unlabeled pool, thereby achieving
a class-balanced selection while also selecting samples that are
representative and diverse. Hence, an unavoidable question is, if
the unlabeled pool itself is severely class-imbalanced, can our CBS
still choose out a balanced training set? To answer this question,
we conduct experiments on CIFAR-100-LT, where the unlabeled
pool of each session is a long-tailed distribution (a severe classes
imbalance) to evaluate our CBS. Tab. A shows the comparison with
other counterparts applied them to LP-DiF on CIFAR-100-LT under
𝐵 = 100, in terms of accuracy of each session and Avg, and Fig. E
shows the comparison in terms of “class-imbalanced ratio”. To our
surprise, our method still outperforms other methods in terms of
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Figure B: Avg curves of our CBS and comparison with counterparts applied to DualPrompt [14] on five datasets (i.e., (b) to (f))
under various labeling budget 𝐵. (a) shows the mean Avg curves over five datasets.

performance although but the balance of the samples it selects
does not have an advantage over other methods. We speculate that
this is because other active learning methods adopt a multi-round
train-label paradigm, making them more prone to overfitting on a
very small number of imbalanced samples in the initial rounds. In
contrast, our method can select 𝐵 samples at once and then train
the model, thereby better resisting overfitting. In future work, we
will focus on exploring this issue further.

D MORE ANALYSIS
Further analysis the effect of CBS. The key idea of our CBS

is to ensure the distribution of selected samples closely mirrors the
distribution of the entire unlabeled pool. To more intuitively explain
how CBS achieves this, we calculate the KL divergence between
the Gaussian distribution of the selected samples for each class and
the distribution of all samples of that class in the unlabeled pool,
using the following formula:

𝐷KL (N(𝝁 𝑗 ,𝝈
2
𝑗 ) |N (𝝁̂ 𝑗 , 𝝈̂

2
𝑗 ) ) =

1
2

𝐷∑︁
𝑑=1

(
𝜎2
𝑗𝑑

𝜎̂2
𝑗𝑑

+
(𝜇 𝑗𝑑 − 𝜇 𝑗𝑑 )2

𝜎̂2
𝑗𝑑

+ ln

(
𝜎̂2
𝑗𝑑

𝜎2
𝑗𝑑

)
− 1

)
,

(1)
whereN(𝝁 𝑗 ,𝝈2

𝑗
) represents the Gaussian distribution of all samples

of class 𝑗 and N(𝝁 𝑗 , 𝝈̂2
𝑗
) represents the Gaussian distribution of

samples selected by a active learning method of class 𝑗 . Statistically,
the smaller the 𝐷KL, the closer the two Gaussian distributions are,

Table A: Comparison of our method with other active learn-
ing approaches when applying them to LP-DiF on CIFAR-
100-LT, under 𝐵 = 100. “Avg” represents the average accuracy
across all incremental session.

Method.
Accuracy in each session (%) ↑ Avg ↑
1 2 3 4 5

LP-DiF [5]
+ Random (Baseline) 49.50 55.80 56.15 46.74 44.49 50.53
+ Entropy [4] 54.40 51.15 43.08 36.99 27.70 42.66
+ Margin [10] 54.45 52.25 43.15 45.48 36.38 46.34
+ Coreset [12] 53.45 52.88 60.45 52.35 45.04 52.83
+ BADGE [1] 53.90 41.80 44.88 40.94 41.75 44.65
+ Typiclust [3] 58.55 55.50 57.10 49.27 46.19 53.32
+ ProbCover [17] 51.10 48.20 47.70 46.05 43.72 47.35
+ DropQuery [9] 55.50 55.52 51.53 44.92 45.26 50.54
+ CBS (Ours) 63.05 62.67 59.73 53.04 49.19 57.53

indicating that the selected samples are more representative of the
entire sample distribution. We applied CBS and random selection
to LP-DiF on CUB-200 under 𝐵 = 100 to conduct the experiment,
respectively. Fig. D shows the results, where each point in one curve
represents the 𝐷KL of the class 𝑗 . Clearly, the samples selected by
our CBS have a lower KL divergence with the entire sample set
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Figure C: Comparison of CBS and other counterparts applied to LP-DiF in terms of “class-imbalanced ratio” on CUB-200 under
various labeling budget. Each curve represents a specific active learning method, and each point on the curve indicates the
class-imbalanced ratio of this method at the corresponding session. The “class-imbalanced ratio” is calculated by dividing the
number of samples of the class with the most samples selected by the active learning method in that session by the number of
samples of the class with the fewest samples.

of most classes compared to those selected by random selection.
This demonstrates that our method indeed ensures that the selected
samples are more representative of the overall distribution.

The runtime cost of CBS.We compare the runtime cost of CBS
and Dropquery [9]. Dropquery is a recent active learning method
that focuses on performing active learning on pretrained models,
achieving new SOTA of active learning problem. It first obtains
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Table B: Comparison with Dropquery in terms of runtime
cost of each session and the Avg. Sec. represents second.

Method Runtime cost (sec.) ↓ Avg. (%) ↑
Dropquery 149 72.07
CBS (Ours) 42 73.38

1 2 3 4 5
Session
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BADGE
ProbCover

typiclust
Dropquery
CBS (Ours)

Figure E: Comparison of CBS and other counterparts applied
to LP-DiF in terms of “class-imbalanced ratio” on CIFAR-100-
LT under 𝐵 = 100.

consistent predictions from the model for each input by using
inputs from different views (by dropout the value of features), and
retains samples with poor consistency for clustering. Next, it selects
the samples closest to the center from each cluster Unlike CBS,
Dropquery still adopts a multi-round training-labeling paradigm,
which may increases the computational cost of selecting samples.

All classes Old classes New classes
60
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Ac
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67.66
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67.22
66.21
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Figure F: Decoupling the performance of the last session to
old classes and new classes respectively. The experiments are
conducted on CUB-200 under 𝐵 = 100.

Tab. ?? compares the runtime cost of samples selection of each
sessio and Avg between our CBS and dropquery. Clearly, compared
to Dropquery, our method has a lower runtime and achieves higher
performance. This indicates that our method not only achieves high
performance but is also more efficient.

Further analysis of utilizing unlabeled data for LP-DiF.
When applying CBS to LP-DiF, we further exploit the unlabeled
data not selected by CBS to improve the estimation method for
the feature-level Gaussian distribution, which can generate higher-
quality pseudo features for knowledge replay to enhance themodel’s
resistance to catastrophic forgetting. To more clearly demonstrate
the effect of this design, we decouple the model’s accuracy in the
last incremental session into accuracy on old classes and accuracy
on new classes. Fig. F shows the decoupled results on the last ses-
sion of CUB-200 under 𝐵 = 100. “CBS + Unlabeled data” represent
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utilizing unlabeled data to enhance the model’s resistance to cata-
strophic forgetting. Note that CBS + unlabeled performs better on
all classes and old classes than pure CBS, i.e., 67.22% vs. 68.5%, and
66.21% vs. 67.66% for old classes, while performance on new classes
remains comparable. This fully reveals that utilizing unlabeled data
can indeed enhance the model’s ability to resist catastrophic for-
getting and improve overall performance.

E LIMITATION
In this paper, we introduce the task of active class incremental
learning, which incorporates the idea of active sample selection
into each incremental session of incremental learning to benefit
incremental learner. In setting up the problem, we reference existing
class incremental learning methods to establish the task of active
class incremental learning, where the class space in each session has
no overlap. However, in real-world applications, the requirement
that new unlabeled data does not contain old classes is somewhat
challenging to fulfill. Therefore, in future work, we may explore
how to select the most informative samples from unlabeled data
that may contain old classes.
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