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1 ALGORITHM

Algorithm 1 Dynamic Defense Strategy

Input: Model 𝑓𝜃0 (·), input X = {x𝑏 }𝐵𝑏=1, number of iterative steps
𝑁𝐷𝐼𝑂 , step size 𝜁 and number of optimization steps 𝑁𝐷𝑀𝑂 ;

Output: Final prediction;
1: # Dynamic input optimization (DIO) algorithm
2: Obtain pseudo-label Y = {𝑦𝑝 }𝐵𝑏=1 by Eq. 2
3: for 𝑖 = 1 to 𝑁𝐷𝐼𝑂 do
4: X𝑖 = 𝐶𝑙𝑖𝑝X,𝜉 (X𝑖−1 + 𝜁𝑠𝑖𝑔𝑛 (▽X𝐿 (𝑓𝜃0 (X𝑖−1 ),Y))
5: end for
6: # Samples Filtering
7: X𝐷𝐼𝑂 ← X𝑖
8: Calculate the entropy value for all x ∈ X𝐷𝐼𝑂 via 𝑓𝜃 (·).
9: The filtered samples X𝐷𝐼𝑂−𝑆𝐹 are obtained through Eq. 12.

10: # Dynamic model optimization (DMO) algorithm
11: Initializing teacher and student model:
12: 𝑓 𝑇

𝜃0
(·) = 𝑓𝜃 (·)

13: 𝑓 𝑆
𝜃0
(·) = 𝑓𝜃 (·)

14: for 𝑖 = 1 to 𝑁𝐷𝑀𝑂 do
15: {𝑦𝑆 }𝐵

𝑏=1 = 𝑓 𝑆
𝜃𝑡
(X𝐷𝐼𝑂−𝑆𝐹 )

16: {𝑦𝑇 }𝐵
𝑏=1 =

1
𝑁

∑𝑁
𝑖=1 𝑓

𝑇
𝜃𝑡
(𝑎𝑢𝑔𝑖 (X𝐷𝐼𝑂−𝑆𝐹 ))

17: optimizing the student model by Eq. 8
18: optimizing the teacher model by Eq. 9
19: end for
20: {𝑦𝑆 }𝐵

𝑏=1 = 𝑓 𝑇
𝜃𝑁𝐷𝑀𝑂

(X𝐷𝐼𝑂 )
21: Return {𝑦𝑆 }𝐵

𝑏=1

2 MORE EXPERIMENTAL RESULT
2.1 Results in the normally trained model.
We trained a WideResNet-28-10 model on the CIFAR-10 dataset
using normal training. We then evaluated the model using differ-
ent defense methods and various attacks with a perturbation size
of 4/255. Table 1 shows the experimental results. We observed a
significant decrease in the effectiveness of Dent and Anti under the
normally trained model. Our method also experienced a decrease,
but we still achieved favorable results. We analyze the reasons for
the decrease in effectiveness in Section 2.10 (Further Analysis).

2.2 Impact of the optimized number of steps on
results

In this section, we investigate the impact of the number of optimiza-
tion steps on the generated results. We conducted experiments using
the adversarially trained ResNet-18 model on the CIFAR-10 dataset,
with PGD-20 as the attack. The experimental results are presented

Figure 1: The effect of the optimization number of steps on the
computational efficiency and accuracy.

in Figure 1. The figure illustrates that the number of steps has a
significant effect on the defense’s effectiveness and the reasoning
time. As the number of steps increases, the defense becomes stronger.
However, our proposed method does not benefit significantly from a
large number of optimization steps, and instead incurs a significant
computational cost. This is because our method already significantly
enhances the model’s robustness with a few optimization steps, re-
sulting in the model’s performance on adversarial examples being
close to that on clean samples. Therefore, it becomes difficult to
further improve the model’s robustness by increasing the number of
optimization steps. Although the dynamic defense strategy increases
the computational cost of the inference process, it also imposes a
higher cost on the attacker.

2.3 The effect of 𝛽 on experimental results.
We verified the effect of 𝛽 on the experimental results by conducting
experiments using the PGD-20 attack under the CIFAR-10 dataset.
The results are shown in Figure 2. When 𝛽 = 1, it indicates that no
samples were suppressed, while a smaller 𝛽 value indicates greater
suppression of the sample. As can be seen from the experimental
results, the model’s accuracy decreases as 𝛽 becomes smaller.

By suppressing uncertain pseudo-labele samples, we can ensure
the stability of the model training. However, if we suppress these
samples too much, we may not fully utilize the knowledge provided
by the target feature distribution. Therefore, we use a medium-sized
value for 𝛽 to suppress the uncertain samples, which allows us to
ensure the stability of the model training and also enables the model
to learn the knowledge provided by the feature distribution.

2.4 Attacks with higher norm bounds
We evaluated the performance of our proposed method against at-
tacks using different sizes of adversarial perturbations and the ex-
perimental results are shown in Figure 3. A sufficiently large per-
turbation should allow the attack to achieve a high success rate [2].
The robustness of our proposed method decreases as we increase the
size of the perturbations. Despite this, our method still enhances the
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Table 1: Results under the normally trained model. The best results are boldfaced, and the second best results are underlined.

Method PGD-20 PGD-50 C&W APGD-CE APGD-t FAB-t Square
None 00.00% 00.00% 00.00% 00.00% 00.00% 00.00% 13.95%
Dent 03.49% 02.45% 31.88% 05.59% 00.05% 51.15% 73.25%
Anti 65.45% 63.04% 65.63% 36.95% 30.85% 73.90% 46.20%

Proposed 80.58% 78.84% 80.78% 42.70% 39.70% 76.50% 55.70%

Figure 2: The effect of different 𝛽 on experimental results.

Figure 3: The effect of different sizes of perturbations on the
results.

model’s ability to resist adversarial examples with large perturba-
tions compared to the model without defense. Although the attack
used to evaluate our method can find adversarial samples with large
perturbations, our method improves the model’s robustness against
such attacks.

2.5 Evaluation of GMM.
We set up a series of comparative experiments, including the case
without GMM clustering and the scenario with K-Means clustering,
and the specific experimental results are shown in Table 2. From
these results, it is obvious that incorporating the GMM clustering

Table 2: The impact of different pseudo label generation methods
on the results.

Method Clean PGD-20 PGD-50 C&W RayS AVG
Model

Prediction
82.43% 79.88% 79.49% 78.77% 70.15% 78.14%

K-Means 83.41% 81.11% 80.93% 79.66% 69.48% 78.92%
GMM 84.57% 83.10% 83.03% 81.30% 72.90% 80.98%

Table 3: Comparison of results using weighted method (w/) and
not using weighted method (w/o).

Method Clean PGD-20 PGD-50 C&W RayS AVG
w/o 84.13% 81.69% 81.50% 80.17% 71.33% 79.76%
w/ 84.57% 83.10% 83.03% 81.30% 72.90% 80.98%

information into the model significantly improves robustness in the
face of adversarial attacks.GMM clustering greatly improves the
robustness of the model by digging deeper into the internal structure
of the data and providing exhaustive soft clustering information,
which greatly enriches the structured representation of the data,
which plays a key role in enhancing the accuracy and credibility of
the pseudo-labeling. This not only helps the model to understand
the complex and subtle data patterns more deeply, thus improving
its performance on normal data, but also under counterattacks, this
deep understanding and structured information helps to enhance the
model’s defense capability and reduce the risk of being attacked.
In contrast, although the hard clustering method of K-Means also
provides clustering information, the soft clustering method of GMM
provides the model with a more detailed ability to determine the
boundary regions due to its more comprehensive information on
the probability of data points belonging to each cluster. This en-
ables the model to show higher discriminative ability and robustness
in the face of well-designed adversarial samples. Therefore, these
experimental results fully demonstrate the importance and effective-
ness of incorporating GMM clustering information to enhance the
robustness of the model in an adversarial attack environment.

2.6 Evaluation of sample weighting.
If pseudo-labels are incorrect, model optimization will veer off
course, impacting model performance. Past work overlooked this;
we mitigate it by assigning weights to each sample via the method
in Eq. 5, reducing the effect of incorrect pseudo-labels. The com-
parison in Table 3 illustrates the improvement over the unweighted
approach. From the experimental results, we can see that our pro-
posed sample weighting method can well alleviate the problem of
error accumulation.
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Table 4: Comparison of results from different optimization meth-
ods.

Method Clean PGD-20 PGD-50 C&W RayS AVG
Traditional

optimization
83.29% 81.32% 80.93% 80.48% 72.34% 79.67%

hierarchical
optimization

84.57% 83.10% 83.03% 81.30% 72.90% 80.98%

2.7 Evaluation of hierarchical optimization.
To assess the advantages of hierarchical optimization, we compared
it with traditional optimization methods, and the experimental results
are shown in Table 4.

In deep learning, especially in the context of adversarial attacks,
model robustness and stability are crucial. Traditional optimization
methods that adjust the parameters of all layers simultaneously, while
effective in general, may not be robust enough under adversarial
attacks. This is because this approach may not be able to adequately
take into account the differences in the sensitivity of different layers
to perturbations, resulting in a model that is too sensitive to perturba-
tions. In contrast, the hierarchical optimization approach adjusts the
parameters of the model layer by layer in a staged manner, allowing
each layer to first have a stable understanding of the underlying fea-
tures before passing information to higher layers. In this approach,
lower layers are optimized first and thus learn robust feature repre-
sentations. This means that even if the upper layers are affected by
adversarial perturbations, the base layer has already established a
stable recognition of the key information, reducing the accumulation
and spread of errors. Since the feature representations at lower levels
are more robust, the model becomes less sensitive to small changes
in the input data (e.g., adversarial perturbations) as training advances
to higher levels. Thus, hierarchical optimization provides a more
effective way to deal with adversarial attacks and enhances the ro-
bustness of the model. Experimental results show that this approach
reduces the error accumulation caused by adversarial attacks, thus
improving the overall model stability and performance.

2.8 Further Analysis
Our study employs Huang et al. [1]’s method and presents his-
tograms of the loss values for both successful and unsuccessful
samples using the proposed method, which is illustrated in Figure 4.
In this context, a sample is considered successful if the proposed
method can correctly predict the label of the adversarial example.
Conversely, if the proposed method fails to correct the model’s in-
correct prediction, the sample is considered unsuccessful.

Our findings demonstrate that the proposed method is capable of
handling adversarial examples with moderate loss values that are lo-
cated near the decision boundary. However, for highly misclassified
samples with large loss values, the proposed method may not be able
to make significant changes in the model to accurately predict their
labels. This highlights why we have chosen to use an adversarially
trained model as a starting point for the proposed method.

The advantages of an adversarially trained model are also apparent
in comparison to a normally trained model. An attacker can easily
manipulate normal samples on a normally trained model, causing
them to cross over and move away from the correct classification

(a) Successful

(b) Unsuccessful

Figure 4: Histogram of loss values for successful and unsuccess-
ful proposed methods.

boundary. On the other hand, on an adversarially trained model,
an attacker would need to pay a much higher cost to move normal
samples away from the correct classification boundary.

3 REAL-WORLD USABILITY ANALYSIS
While we acknowledge that the proposed approach may incur ad-
ditional overhead, we maintain that our methodology remains ap-
plicable in practical settings. In the field of medicine, for example,
federated learning is commonly employed to safeguard data security
during model training. In such scenarios, a complete data set may not
be readily available, and techniques such as adversarial training may
not be viable options for ensuring model robustness. Furthermore,
the costs associated with retraining a model that is already online
can be exorbitant. Our approach offers a means of enhancing model
robustness without the need for training data. Additionally, in fields
such as pathologic identification in medicine and UAV detection and
identification in the military, accuracy is of paramount importance,
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outweighing considerations of time consumption. Thus, the addi-
tional costs incurred by our approach are deemed acceptable in order
to attain superior accuracy in these domains.
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