Sparse deep computer-generated holography for optical microscopy

Alex Liu, Laura Waller, and Yi Xue*
*corresponding author: xueyi@berkeley.edu

Department of Electrical Engineering & Computer Sciences, University of California, Berkeley, CA, USA

METHODS

Computer generated holography (CGH) applied to optical microscopy is used for photo-stimulation and imaging of multiple neurons in 3D.

Key requirements for CGH-based optical microscopy:
- Sparse patterns
- High contrast
- High 3D resolution

SDCGH utilizes a U-Net in an unsupervised generative approach to create 2D phase masks from targeted 3D intensity patterns. The reconstructed 3D intensity patterns are generated in simulation by using the 2D phase masks as input to the wave propagation model.

Fraunhofer wave propagation model:
\[P(x, y, z = 0) = \frac{1}{i \lambda} \iiint P_{SLM}(x', y') \exp \left(-\frac{2i\pi(x'x + y'y')}{\lambda f} \right) \, dx'dy' \]

Fresnel wave propagation equation:
\[P(x, y, z) = \frac{e^{ikz}}{i\lambda} \iiint P(x', y', 0) \exp \left(\frac{ir((x-x')^2 + (y-y')^2)}{\lambda z} \right) \, dx'dy' \]

RESULTS

- SDCGH generates 3D intensity patterns with higher contrast and performs well across a large number of z-planes.

When points overlap, i.e. have the same (x, y) position across different z-planes, SDCGH is able to generate patterns with high intensity on the targeted z-slices while also maintaining desired low intensity between defined z-slices.

\[\Delta z: \{-508\mu m, -206\mu m, 196\mu m, 558\mu m\} \]