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A Exploration Mechanism

CLF-based approaches may cause agents to get stuck in local minima in complex navigation sce-
narios, such as environments with non-convex obstacle regions or where the destination is located
directly on the opposite side of an obstacle. To overcome this challenge, we propose an exploration
mechanism inspired by the Expansive Search Tree (EST) [1] and integrate it into our method to
encourage agents out of local minima.

Specifically, we consider the standard QP controller (6) as the convergence mode, and switch to
the exploration mode when the QP controller becomes infeasible, i.e., no feasible control satisfies
both convergence and safety constraints in (6). The exploration mode samples a state Xgample ~
Pstate,dma, from its nearby space with the sampling radius determined by the maximum scanning
distance d,,x of the LiDAR scanner, and generates an action by the QP controller to steer the agent
towards the sampled state Xsample-

As we collect LiDAR readings at each time step and perform online SVM training, each agent
estimates the surrounding environment in a real-time manner. For any generated action that violates
safety constraints, the previously sampled state will be discarded and a new state will be sampled.
After repeating this sampling process for a fixed number of times Nexpiore, W€ switch back to the
convergence mode and navigates the agents towards their destinations. Algorithm 1 summarizes the
exploration mechanism integrated in our method.

B Methodology Details

We provide additional details about the proposed method in this section.

B.1 Graph Attention Networks

Graph attention networks (GATSs) are a variant of graph neural networks (GNNs) that leverage the
attention mechanism to extract task-relevant features from graph data. Different from conventional
GNNs, which aggregate neighborhood information with (pre-defined) fixed weights, GATs allow
to differentiate neighbors w.r.t. their contributions when aggregating neighborhood information to
generate task-relevant features.

Specifically, consider a graph G = {V, £} with the node set V = {1,...,n} and the edge set £.
The graph structure can be captured by a support matrix W with (¢, j)th entry w;; = [W];; # 0
if node ¢ is connected to node j, i.e., (i,j) € &, or ¢ = j, and [W];; = 0 otherwise. The graph
data can be captured by a graph signal X, which is a matrix whose ith row x; = [X]; contains the
feature of node i. GATs are capable of assigning different attention coefficients {{W];;}jcn; to
the neighboring nodes {j};cn;, of each node ¢, which represent the importance of the neighbors’
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Algorithm 1 Exploration Mechanism (for agent A;)

1: Input: State x;, target x¢, safety constraints S

2: Output: Control action u;

3: if QP controller infeasible then

4 Switch to the exploration mode

5: for iexplore = 13 AR Nexplore do

6 while exploration mode do

7 Sample a state Xsample ~ Pstate,dmax

8 Attempt to generate control action u; to steer towards Xqample

9: if u; violates safety constraints S then
10: Discard u;
11: else
12: break
13: Apply u, to system (1)
14: Scan the environment to collect LiDAR readings
15: Train SVM with the latest LiDAR readings to update the environment CBF

16: Switch to the convergence mode

features for the feature update of the local node. These attention coefficients W are learned with a
shared self-attention mechanism, enabling to quantify the relevance among graph nodes. Therefore,
GATs are suitable candidates to characterize the importance of the neighbors’ LiDAR readings in
synthesizing the CBF of the unknown environment at the local agent.

The key component of the GAT lies in the attention mechanism, which computes attention coeffi-
cients between neighboring nodes. For the local node ¢ and its neighboring node j, the unnormalized
attention coefficient is calculated as
Cij = a(HXiaHXj)v .1

where H is a learnable weight matrix (i.e., linear transformation) that maps the node features x; and
x; to some higher-order features, and a(-) is a shared attention function such as a feedforward neural
network. The unnormalized e;; is then passed through a softmax function to get the normalized
attention coefficients as
B exp(e;;)

> ken, exp(eir)’
which makes the sum of neighbors’ attention coefficients equal to one for ease of probabilistic
interpretation. With the normalized attention coefficients W, each node 7 generates its task-relevant
feature as a weighted sum of neighbors’ higher-order features

x; = o 3 wyHx;), (S.3)
JEN;
where o(+) is the non-linearity function such as ReLU and absolute value. Fig. 1 illustrates the

attention mechanism, where the task-relevant feature, in our case, is the predicted action x|, = u;
that mimics the expert action u; given in the training data.

(S.2)

Wi

Discussion. The attention coefficients learned by the GAT weigh the neighboring features when
generating the task-relevant feature, i.e., the predicted action. That is, they represent how much the
neighboring features are accounted for in the generation of the task-relevant feature. Therefore, it
provides justifications for considering the attention coefficients as indicators to quantify the impor-
tance of the neighboring agents to the local agent, and for leveraging the latter to remove LiDAR
readings of less important neighbors to reduce computation of online SVM training — see Section
4.2 of the main paper.

B.2 Methodology Framework

The proposed method contains two main components: SVM-based CBF-CLF-QP navigation and
attention-based computation reduction. The former generates safe actions for the agents to approach
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Figure 1. An illustration of the attention mechanism within the GAT [2]. The local node 1 aggregates the
neighbors’ features weighted by their corresponding attention coefficients, and leverages the latter to update its
task-relevant feature x;.

their destinations (Section 4.1 of the main paper), while the latter identifies important neighbors with
the attention mechanism of the GAT and uses only LiDAR readings of these neighbors for online
SVM training to reduce real-time computation (Section 4.2 of the main paper). Fig. 2 provides an
overview for the general framework of the proposed OE-CLBF controller to ease understanding.

C Proof of Theorem 1

We start the proof by defining the generalization error of the learned SVM classifier fg,,; as the
probability risk in classifying any unseen data (z, y), i.e.,

R(févm) = Pr(fdvm(z) # ), (S4)

where Pr(+) is the probability measure and (z, y) is drawn randomly from the space of interest. With
the conditions provided in the theorem and the LiDAR readings Z = {(z;, y;)}%,, we can follow
Theorem 1 of [3] to bound the probability risk as

R(f&vnd S%(ﬁ( Féun) logs (%) log, (32L) +1n (%2)) with () =[( e(fij)) ﬂ
(S.5)

For the learned safety function h&y,y; from fdy,. (S.5) is equivalent to that for any position z ¢ Z,
if h§y\(z) > 0, it holds that

Pr(z € Coare) > 1 -9 (S.6)
with
0 S%(’f(fg\/M) log, (’i(;;vLM))) logy(32L)+1n <%2)> with &(fSvm)) = Ke(fsz)Q 2-" (S.7)

where Csafe is the safety set of the environment. Define the safety set Csyn safe W.I.t. the learned
safety function hgy; as

CS\/M’safe = {Z|h§VM(Z) > (Qforallz € 5} (S.8)

By substituting this safety function hgy;,; into the CBF constraint (3) and the latter into the CBF-
CLF-QP controller (6), we can follow Theorem 3 of [4] to prove that there exists a class X function
a(hgyy) such that the hly,)-based safety set Coynsate [cf. (S.8)] is forward invariant, i.e., the
agent will stay in Csym safe With generated actions.

Since the hgy,)-based safety set Cgyv sase depends on the learned safety function hgy,,, which,
in turn, depends on the training data of L LiDAR readings Z, and each agent only re-scans these
LiDAR readings every At, we assume Cgv safe keeps the same in the time interval At. Therefore,
we have

Z(t) S CSVM,safe (89)



83

84

85

86

87

88
89
90
91
92
93
94
95

96
97
98
99

101
102
103
104

106
107

Agent states X (*)

— I s e T e T |

"-«"\/.- LiDAR readings Z* A I

[
Graph attention network (GAT) Communications LiDAR scanning
Aggregated readings Z‘m and {Z;rJ }‘/.(Nw, Agent actions U

Attention coefficients W)

: : ; Support vector machine (SVM)

e © [
! | ' ° _hag
: —{ Thresholding at y ! : e®/%e SVM-based CBF CBEF-CLF-QP controller
3 1 ; 0o /00

Neighbors of high ‘value’

Attention-based Computation Reduction SVM-based CBF-CLF-QP Navigation

Figure 2. General framework of the proposed OE-CLBF controller, which contains SVM-based CBF-CLF-QP
navigation and attention-based computation reduction. The former senses the surrounding unknown environ-
ment with LiDAR scanner, synthesizes the corresponding CBF with online SVM, and incorporates it into the
CBF-CLF-QP controller to generate agent actions. The latter quantifies the importance of the neighboring
agents to the local agent with GAT, thresholds useless LiDAR readings from less important neighbors, and uses
only useful and relevant LiDAR readings for online SVM trianing to reduce computation.

for any time ¢ until the next time interval At.
By combining (S.6) and (S.9), we complete the proof that
Pr(z® € Coare) >1—6 (S.10)
with
8C

5 < (s v Togs (MEVLM») loza(320) +1n () with () =[( 75 ) ] s

for any time ¢ in the next interval At.

D Additional Experiments

Graph attention learning. The goal of this experiment is to show the training procedure of the
graph attention network (GAT), which mimics the expert action, i.e., the one generated with all
neighborhood information, following an imitation learning framework. The initial and goal positions
S and D of the agents are initialized randomly in the environment and the obstacles are distributed
between S and D. We generate 200 multi-agent trajectories of 200 time steps with 4 x 10* samples
to construct the dataset, and leverage the ADAM optimizer with a learning rate 10~ for training.
The mean square error (MSE) is used as the loss function to measure the difference between the
predicted action and the expert action.

Fig. 3 plots the training procedure of the GAT over 10* epochs. We see that the training loss de-
creases with the number of epochs and the decreasing rate reduces; ultimately, reaching a stationary
solution. The convergent loss is small, which indicates a good performance of the trained GAT for
action generation and a good prediction of attention coefficients for neighbors’ importance.

Exploration mechanism. The goal of this experiment is to show the necessity of incorporating the
exploration mechanism [Appendix A] into our method for resolving challenging navigation scenar-
ios. Fig. 4 shows one example of these scenarios, where the obstacles form a non-convex safety
space and the agent easily gets stuck in a local region due to its limited sensing and communication
ranges. We see that our method navigates all agents towards destinations successfully in Fig. 4a,
where the exploration mechanism pulls agent A; out of the local dilemma by searching over its
nearby space. The method without exploration mechanism fails the navigation task of agent A; in
Fig. 4b, because it can only generate actions that stay in the local safety set.
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Figure 3. The training procedure of graph attention network (GAT) in the framework of imitation learning.
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Figure 4. (a) Navigation procedure of our method with exploration mechanism, where all agents complete
their tasks successfully. (b) Navigation procedure of our method without exploration mechanism, where agent
A; gets stuck in local minima because of limited sensing and communication ranges. Blue circles are initial
positions and green squares are destinations. Black rectangles are obstacles and blue-to-green lines are agent
trajectories. Color bar represents time scale, showing that no agent-agent nor agent-obstacle collision occurs.

More Examples. Figs. 5a-5f show more examples of agents’ trajectories generated by our method,
for different navigation tasks in unknown environments with different obstacle positions, sizes and
shapes. We see that in all these scenarios, all agents complete their navigation tasks successfully,
where the success represents the agents reaching their destinations without collision within the max-
imal time step, and do not require any prior knowledge about environments, even in some challeng-
ing scenarios with cluttered obstacles. This highlights the effectiveness of the proposed OE-CLBF
controller, which is applicable in unknown environments with different obstacle layouts.
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Figure 5. Navigation procedures of our method for different navigation tasks in different unknown environ-
ments with different obstacle layouts (i.e., different obstacle positions, sizes and shapes), and our method is
capable of completing all navigation tasks successfully without collision either to obstacles or among agents.
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