Most world models approximate a transition functions with large unstructured
neural networks. They fail to capture underlying symmetries leading to poor
sample efficiency and generalization to unseen states.

e Incorporating principles from Vector Symbolic Architectures (VSA) [1]
can help enforce structure in the latent space to help with generalization.

e Specifically, we base our model off Fourier Holographic Reduced
Representations (FHRR) [2] embeddings

e \We define transition function as binding between state and action
embeddings.

St+1

State s;

Action a¢

MLP
Concatenate 9 9
oncatenate o)
Predict with

State Embed ¢ —)
FHRR Binding

- 05(8¢41)

FHRR Representation:
e Encoders: We map states and actions to high-dimensional unitary
complex vectors via learnable complex encoders:

ba(a) = [e%22)2

N T
; Ps(s) = [ezoj’ss]f=1, j=1

e Dynamics as Binding: Latent transitions are models as binding
(element-wise complex multiplication), which act as rotations in the
complex plane

o Transition: ¢s(st+1) = ds(st) © da(ay).

Training Objectives: We train the encoders using three loss function to
enforce VSA structure:

o Binding: Li;,q = ||¢S(St+1) = ¢S(3t) © ¢A(at)“2

o Invertibility: Liov = Y [|64(a) © ¢a(a™) — 1|,

(a,a=1)

o Orthogonality: £_., = Z e ¢S(8j)))2'
]
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Setup: A 10x10 discrete Grid World (100 states, 4 actions)
Challenge: Train on 80% of transitions, test on the held-out 20% (Zero-Shot)
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FHRR-based World Model outperforms MLP-based models on Grid World.
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e In standard models, small prediction errors accumulate over time
causing predictions to drift over long horizons

e InVSA, vectors are high-dimensional and quasi-orthogonal and a noisy
prediction remains closer to the true state than other states [3].

e We “clean” the prediction by taking the state most similar to the

prediction via:

" $5(5141) = argmax,es Re (ds(5e41), d5(5))

Training dataset: Perfect trajectories

Typical inference: Error accumulation

FHRR inference: Cleanup keeps

FHRR (Ours) MLP-Small MLP-Medium MLP-Large

Task

1-step Accuracy 96.3%
1-step Accuracy (Zero-Shot) 87.5%
Cosine Similarity 83.0
Cosine Similarity (Zero-Shot) 80.5
Rollout (5 steps) 74.6%
Rollout (20 steps) 34.6%
Rollout (20 steps + Clean) 61.4%
Rollout (100 steps) 1.8%
Rollout (100 steps + Clean) 38.6%

80.0% 80.0% 80.25%
0.0% 0.0% 1.25%
79.9 79.9 80.6

0.9 0.15 3.1

39.8% 38.0% 40.8%
2.0% 4.0% 6.2%
5.4% 7.8% 8.4%
0.8% 1.8% 2.0%
2.8% 4.0% 3.2%

e FHRR-based model outperforms all MLP variants regardless on scale

e MLP models struggle on Zero-Shot tests
e Cleanup shows strong performance increase on Rollout tests for FHRR

but not for MLP
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Cleanup via

ds(st) © palar) = ds(8e41)
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Latent Rollouts (Horizon Length = 20)
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Latent Rollouts + Cleanup (Horizon Length =20
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Zero Shot Ratio (amount of data held out from training)

e Performing the cleanup helps with latent rollout performance especially
at smaller zero-shot ratios
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