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A Exploration Mechanism1

CLF-based approaches may cause agents to get stuck in local minima in complex navigation sce-2

narios, such as environments with non-convex obstacle regions or where the destination is located3

directly on the opposite side of an obstacle. To overcome this challenge, we propose an exploration4

mechanism inspired by the Expansive Search Tree (EST) [1] and integrate it into our method to5

encourage agents out of local minima.6

Specifically, we consider the standard QP controller (6) as the convergence mode, and switch to7

the exploration mode when the QP controller becomes infeasible, i.e., no feasible control satisfies8

both convergence and safety constraints in (6). The exploration mode samples a state xsample ∼9

Pstate,dmax from its nearby space with the sampling radius determined by the maximum scanning10

distance dmax of the LiDAR scanner, and generates an action by the QP controller to steer the agent11

towards the sampled state xsample.12

As we collect LiDAR readings at each time step and perform online SVM training, each agent13

estimates the surrounding environment in a real-time manner. For any generated action that violates14

safety constraints, the previously sampled state will be discarded and a new state will be sampled.15

After repeating this sampling process for a fixed number of times Nexplore, we switch back to the16

convergence mode and navigates the agents towards their destinations. Algorithm 1 summarizes the17

exploration mechanism integrated in our method.18

B Methodology Details19

We provide additional details about the proposed method in this section.20

B.1 Graph Attention Networks21

Graph attention networks (GATs) are a variant of graph neural networks (GNNs) that leverage the22

attention mechanism to extract task-relevant features from graph data. Different from conventional23

GNNs, which aggregate neighborhood information with (pre-defined) fixed weights, GATs allow24

to differentiate neighbors w.r.t. their contributions when aggregating neighborhood information to25

generate task-relevant features.26

Specifically, consider a graph G = {V, E} with the node set V = {1, . . . , n} and the edge set E .27

The graph structure can be captured by a support matrix W with (i, j)th entry wij = [W]ij ̸= 028

if node i is connected to node j, i.e., (i, j) ∈ E , or i = j, and [W]ij = 0 otherwise. The graph29

data can be captured by a graph signal X, which is a matrix whose ith row xi = [X]i contains the30

feature of node i. GATs are capable of assigning different attention coefficients {[W]ij}j∈Ni
to31

the neighboring nodes {j}j∈Ni
of each node i, which represent the importance of the neighbors’32
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Algorithm 1 Exploration Mechanism (for agent Ai)

1: Input: State xi, target xd
i , safety constraints S

2: Output: Control action ui

3: if QP controller infeasible then
4: Switch to the exploration mode
5: for iexplore = 1, . . . ,Nexplore do
6: while exploration mode do
7: Sample a state xsample ∼ Pstate,dmax

8: Attempt to generate control action ui to steer towards xsample

9: if ui violates safety constraints S then
10: Discard ui

11: else
12: break
13: Apply ui to system (1)
14: Scan the environment to collect LiDAR readings
15: Train SVM with the latest LiDAR readings to update the environment CBF
16: Switch to the convergence mode

features for the feature update of the local node. These attention coefficients W are learned with a33

shared self-attention mechanism, enabling to quantify the relevance among graph nodes. Therefore,34

GATs are suitable candidates to characterize the importance of the neighbors’ LiDAR readings in35

synthesizing the CBF of the unknown environment at the local agent.36

The key component of the GAT lies in the attention mechanism, which computes attention coeffi-37

cients between neighboring nodes. For the local node i and its neighboring node j, the unnormalized38

attention coefficient is calculated as39

eij = a(Hxi,Hxj), (S.1)

where H is a learnable weight matrix (i.e., linear transformation) that maps the node features xi and40

xj to some higher-order features, and a(·) is a shared attention function such as a feedforward neural41

network. The unnormalized eij is then passed through a softmax function to get the normalized42

attention coefficients as43

wij =
exp(eij)∑

k∈Ni
exp(eik)

, (S.2)

which makes the sum of neighbors’ attention coefficients equal to one for ease of probabilistic44

interpretation. With the normalized attention coefficients W, each node i generates its task-relevant45

feature as a weighted sum of neighbors’ higher-order features46

x′
i = σ

( ∑
j∈Ni

wijHxj

)
, (S.3)

where σ(·) is the non-linearity function such as ReLU and absolute value. Fig. 1 illustrates the47

attention mechanism, where the task-relevant feature, in our case, is the predicted action x′
i = ui48

that mimics the expert action u∗
i given in the training data.49

Discussion. The attention coefficients learned by the GAT weigh the neighboring features when50

generating the task-relevant feature, i.e., the predicted action. That is, they represent how much the51

neighboring features are accounted for in the generation of the task-relevant feature. Therefore, it52

provides justifications for considering the attention coefficients as indicators to quantify the impor-53

tance of the neighboring agents to the local agent, and for leveraging the latter to remove LiDAR54

readings of less important neighbors to reduce computation of online SVM training – see Section55

4.2 of the main paper.56

B.2 Methodology Framework57

The proposed method contains two main components: SVM-based CBF-CLF-QP navigation and58

attention-based computation reduction. The former generates safe actions for the agents to approach59
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Figure 1. An illustration of the attention mechanism within the GAT [2]. The local node 1 aggregates the
neighbors’ features weighted by their corresponding attention coefficients, and leverages the latter to update its
task-relevant feature x′

1.

their destinations (Section 4.1 of the main paper), while the latter identifies important neighbors with60

the attention mechanism of the GAT and uses only LiDAR readings of these neighbors for online61

SVM training to reduce real-time computation (Section 4.2 of the main paper). Fig. 2 provides an62

overview for the general framework of the proposed OE-CLBF controller to ease understanding.63

C Proof of Theorem 164

We start the proof by defining the generalization error of the learned SVM classifier f∗
SVM as the65

probability risk in classifying any unseen data (z, y), i.e.,66

R(f∗
SVM) = Pr(f∗

SVM(z) ̸= y), (S.4)

where Pr(·) is the probability measure and (z, y) is drawn randomly from the space of interest. With67

the conditions provided in the theorem and the LiDAR readings Z = {(zl, yl)}Ll=1, we can follow68

Theorem 1 of [3] to bound the probability risk as69

R(f∗
SVM)≤

1

L

(
κ(f∗

SVM) log2

( 8eL

κ(f∗
SVM))

)
log2(32L)+ln

(L2

α

))
with κ(f∗

SVM))=
⌈( 8C

ϵ(f∗
SVM))

)2⌉
.

(S.5)

For the learned safety function h∗
SVM from f∗

SVM, (S.5) is equivalent to that for any position z /∈ Z ,70

if h∗
SVM(z) > 0, it holds that71

Pr(z ∈ Csafe) ≥ 1− δ (S.6)

with72

δ≤ 1

L

(
κ(f∗

SVM) log2

( 8eL

κ(f∗
SVM))

)
log2(32L)+ln

(L2

α

))
with κ(f∗

SVM))=
⌈( 8C

ϵ(f∗
SVM))

)2⌉
, (S.7)

where Csafe is the safety set of the environment. Define the safety set CSVM,safe w.r.t. the learned73

safety function h∗
SVM as74

CSVM,safe = {z|h∗
SVM(z) > 0 for all z ∈ E}. (S.8)

By substituting this safety function h∗
SVM into the CBF constraint (3) and the latter into the CBF-75

CLF-QP controller (6), we can follow Theorem 3 of [4] to prove that there exists a class K function76

α(h∗
SVM) such that the h∗

SVM-based safety set CSVM,safe [cf. (S.8)] is forward invariant, i.e., the77

agent will stay in CSVM,safe with generated actions.78

Since the h∗
SVM-based safety set CSVM,safe depends on the learned safety function h∗

SVM, which,79

in turn, depends on the training data of L LiDAR readings Z , and each agent only re-scans these80

LiDAR readings every ∆t, we assume CSVM,safe keeps the same in the time interval ∆t. Therefore,81

we have82

z(t) ∈ CSVM,safe (S.9)
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Figure 2. General framework of the proposed OE-CLBF controller, which contains SVM-based CBF-CLF-QP
navigation and attention-based computation reduction. The former senses the surrounding unknown environ-
ment with LiDAR scanner, synthesizes the corresponding CBF with online SVM, and incorporates it into the
CBF-CLF-QP controller to generate agent actions. The latter quantifies the importance of the neighboring
agents to the local agent with GAT, thresholds useless LiDAR readings from less important neighbors, and uses
only useful and relevant LiDAR readings for online SVM trianing to reduce computation.

for any time t until the next time interval ∆t.83

By combining (S.6) and (S.9), we complete the proof that84

Pr(z(t) ∈ Csafe) ≥ 1− δ (S.10)

with85

δ≤ 1

L

(
κ(f∗

SVM) log2

( 8eL

κ(f∗
SVM))

)
log2(32L)+ln

(L2

α

))
with κ(f∗

SVM))=
⌈( 8C

ϵ(f∗
SVM))

)2⌉
(S.11)

for any time t in the next interval ∆t.86

D Additional Experiments87

Graph attention learning. The goal of this experiment is to show the training procedure of the88

graph attention network (GAT), which mimics the expert action, i.e., the one generated with all89

neighborhood information, following an imitation learning framework. The initial and goal positions90

S and D of the agents are initialized randomly in the environment and the obstacles are distributed91

between S and D. We generate 200 multi-agent trajectories of 200 time steps with 4× 104 samples92

to construct the dataset, and leverage the ADAM optimizer with a learning rate 10−4 for training.93

The mean square error (MSE) is used as the loss function to measure the difference between the94

predicted action and the expert action.95

Fig. 3 plots the training procedure of the GAT over 104 epochs. We see that the training loss de-96

creases with the number of epochs and the decreasing rate reduces; ultimately, reaching a stationary97

solution. The convergent loss is small, which indicates a good performance of the trained GAT for98

action generation and a good prediction of attention coefficients for neighbors’ importance.99

Exploration mechanism. The goal of this experiment is to show the necessity of incorporating the100

exploration mechanism [Appendix A] into our method for resolving challenging navigation scenar-101

ios. Fig. 4 shows one example of these scenarios, where the obstacles form a non-convex safety102

space and the agent easily gets stuck in a local region due to its limited sensing and communication103

ranges. We see that our method navigates all agents towards destinations successfully in Fig. 4a,104

where the exploration mechanism pulls agent A1 out of the local dilemma by searching over its105

nearby space. The method without exploration mechanism fails the navigation task of agent A1 in106

Fig. 4b, because it can only generate actions that stay in the local safety set.107
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Figure 3. The training procedure of graph attention network (GAT) in the framework of imitation learning.
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Figure 4. (a) Navigation procedure of our method with exploration mechanism, where all agents complete
their tasks successfully. (b) Navigation procedure of our method without exploration mechanism, where agent
A1 gets stuck in local minima because of limited sensing and communication ranges. Blue circles are initial
positions and green squares are destinations. Black rectangles are obstacles and blue-to-green lines are agent
trajectories. Color bar represents time scale, showing that no agent-agent nor agent-obstacle collision occurs.

More Examples. Figs. 5a-5f show more examples of agents’ trajectories generated by our method,108

for different navigation tasks in unknown environments with different obstacle positions, sizes and109

shapes. We see that in all these scenarios, all agents complete their navigation tasks successfully,110

where the success represents the agents reaching their destinations without collision within the max-111

imal time step, and do not require any prior knowledge about environments, even in some challeng-112

ing scenarios with cluttered obstacles. This highlights the effectiveness of the proposed OE-CLBF113

controller, which is applicable in unknown environments with different obstacle layouts.114
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Figure 5. Navigation procedures of our method for different navigation tasks in different unknown environ-
ments with different obstacle layouts (i.e., different obstacle positions, sizes and shapes), and our method is
capable of completing all navigation tasks successfully without collision either to obstacles or among agents.
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