
A Experimental setup

The implementation of the following setup is written in JAX [6] and Haiku [35].

Architecture. We use Residual Networks (ResNets) and Wide ResNets (WRNs) [31, 79]. This is
consistent with prior work [30, 49, 60, 72, 82] which use diverse variants of these network families.
Furthermore, we adopt the same architecture details as Gowal et al. [30] with Swish/SiLU [33]
activation functions. Most of the experiments are conducted on a WRN-28-10 model which has a
depth of 28, a width multiplier of 10 and contains 36M parameters. To evaluate the effect of using
additional generated data on wider and deeper networks, we also run several experiments using
WRN-70-16, which contains 267M parameters.

Outer minimization. We use TRADES [82] optimized using SGD with Nesterov momentum [52,
58] and a global weight decay of 5× 10−4. We use a batch size to 1024 split over 32 Google Cloud
TPUv3 cores [43], train for 400 CIFAR-10-equivalent epochs (resulting in 19K training steps), and
use a cosine learning rate schedule [47] without restarts where the initial learning rate is set to 0.4
and is decayed to 0 by the end of training (similar to [30]). We also use model weight averaging
(WA) [38] with a decay rate of τ = 0.995. With this setup, training a WRN-28-10, a WRN-70-16 and
a ResNet-18 takes 2.5 hours, 6 hours and 22 minutes, respectively.

Inner minimization. Adversarial examples are obtained by maximizing the Kullback-Leibler
divergence between the predictions made on clean inputs and those made on adversarial inputs [82].
This optimization procedure is done using the Adam optimizer [41] with a step-size of 0.1 and 10
steps.

Evaluation. We follow the evaluation protocol designed by Gowal et al. [30]. Specifically, we train
two (and only two) models for each hyperparameter setting, perform early stopping for each model
on a separate validation set of 1024 samples using PGD40 (i.e., PGD with 40 gradient ascent steps)
similarly to Rice et al. [60] and pick the best model by evaluating the robust accuracy on the same
validation set. The average absolute difference between these two models is -0.12% in test robust
accuracy (as measured over 10 separate runs). Unless stated otherwise, we always report the robust
test accuracy against a mixture of AUTOATTACK [16] and MULTITARGETED [29], which is denoted
by AA+MT. This mixture consists in completing the following sequence of attacks: AUTOPGD on
the cross-entropy loss with 5 restarts and 100 steps, AUTOPGD on the difference of logits ratio loss
with 5 restarts and 100 steps and finally MULTITARGETED on the margin loss with 10 restarts and
200 steps. We note that, while early stopping is not necessary when using the cosine learning rate
schedule, we keep it to be consistent with prior work.

B Additional results

Scaling dataset size. Using a generative model allows us to sample many more images than
available in the original training set. In Fig. 6, we set the mixing factor α to zero (thus only using
generated samples) and vary the number of training samples. We evaluate the robust accuracy of the
resulting model on the CIFAR-10 test set and on a separate validation set composed of 10K generated
samples. We also compare models trained on BigGAN and DDPM samples. Irrespective of the
underlying generative model, using more samples generally improves robustness. Samples from the

1K 5K 10K 50K 100K 500K 1M
Number of samples (with = 0)

40%

50%

60%

70%

80%

90%

100%

Ro
bu

st
 te

st
 a

cc
ur

ac
y

train DDPM, eval CIFAR-10
train DDPM, eval DDPM
train BigGAN, eval CIFAR-10
train BigGAN, eval BigGAN

Figure 6: Robust test accuracy
when training a WRN-28-10 us-
ing a variable number of sam-
ples from a DDPM or BigGAN.
We compare the robust accuracy
on the CIFAR-10 test set with
the one obtained on a separate
set of generated samples.

17

28.75%

31.23%

0% 20% 40% 60% 80% 100%
Proportion of real data ()

27%

28%

29%

30%

31%

32%

Ro
bu

st
 te

st
 a

cc
ur

ac
y

DDPM

Figure 7: Robust test accuracy when train-
ing a WRN-28-10 against ε∞ = 8/255 on
CIFAR-100 with additional data produced by
a DDPM. We compare how the ratio between
original images and generated images in the
training minibatches affects the test robust
performance (0% means generated samples
only, while 100% means original CIFAR-100
train set only).

56.83%

60.90%

0% 20% 40% 60% 80% 100%
Proportion of real data ()

56%

58%

60%

62%

Ro
bu

st
 te

st
 a

cc
ur

ac
y

DDPM

Figure 8: Robust test accuracy when train-
ing a WRN-28-10 against ε∞ = 8/255 on
SVHN with additional data produced by a
DDPM. We compare how the ratio between
original images and generated images in the
training minibatches affects the test robust
performance (0% means generated samples
only, while 100% means original SVHN train
set only).

21.56%

26.66%

0% 20% 40% 60% 80% 100%
Proportion of real data ()

20%

22%

24%

26%

28%

Ro
bu

st
 te

st
 a

cc
ur

ac
y

DDPM Figure 9: Robust test accuracy when training
a WRN-28-10 against ε∞ = 8/255 on TINY-
IMAGENET with additional data produced by
a DDPM trained on IMAGENET. We compare
how the ratio between original images and
generated images in the training minibatches
affects the test robust performance (0% means
generated samples only, while 100% means
original TINYIMAGENET train set only).

DDPM are more useful, as can be seen from the higher robust accuracy obtained on the CIFAR-10
test set (i.e., 58.43% versus 43.34% with a WRN-28-10). It is also worth noting that using samples
from the DDPM results in a smaller generalization gap of 5.74 points when using 1M samples (gap
between the dashed and solid blue lines). Models trained on BigGAN samples tend to overfit to these
samples, which results in a large generalization gap of 51.61 points (gap between the dashed and
solid orange lines). These results also confirm that BigGAN samples are easier to robustly classify
(possibly due to their low diversity).

CIFAR-100. For completeness, we also report the effect of mixing different proportions of gener-
ated and original samples in Fig. 7 against ε∞ = 8/255 using a WRN-28-10 on CIFAR-100. Similarly
to Fig. 5, we observe that additional samples generated by DDPM are useful to improve robustness,
with an absolute improvement of +2.48% in robust accuracy.

SVHN. We report the effect of mixing different proportions of generated and original samples in
Fig. 8 against ε∞ = 8/255 using a WRN-28-10 on SVHN. Similarly to Fig. 5 and Fig. 7, we observe
that additional samples generated by DDPM are useful to improve robustness, with an absolute
improvement of +4.07% in robust accuracy.

TINYIMAGENET. We report the effect of mixing different proportions of generated and original
samples in Fig. 9 against ε∞ = 8/255 using a WRN-28-10 on TINYIMAGENET. Similarly to Fig. 5,
Fig. 7 and Fig. 8, we observe that additional samples generated by DDPM are useful to improve
robustness, with an absolute improvement of +5.10% in robust accuracy.

18

0% 20% 40% 60% 80% 100%
Proportion of real data ()

60%

70%

80%

90%

Cl
ea

n
te

st
 a

cc
ur

ac
y

VDVAE
BigGAN
StyleGAN
DDPM

Figure 10: Clean test accuracy obtained by
training a WRN-28-10 against ε∞ = 8/255
on CIFAR-10 when using additional data pro-
duced by different generative models. We
compare how the ratio between original and
generated images (i.e., α) affects the clean
accuracy (0% means generated samples only,
100% means CIFAR-10 train set only). The
robust test accuracy for the same models is
shown in Fig. 5 in the main manuscript.

Clean accuracy. Finally, the clean accuracy (i.e., accuracy obtained when no perturbation is
applied to the input) of all models used in Fig. 5 is reported in Fig. 10. All these models are trained
adversarially to be robust against ε∞ = 8/255 on CIFAR-10. We observe that improvements in
robust accuracy are not always correlated (either positively or negatively) with improvements in
clean accuracy. While VDVAE samples provide no improvements in clean accuracy, using BigGAN,
StyleGAN2 or DDPM samples can improve clean accuracy by up to +1.27%, +3.45% and +2.05%,
respectively.

C Analysis of models

In this section, we perform additional diagnostics that give us confidence that our models are not
doing any form of gradient obfuscation or masking [2, 71].

AUTOATTACK and robustness against black-box attacks. First, we report in Table 3 the robust
accuracy obtained by our strongest models against a diverse set of attacks. These attacks are run as a
cascade using the AUTOATTACK library available at https://github.com/fra31/auto-attack. First, we observe
that our combination of attacks, denoted AA+MT matches the final robust accuracy measured by
AUTOATTACK. Second, we also notice that the black-box attack (i.e., SQUARE) does not find any
additional adversarial examples. Overall, these results indicate that our empirical measurement of
robustness is meaningful and that our models do not obfuscate gradients.

Table 3: Clean (without adversarial attacks) accuracy and robust accuracy (against the different stages
of AUTOATTACK) on CIFAR-10 obtained by different models. Refer to https://github.com/fra31/auto-attack
for more details.

MODEL DATASET NORM RADIUS AUTOPGD-CE + AUTOPGD-T + FAB-T + SQUARE CLEAN AA+MT

WRN-28-10 (DDPM)
CIFAR-10 `∞ ε = 8/255

63.53% 60.73% 60.73% 60.73% 85.97% 60.73%
WRN-70-16 (DDPM) 65.95% 63.62% 63.62% 63.62% 86.94% 63.58%
ResNet-18 (100M DDPM) 60.85% 58.63% 58.63% 58.63% 87.35% 58.50%
WRN-28-10 (100M DDPM) 65.65% 63.44% 63.44% 63.44% 87.50% 63.38%
WRN-70-16 (100M DDPM) 68.46% 66.13% 66.11% 66.11% 88.74% 66.10%

WRN-28-10 (DDPM) CIFAR-10 `2 ε = 128/255
78.13% 77.44% 77.44% 77.44% 90.24% 77.37%

WRN-70-16 (DDPM) 78.97% 78.39% 78.39% 78.39% 90.93% 78.31%

WRN-28-10 (DDPM) CIFAR-100 `∞ ε = 8/255
34.47% 30.81% 30.81% 30.81% 59.18% 31.23%

WRN-70-16 (DDPM) 36.27% 33.49% 33.49% 33.49% 60.46% 33.93%

Loss landscapes. We analyze the adversarial loss landscapes of our best model trained on CIFAR-
10 against ε∞ = 8/255 (a WRN-70-16). To generate a loss landscape, we vary the network input
along the linear space defined by the worse perturbation found by PGD40 (u direction) and a random
Rademacher direction (v direction). The u and v axes represent the magnitude of the perturbation
added in each of these directions respectively and the z axis is the adversarial margin loss [10]:
zy −maxi6=y zi (i.e., a misclassification occurs when this value falls below zero). Fig. 11 shows the
loss landscapes around the first 2 images of the CIFAR-10 test set for the aforementioned model.
Both landscapes are smooth and do not exhibit patterns of gradient obfuscation. Overall, it is difficult
to interpret these figures further, but they do complement the numerical analyses done so far.

19

-8/255
0

8/255

-8/255
0

8/255

l(x; y)

0

bird

cat

horse

(a) Image of a horse

-8/255
0

8/255

-8/255
0

8/255

l(x; y)

0

airplane

automobile

(b) Image of an airplane

Figure 11: Loss landscapes around the first two images from the CIFAR-10 test set for the WRN-70-16
networks trained with DDPM samples. It is generated by varying the input to the model, starting from
the original input image toward either the worst attack found using PGD40 (u direction) or a random
Rademacher direction (v direction). The loss used for these plots is the margin loss zy −maxi 6=y zi
(i.e., a misclassification occurs when this value falls below zero). The diamond-shape represents the
projected `∞ ball of size ε = 8/255 around the nominal image.

D Details on generated data

Generative models. In this paper, we use four different and complementary generative models: (i)
BigGAN [7], (ii) VDVAE [14], (iii) StyleGAN2 [40] and (iv) DDPM [36]. Except for BigGAN, we
use the CIFAR-10 checkpoints that are available online. For BigGAN, we train our own model and
pick the model that achieves the best FID (the model architecture and training schedule is the same
as the one used in [7]). All models are trained solely on the CIFAR-10 train set (or the train set of
CIFAR-100 or SVHN for experiments shown in App. B). As a baseline, we also fit a class-conditional
multivariate Gaussian, which reaches FID and IS metrics of 117.62 and 3.64, respectively. We also
report that BigGAN reaches an FID of 11.07 and IS of 9.71; VDVAE reaches an FID of 36.88 and IS
of 6.03; StyleGAN2 reaches an FID of 2.57 and IS of 10.04 and DDPM reaches an FID of 3.15 and
IS of 9.50.7,8,9

Datasets of generated samples. For the class-conditional multivariate Gaussian and DDPM sam-
ples, we use a pretrained WRN-28-10 to give pseudo-labels. This WRN-28-10 is trained non-robustly
on the CIFAR-10 train set and achieves 95.68% accuracy.10,11,12 We sample images from each model
until we have 100K images for each class.13 For BigGAN and VDVAE samples, we proceed with an
additional filtering step similarly to the one proposed by Carmon et al. [11]. We sample from each
generative model 5M images and score each image using the pretrained, non-robust WRN-28-10
model used for pseudo-labeling. For each class, we select the top-100K scoring images and build a
dataset of 1M image-label pairs.14

This additional generated data (consisting of 1M samples) is used to train adversarially robust models
by mixing in each batch a given proportion of original and generated examples. Fig. 12 shows a
random subset of this additional data for each generative model. We also report the FID and IS
metrics of the resulting sets in Table 1 and Table 4. They might differ from metrics obtained by each

7For CIFAR-100, we trained our own DDPM which achieves an FID of 5.58 and IS of 10.82.
8For SVHN, we trained our own DDPM which achieves an FID of 4.89 and IS of 3.06.
9For TINYIMAGENET, we used the class-conditional DDPM checkpoint available at https://github.com/openai/

guided-diffusion which has been trained on IMAGENET at a 64× 64 resolution.
10For CIFAR-100, the same model achieves 79.98% accuracy.
11For SVHN, the same model achieves 96.54% accuracy.
12For TINYIMAGENET, we use a class-conditional StyleGAN2 model and do not need to train a non-robust

classifier for pseudo-labeling.
13We use 10K images per class for CIFAR-100 experiments.
14All generated datasets are available online at https://github.com/deepmind/deepmind-research/tree/master/

adversarial_robustness.

20

generative model individually (see previous paragraph) as we filter images to either keep the highest
scoring ones or make sure that classes are balanced.

Diversity and complementarity. While the FID metric does capture how two distributions of
samples match, it does not necessarily provide enough information in itself to assess the overlap
between the distribution of generated samples and the train or test distributions (this is especially true
for samples obtained through data augmentations such as mixup) – as seen in Table 1 and explained
in the next paragraph. As such, we also decide to compute the proportion of nearest neighbors in
perceptual space: given equal Inception metrics, a better generative model would produce samples
that are equally likely to be close to training, testing or generated images. In an attempt to estimate
the coverage of the real data distribution, we also compute the proportion of nearest neighbors that
are unique: given equal Inception metrics, a better generative model would produce samples that are
equally likely to be close to any image in train or test set (thus resulting a high proportion of unique
neighbors).15

We now describe how we compute Table 1 which reports nearest-neighbors statistics for the different
generative models. First, we sample 10K images from the train set of CIFAR-10 (uniformly across
classes) and take the full test set of CIFAR-10. We then pass these 20K images through the pre-trained
Inception network (used to measure Inception metrics). We use the activations from the last pooling
operation and compute their top-100 PCA components, as this allows us to compare samples in a
much lower dimensional space (i.e., 100 instead of 2048). Finally, for each generative model, we
sample 10K images from their 1M dataset (class-balanced as well) and pass them through the pipeline
composed of the Inception network and the PCA projection computed on the original data. The left-
most three columns (entitled “complementarity”) are computed by finding, for each generated sample,
its closest neighbor in the PCA-reduced feature space to any image from the set of 30K− 1 images
composed of train, test and generated sets. We then measure whether this nearest-neighbor belongs
to the original datasets of 10K image each (train or test) or to the generated set (self) composed of the
remaining 10K− 1 images. For example, given 6 generated samples (instead of the 10K), the first
sample’s closest neighbor could be in the train set, the next two samples’ closest neighbors could
in the test set and the last three samples’ closest neighbors could be in the set of generated samples.
This would result in ratios of 1/6, 1/3 and 1/2. The middle set of two columns (entitled “coverage”)
is computed by finding, for each generated sample, its closest neighbor in the PCA-reduced feature
space to any image from the train and test sets. We then measure the number of unique neighbors
matched in both sets.16 See Alg. 1 for pseudo-code.

Algorithm 1 Complementarity and coverage computation

Input: Train set Dtrain, test set Dtest, distribution D̂ for which we measure complementary and coverage,
number of samples N and a function g : Rn 7→ Rm that maps inputs to their features (e.g., Inception
features).

Output: Complementarity {ctrain, ctest, cself} and coverage {vtrain, vtest}.
1: Dself ← {xi ∼ D̂}Ni=1 . Pick N samples from D̂
2: D̄train is such that D̄train ⊆ Dtrain and |D̄train| = N . Pick N samples from Dtrain

3: D̄test is such that D̄test ⊆ Dtrain and |D̄test| = N . Pick N samples from Dtest

4: ctrain ← 0, ctest ← 0, cself ← 0 . Initialize complementarity counters
5: Vtrain ← ∅,Vtest ← ∅ . Initialize coverage sets
6: for xi ∈ Dself do . For all generated samples
7: D̄self = Dself \ {xi} . Ignore current sample in computation below
8: s? = arg mins∈{train,test,self} minx′

i∈D̄s
‖g(xi)− g(x′

i)‖2 . Find closest set
9: cs? ← cs? + 1/N . Increment counter of closest set

10: Vtrain ← Vtrain ∪ {arg minx′
i∈D̄train

‖g(xi)− g(x′
i)‖2} . Find closest neighbor in train set

11: Vtest ← Vtest ∪ {arg minx′
i∈D̄test

‖g(xi)− g(x′
i)‖2} . Find closest neighbor in test set

12: end for
13: vtrain = |Vtrain|/N , vtest = |Vtest|/N . Compute coverage ratio

15As a point of comparison, sampling 2 sets of 10K points from a uniform distribution U[0,1] between 0 and 1
yields in average a proportion of unique nearest neighbors equal to 55.6%.

16According to this measure, the CIFAR-10 train set covers 52.27% of the test set, while the test set covers
52.08% of the train set. Obtaining a significantly higher coverage of the train set is likely the result of overfitting
and memorization.

21

Table 4: Complementarity and coverage of augmented and generated samples. We sample 10K
images from the train set and various different generative models. For each sample in each set, we find
its closest neighbor in LPIPS feature space. To estimate complementarity, we report the proportion
of samples with a nearest neighbor in either the train set, test set or the sampled set itself. To estimate
coverage, we report the proportion of unique neighbors in the train and test set. We also include the
IS and FID computed from 50K samples from each set.

COMPLEMENTARITY COVERAGE INCEPTION METRICS

SETUP TRAIN TEST SELF TRAIN TEST IS ↑ FID ↓
mixup [81] 96.33% 0.17% 3.50% 98.34% 41.93% 9.33± 0.22 7.71

Class-conditional Gaussian-fit 0.80% 0.72% 98.48% 15.80% 16.39% 3.64± 0.03 117.62
VDVAE [14] 6.52% 5.71% 87.77% 23.20% 23.69% 6.88± 0.05 26.44
BigGAN [7] 11.69% 9.55% 78.76% 39.29% 38.89% 9.73± 0.07 13.78
DDPM [36] 31.20% 26.39% 42.41% 44.08% 43.80% 9.50± 0.14 3.15

Table 5: Complementarity and coverage of augmented samples using the Inception feature space (as
done in Table 1, but for additional data augmentation schemes).

COMPLEMENTARITY COVERAGE

SETUP TRAIN TEST SELF TRAIN TEST

mixup [81] 90.34% 3.91% 5.75% 90.43% 45.61%
Cutout [23] 65.46% 3.47% 31.07% 76.76% 45.24%
CutMix [78] 60.30% 7.40% 32.30% 66.05% 45.63%
AutoAugment [18] 67.13% 6.00% 26.87% 69.44% 45.67%
RandAugment [19] 61.23% 8.85% 29.92% 65.51% 45.78%

In Table 4, we repeat the process used for Table 1 for a subset of its rows by using the pretrained
VGG network which measures a Perceptual Image Patch Similarity, also known as LPIPS [84],
instead of the Inception network. We use the resulting 124,928 concatenated activations and compute
their top-100 PCA components. Overall, the resulting numbers are similar to the ones obtained by
the Inception network. In Table 5, we use Inception features to compute the complementarity and
coverage metrics of various data augmentation schemes. All augmentation schemes produce samples
that are too close to the train set and too far from the test set, which indicates that when they provide
samples that could complement the train set, these samples are far from the true distribution.

Shortcomings of FID and IS. The coverage and complementary metrics from Table 1 provide
additional information that is not captured by FID and IS. In particular, a generative model that
memorizes the train set will produce almost perfect FID and IS scores, but will produce a neighbor
distribution of 100% matching the train set, 0% matching the test set and 0% matching itself. This is
far from the ideal distribution of 1/3, 1/3, 1/3. Similarly, a generative model that focuses on a subset
of the true distribution can produce high IS, but low coverage (as exemplified by BigGAN samples).

E Theoretical foundations

E.1 Proofs

Let us consider Prop. 1 and Prop. 2 again.

Proposition 1 (capacity-limited regime). Cond. 1 and Cond. 2 are sufficient conditions that allow
the sub-optimal parameters θ̂? to match the performance of the optimal parameters θ?.

Proof. When fNR(x) = f?(x) for all x ∈ X and D̂ is such that µ(W) = µ̂(W) for all measurable
W ⊆ X , Eq. 4 and Eq. 5 become identical. Hence, their solutions achieve the same objective.

Proposition 2 (infinite-capacity regime). Cond. 1, Cond. 3 and Cond. 4 are sufficient conditions that
allow the sub-optimal parameters θ̂? to match the performance of the optimal parameters θ? when
the model f has infinite capacity.

22

Proof. Cond. 3 guarantees that there are no images with conflicting labels within the perturbation
set S of a realistic image (this extends the non-conflicting labels setup from Sec. 4.1) As such, it is
possible to drive the objective from Eq. 5 to zero. Since fNR(x) = f?(x) for all x ∈ X (Cond. 1)
and the generated data covers the true distribution (Cond. 4), the objective obtained from Eq. 5 can
only be zero if the objective to Eq. 4 is also zero. Hence, the solutions of Eq. 4 and Eq. 5 achieve the
same objective.

E.2 Impact of the mixing factor α

We address here the impact of the mixing factor α used in Eq. 3. Ignoring the change of loss, Eq. 3
can be formulated as Eq. 5 by using the non-robust classifier f ′NR instead of fNR and using the merged
distribution D̂′ instead of D̂, with

f ′NR(x) =

{
f?(x) if x ∈ Dtrain

fNR(x) otherwise
(6)

and with D̂′ such that sampling x ∼ D̂′ is equivalent to x = [r ≤ α]x′ + [r > α]x′′ with
r ∼ U[0,1],x′ ∼ UDtrain

and x′′ ∼ D̂ (where UA corresponds to the uniform distribution over set A).
This transformation artificially improves the accuracy of the non-robust classifier and reduces the
gap between D and D̂′, thus resulting in better coverage. Note, however, that while increasing α
improves the realism of training samples, it comes at the cost of a reduction in complementarity with
the training set.

F RobustBench

For reference, at the time of writing, the top-5 RobustBench (https://robustbench.github.io/ [17]) leader-
board entries without and with additional data are listed in Table 6. Entries from non-peer reviewed
venues were only included if older than 2 months from writing.

Table 6: State of RobustBench leaderboard at the time of writing. We report the clean (without
adversarial attacks) accuracy and robust accuracy on CIFAR-10 against ε∞ = 8/255.

AUTHOR MODEL CLEAN ROBUST

WITHOUT EXTERNAL DATA

Gowal et al. [30] WRN-70-16 85.29% 57.14%
Gowal et al. [30] WRN-34-20 85.64% 56.82%
Wu et al. [75] WRN-34-10 85.36% 56.17%
Pang et al. [55] WRN-34-20 86.43% 54.39%
Pang et al. [56] WRN-34-20 85.14% 53.74%

WITH EXTERNAL DATA

Gowal et al. [30] WRN-70-16 91.10% 65.87%
Gowal et al. [30] WRN-34-20 89.48% 62.76%
Wu et al. [74] WRN-34-15 87.67% 60.65%
Wu et al. [75] WRN-28-10 88.25% 60.04%
Zhang et al. [83] WRN-28-10 89.36% 59.64%

G Societal impact

Neural networks are being deployed in a wide variety of applications ranging from ranking content
on the web [15] to autonomous driving [5] via medical diagnostics [22]. As such, it is increasingly
important to ensure that deployed models are robust and generalize to various input perturbations.
While research on model robustness is welcome for safety critical applications, it is important to note
that robustness can sometimes have unforeseen consequences. In particular, training robust models
can lead to models that are overly insensitive to input variations [68] and that can increase bias [12].
It is also reported that adversarial robustness may not only be at odds with accuracy [69], but may
also be at odds with privacy [63].

23

This work also introduces the use of generated data to improve adversarial robustness. The underlying
generative models may leak confidential and private data [13] if they have been trained on a separate
dataset. We protect against this by training generative models from scratch on the same data that is
used to train our adversarially robust models.

Finally, our work is the first to match the performance of models trained with additional external data
extracted from the “80 Million Tiny Images” dataset (80M-TI) using only the original CIFAR-10
dataset. Since the 80M-TI contains some derogatory terms as categories and offensive images, it has
been withdrawn. As such, we have made our generated datasets available online to allow researchers
to avoid the use of 80M-TI.

24

(a) Conditional Gaussian (b) VDVAE

(c) BigGAN (d) StyleGAN

(e) DDPM

Figure 12: CIFAR-10 samples generated by different approaches and used as additional data to train
adversarially robust models. Each row correspond to a different class in the following order: airplane,
automobile, bird, cat, deer, dog, frog, horse, ship, truck. Each image is assigned a pseudo-label using
a standard classifier trained on the CIFAR-10 train set.

25

