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A SAMPLING THEORY IN HIGHER DIMENSIONS

The sampling theory — in its original form — is only applicable to one dimensional signals. How-
ever, it can be extended to higher dimensions in a straightforward manner. Let f : Rn → R be
a function in L1(Rn), which we think of as a higher mode signal. Let I(Ω1, . . . ,Ωn) denote an
n-dimensional rectangle about the origin with side lengths Ω1, . . . ,Ωn. Suppose that the Fourier
transform f̂ vanishes identically outside of I(Ω1, . . . ,Ωn). Then

f(t1, . . . , tn) =
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· · ·
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mn−∞
f

(
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2Ω1
, . . . ,
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2Ωn

)
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2Ω1
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n
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(
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Thus we see that sampling f on the lattice defined by lengths
(

1
2Ω1

, . . . , 1
2Ωn

)
and taking shifted

sinc functions of bandwidth 2Ωk, for 1 ≤ k ≤ n, we can reconstruct the function f as in the one
dimensional case. Note that as in the case of the one-dimensional Nyquist-Shanon theorem, in order
for perfect reconstruction one needs to sample at larger than twice the dominant frequency present
in the signal. Therefore, in practise one would take the maximum of Ω = maxi{Ωi} and sample at
a frequency of 2Ω.

Curse of dimensionality. While the multidimensional Nyquist-Shanon sampling theorem provides
a convenient theoretical framework in which to understand signal processing problems in higher
dimensions. It does not come without problems. In practise, the multidimensional sampling theorem
is extremely inefficient.

The main issue with sampling in higher dimensions is that there is an exponential increase in vol-
umes of cubes (or rectangles/balls) associated with adding extra dimensions. To see this, imagine we
had a signal f : [0, 1] → R whose dominant frequency was 50-Hertz. Let us then suppose we wish
to perform a reconstruction by using a sample rate of 100-Hertz. This means that we would need to
sample exactly 102 = 100 points from the unit interval [0, 1] each spaced at a distance of 0.01. Now,
imagine that we had a 10 mode signal g : [0, 1]10 → R on the unit cube whose dominant frequency
was also 50-Hertz. We wish to perform a 100-Hertz sample rate reconstruction of g as we did for f .
Now we see a problem, in this instance we would need to sample (102)10 = 1020 points from the
10-dimensional cube. Thus when using a sampling distance of 0.01 we see that the 10-dimensional
cube [0, 1]10 is 1018-times larger than the 1-dimensional cube [0, 1]. This exponential increase in
the amount of sample points needed to reconstruct a high mode signal is referred to as the curse
of dimensionality and is a mathematical consequence of the fact that volumes of many mathemat-
ical shapes grow exponentially with dimension. This makes the sampling theory of Nqyquist and
Shanon some what unusable in practise for higher mode signals.

There have been other reconstruction techniques, most notable compressed sensing, that have shown
far superior performance than classical sampling due to their ability to break the Nyquist limit and
allow far fewer sampling points. However, such techniques have the added problem that they are
memory intensive for high mode signals. As we show INRs offer a convenient middle ground that
makes them perfectly suitable for signal reconstruction in higher mode signal settings.

B PROOFS OF RESULTS IN SECTION 3.2

B.1 PRELIMINARIES

We will be using the basic theory of Hilbert spaces in L2. Namely, the space of square integrable
functions on R will be denoted by L2(R) and we recall that this is defined as the vector space of
equivalence classes of measurable functions on R with the following inner product

⟨f, g⟩L2 =

∫
R
f · g. (14)

We wil also need to make use of the Sobolev spaces of order r, denoted by W r
2 (R). We define this

space as the space of L2-functions that have r weak derivatives that are also in L2(R).
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Proof of prop. 3.3. The sinc function is in L2 and further since its Fourier transform is the rectan-
gular function it is easy to see using the fact that the Fourier transform is an isometry of L2 that it
must satisfy the Partition of unity conditon.

The Gaussian ex
2/2s2 is also in L2, however this function does not satisfy the partition of unity con-

dition. The reason being that by the Poisson summatic formula it suffice to show that the translates
over the integers of the Fourier transform sums to 1. However, the Fourier transform of a Gaussian
is a Gaussian, therefore outside the rectangle [−π/β, π/β] the exponential decay cannot contribute
anything to the sum in the partition of unity condition. Hence the sum could not sum to 1. It follows
the translates of the Gaussian can only form a weak Riesz basis.

In general, the Fourier transform of a wavelet is localized in phase and frequency, hence as in the
case of the Gaussian above, they will be in L2 and form a weak Riesz basis but in general they might
not form a Riesz basis. Conditions have been given for a wavelet to form a Riesz basis, see Sun &
Zhou (2002), though this is outside the scope of this work.

In order to form a Riesz basis ReLU would have to be in L2(R), which it is not. On the other hand,
given x ∈ R we have that∑

k∈Z
ReLU(x+ k) =

∑
k≥−x,k∈Z

ReLU(x+ k) =
∑

k≥−x,k∈Z
(x+ k) = ∞

showing that there is no way ReLU could satisfy the partition of unity condition.

A similar proof shows that translates of sine cannot form a Riesz/weak Riesz basis.

B.1.1 RESULTS ON THE ERROR KERNEL AND PUC CONDITION

We recall from sec. 3.3 that the understanding of the sampling properties of the shifted basis func-
tions Fk comes down to analysing the error kernel EF̃ ,F . The reason being was that the average
error ϵs(T )2 is a good predictor of the true error ϵs(T )2.

We sketch a proof showing that the vanishing of the error kernel in the limit T → 0 for a suitable
test function F̃ is equivalent to F satisfying the partition of unity condition. We will do this under
two assumptions:

A1. The Fourier transform of F is continuous at 0.

A2. The Fourier transform of F̃ is continuous at 0.

A3. The sampled signal s we wish to reconstruct is contained in W r
2 for some r > 1

2 . This
assumption is needed so that the quantity ϵcorr goes to zero as T → 0.

We remark that an explicit construction of F̃ will be given after the proof as during the course of the
proof we will see what conditions we need to impose for the construction of F̃ from F .

From the definition of the approximation operator, equation 3, we have that

lim
T→0

||f −AT (f)||2L2 = lim
T→0

∫ ∞

−∞
EF̃ ,F (Tω)|ŝ(ω)|

2 dω

2ω
(15)

where we remind the reader that the error kernel EF̃ ,F is given by equation equation 6. We now

observe that if F̃ is a function such that ˆ̃
F is bounded and F satisfies the first Riesz condition,

condition 1 from defn. 3.1, then by definition it follows that EF̃ ,F is bounded. Therefore in the
above integral we can apply the dominated convergence theorem and compute

lim
T→0

||s−AT (s)||2L2 =

∫ ∞

−∞
lim
T→0

EF̃ ,F (Tω)|ŝ(ω)|
2 dω

2ω
(16)

= EF̃ ,F (0)

∫ ∞

−∞
|ŝ(ω)|2 dω

2ω
(17)

= EF̃ ,F (0)||s||
2 (18)
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where to get the second equality we have used assumptions A1 and A2 above and to get the third
equality we have used the fact that the Fourier transform is an isometry from L2 to L2.

We thus see that the statement limT→0 ||s − QT (s)||2L2 = 0 is equivalent to EF̃ ,F (0) = 0. From
equation 6 this is equivalent to

EF̃ ,F (0) = |1− ˆ̃
F (0)F̂ (0)|2 + | ˆ̃F (0)|2

∑
k ̸=0

|F̂ (2πk)|2 = 0. (19)

We see thatEF̃ ,F (0) is a sum of positive terms and hence will vanish if and only if all the terms in the

summands vanish. Looking at the first summand we see that we need ˆ̃
F (0)F̂ (0) = 1, which can hold

if and only if both factors are not zero. We normalise the function F so that F̂ (0) =
∫
F (x)dx = 1.

Thus the conditions that need to be satisfied are
ˆ̃
F (0) = 1 and

∑
k ̸=0

|F̂ (2πk)|2 = 0. (20)

We can rewrite the second condition in equation 20 as

F̂ (2πk) = δk (21)

where δ denotes the Dirac delta distribution. From this viewpoint we then immediately have that the
second condition can be written in the form∑

k

F (x+ k) = 1 (22)

which is precisely the partition of unity condition.

The function F̃ is easy to choose. Let S denote Schwartz space of Schwartz functions in L2. It
is well known that this space is dense in L2(R) and that the Fourier transform maps S onto itself.
Therefore, in the Fourier domain let S̃ denote the set of Schwartz functions f such that f̂(0) ̸= 0.
Note that S̃ is dense in L2 and elements in S̃ are continuous at the origin. In order to define F̃ we
simply take any element f ∈ S̃ and let F̃ = 1

f̂(0)
f . In fact, if we denote the space S to consist of

those Schwartz functions f whose Fourier transform satisfies f̂(0) = 1, then it is easy to see that S
is dense in L2. Thus the space S can be used as a test space for F̃ and is the defining test space for
the approximation operator AT .

B.1.2 PROOFS OF MAIN RESULTS IN SECTION 3.3

Proof of theorem 3.4. We first note that by condition 1 in defn. 3.1. The space V (F ) is a subspace
of L2(R). Therefore, the space V (F ) with the induced L2-norm forms a well-defined normed vector
space.

Since g ∈ V (F ) we can write g =
∑∞

k=−∞ a(k)F (x−k) in L2. Therefore, there exists a k(ϵ) such
that ∣∣∣∣∣∣∣∣g − k(ϵ)∑

k=−k(ϵ)

a(k)F (x− k)

∣∣∣∣∣∣∣∣
L2

< ϵ. (23)

We can then define a 2-layer neural network f with n(ϵ) = 2k(ϵ) neurons as follows: Let the
weights in the first layer be the constant vector [1, · · · , 1]T and the associated bias to be the vec-
tor [−k(ϵ),−k(ϵ) + 1, . . . , k(ϵ)]T . Let the weights associated to the second layer be the vector
[a(−k(ϵ)), a(−k(ϵ) + 1), · · · , a(k(ϵ))] and the associated bias be 0. These weights and biases will
make up the parameters for the neural network f and in the hidden layer we take F as the non-
linearity.

Applying equation 23 we obtain that

||f(θ)− g||2L < ϵ. (24)
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Proof of prop. 3.9. We start by proving the proposition for the case that s ∈W 1
2 . We then note that

in this case by thm. 3.7, there is a Ω > 0 sufficiently small such that ϵcorr < ϵ
2 . Furthermore, by

lemma 3.8 we have that average approximation error ϵ(Ω) < ϵ
2 for Ω sufficiently small. Therefore,

by taking fΩ = AΩ(s) ∈ VΩ(F ) the proposition follows for signal in W 1
2 .

For the general case of signals s ∈ L2, we proceed as follows. We use the fact that C∞
c (R) is dense

in L2. This implies we can find an f ∈ C∞
c (R) such that ||f − s||L2 < ϵ

2 . Furthermore, since
s ∈ C∞

c it lies in W 1
2 . By the above we have that there exists Ω > 0 such that ||f −AΩ(f)||L2 < ϵ

2 .
The result then follows by an application of the triangle inequality.

Proof of thm. 3.10. Proof. By prop. 3.9 there exists an Ω > 0 sufficiently small and an fΩ ∈
VΩ(F ) such that

||s− fΩ||L2 <
ϵ

2
. (25)

As fΩ lies in VΩ(F ) we can write fΩ =
∑∞

k=−∞ aΩ(k)F (
1
Ω (x − Ωk). This implies there exists

k(ϵ) > 0 such that ∣∣∣∣∣∣∣∣fΩ −
k(ϵ)∑

k=−k(ϵ)

aΩ(k)F

(
1

Ω
(x− Ωk)

)∣∣∣∣∣∣∣∣ < ϵ

2
. (26)

We define a neural network N with n(ϵ) = 2k(ϵ) neurons in its hidden layer as follows. The
weights in the first layer will be the constant vector [1, . . . , 1]T and the associated bias will be
the vector [−Ωk(ϵ),−Ωk(ϵ) + 1, . . . ,Ωk(ϵ)]T . The weights associated to the second layer will be
[a(−k(ϵ)), . . . , a(k(ϵ))] and the bias for this layer will be 0. These weights and biases will make up
the parameters θ for the neural network. In the hidden layer we take as activation the function FΩ.
With these parameters and activation function, equation 26 implies that

||N (θ)− fΩ||L2 <
ϵ

2
. (27)

An application of the triangle inequality then proves the theorem.

C ON TAKEN’S EMBEDDING THEOREM

Taken’s embedding theorem is a delay embedding theorem giving conditions under which the
strange attractor of a dynamical system can be reconstructed from a sequence of observations of
the phase space of that dynamical system.

The theorem constructs an embedding vector for each point in time

x(ti) = [x(ti), x(ti + n∆t), . . . , x(ti + (d− 1)n∆t)]

Where d is the embedding dimension and n is a fixed value. The theorem then states that in order to
reconstruct the dynamics in phase space for any n the following condition must be met

d ≥ 2D + l

where D is the box counting dimension of the strange attractor of the dynamical system which can
be thought of as the theoretical dimension of phase space for which the trajectories of the system do
not overlap.

Drawbacks of the theorem: The theorem does not provide conditions as to what the best n is and
in practise when D is not known it does not provide conditions for the embedding dimension d. The
quantity n∆t is the amount of time delay that is being applied. Extremely short time delays cause
the values in the embedding vector to almost be the same, and extremely large time delays cause the
value to be uncorrelated random variables. The following papers show how one can find the time
delay in practise Kim et al. (1999); Small (2005). Furthermore, in practise estimating the embedding
dimension is often done by a false nearest neighbours algorithm Kennel et al. (1992).

Thus in practise time delay embeddings for the reconstruction of dynamics can require the need to
carry further experiments to find the best time delay length and embedding dimension.
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D RELATION TO UNIVERSAL APPROXIMATION

Thms. 3.4 and 3.10 can be interpreted as universal approximation theorems for signals in L2(R).
The classic universal approximation theorems are generally for functions on bounded domains .
In 92’ W. A Light extended those results on bounded domains to a universal approximation for
continuous function on Rn by sigmoid activated networks Light (1992). His result can also be made
to hold for sinc activated networks, and since the space of continuous functions is dense in L2(R)
his proof easily extends to give a universal approximation result for sinc activated 2 layer networks
for signals in L2(R). Thus thm. 3.10 can be seen as giving a different proof of W.A. Light’s result.

Although it seems like such results have been known through classical methods, we would like to
emphasize that the importance of thm. 3.10 comes in how it relates to sampling theory. Given
a signal s ∈ L2(R) that is bandlimited, the Nyquist-Shannon sampling theorem. This classical
theorem, as denoted in equation ??, allows signal reconstruction using shifted sinc functions while
explicitly specifying the coefficients of these shifted sinc functions. These coefficients correspond
to samples of the signal, represented as s(n/2Ω). In cases where the signal is not bandlimited, prop.
3.9 still enables signal reconstruction via shifted sinc functions, albeit without a closed formula for
the coefficients involved. This is precisely where thm. 3.10 demonstrates its significance. The
theorem reveals that the shifted sinc functions constituting the approximation can be encoded using
a two-layer sinc-activated neural network. Notably, this implies that the coefficients can be learned
as part of the neural network’s weights, rendering such a sinc-activated network exceptionally suited
for signal reconstruction in the L2 space. In fact, thm. 3.10 shows that one does not need to restrict
to sinc functions and that any activation that forms a Riesz basis will be optimal.

E DYNAMICAL EQUATIONS

Lorentz System: For the Lorenz system we take the parameters, σ = 10, ρ = 28 and β = 8
3 . The

equations defining the system are:

dx

dt
= σ(−x+ y) (28)

dy

dt
= −xz + ρx− y (29)

dz

dt
= −xy − βz (30)

Van der Pol Oscillator: For the Van der Pol oscillator we take the parameter, µ = 1. The equations
defining the system are:

dx

dt
= µ(x− 1

3
x3 − y) (31)

dy

dt
=

1

µ
x (32)

Chen System: For the Chen system we take the parameters, α = 5, β = −10 and δ = −0.38. The
equations defining the system are:

dx

dt
= αx− yz (33)

dy

dt
= βy + xz (34)

dz

dt
= δz +

xy

3
(35)
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Rössler System: For the Rössler system we take the parameters, a = 0.2, b = 0.2 and c = 5.7. The
equations defining the system are:

dx

dt
= −(y + z) (36)

dy

dt
= x+ ay (37)

dz

dt
= b+ z(x− c) (38)
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Generalized Rank 14 Lorentz System: For the following system we take parameters a = 1√
2

,
R = 6.75r and r = 45.92. The equations defining the system are:

dψ11

dt
= −a

(
7

3
ψ13ψ22 +

17

6
ψ13ψ24 +

1

3
ψ31ψ22 +

9

2
ψ33ψ24

)
− σ

3

2
ψ11 + σa

2

3
θ11 (39)

dψ13

dt
= a

(
− 9

19
ψ11ψ22 +

33

38
ψ11ψ24 +

2

19
ψ31ψ22 −

125

38
ψ31ψ24

)
− σ

19

2
ψ13 + σa

2

19
θ13

(40)
dψ22

dt
= a

(
4

3
ψ11ψ13 −

2

3
ψ11ψ31 −

4

3
ψ13ψ31

)
− 6σψ22 +

1

3
σaθ22 (41)

dψ31

dt
= a

(
9

11
ψ11ψ22 +

14

11
ψ13ψ22 +

85

22
ψ13ψ24

)
− 11

2
σψ31 +

6

11
σaθ31 (42)

dψ33

dt
= a

(
11

6
ψ11ψ24

)
− 27

2
σψ33 +

2

9
σaθ33 (43)

dψ24

dt
= a

(
−2

9
ψ11ψ13 − ψ11ψ33 +

5

9
ψ13ψ31

)
− 18σψ24 +

1

9
σaθ24 (44)

dθ11
dt

= a

(
ψ11θ02 + ψ13θ22 −

1

2
ψ13θ24 − ψ13θ02 + 2ψ13θ04 + ψ22θ13 + ψ22θ31 + ψ31θ22

(45)

+
3

2
ψ33θ24 −

1

2
ψ24θ13 +

3

2
ψ24θ33

)
+Raψ11 −

3

2
θ11

dθ13
dt

= a

(
− ψ11θ22 +

1

2
ψ11θ24 − ψ11θ02 + 2ψ11θ04 − ψ22θ11 − 2ψ31θ22 (46)

+
5

2
ψ31θ24 +

1

2
ψ24θ11 +

5

2
ψ24θ31

)
+Raψ13 −

19

2
θ13

dθ22
dt

= a

(
ψ11θ13 − ψ11θ31 − ψ13θ11 + 2ψ13θ31 + 4ψ22θ04 − ψ33θ11 + 2ψ24θ02

)
+ 2Raψ22 − 6θ22

(47)
dθ31
dt

= a

(
ψ11θ22 − 2ψ13θ22 +

5

2
ψ13θ24 − ψ22θ11 + 2ψ22θ13 + 4ψ31θ02 − 4ψ33θ02 (48)

+ 8ψ33θ04 −
5

2
ψ24θ13

)
+ 3Raψ31 −

11

2
θ31

dθ33
dt

= a

(
3

2
ψ11θ24 − 4ψ31θ02 + 8ψ31θ04 −

3

2
ψ24θ11

)
+ 3Raψ33 −

27

2
θ33 (49)

dθ24
dt

= a

(
1

2
ψ11θ13 −

3

2
ψ11θ33 +

1

2
ψ13θ11 −

5

2
ψ13θ31 − 2ψ22θ02 (50)

− 5

2
ψ31θ13 −

3

2
ψ33θ11

)
+ 2Raψ24 − 18θ24

dθ02
dt

= a

(
− 1

2
ψ11θ11 +

1

2
ψ11θ11 +

1

2
ψ11θ13 +

1

2
ψ13θ11 + ψ22θ24 (51)

− 3

2
ψ31θ31 +

3

2
ψ31θ33 +

3

2
ψ33θ31 + ψ24θ24

)
− 4θ02

dθ04
dt

= −a
(
ψ11θ13 + ψ13θ11 + 2ψ22θ22 + 4ψ31θ33 + 4ψ33θ31

)
− 16θ04 (52)
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n = 1.0 n = 0.8 n = 0.6 n = 0.2 n = 0.1

Figure 6: Robust recovery of dynamical systems from partial observations (Lorenz system). Top
row: coordinate network. Bottom row: classical method.

n = 1.0 n = 0.8 n = 0.6 n = 0.2 n = 0.1

Figure 7: Robust recovery of dynamical systems from partial observations (Duffing system). Top
row: coordinate network. Bottom row: classical method.

20



Under review as a conference paper at ICLR 2024

w = 0.3 w = 5

Figure 8: The top row and the bottom row depicts the SINDy reconstructions obtained for the Lorenz
system and the Rossler system, respectively, using coordinate networks. As ω is increased in the
sinc function, the coordinate network allows more higher frequencies to be captured, resulting in
noisy reconstructions.
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