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Last year, I visited the Golden Gate Bridge and 
was deeply impressed. Let me show you a picture.

I regret not bringing my dog Lucky along for the 
visit. This is Lucky.

It looks great! Can you make Lucky wear sunglasses?

Lucky looks cool in this image. Can you turn it into an oil 
painting?

I love this painting. Can you create a story about Lucky's 
adventure for this painting?

Once upon a time, Lucky was on a mission to find the 
perfect spot to enjoy the view of the Golden Gate 
Bridge. He wandered around the park, sniffing and 
exploring, until he finally found a patch of grass 
where he could lay down and take in the beauty of 
the bridge. As he sat there, he put on his sunglasses 
to protect his eyes from the sun and admired the view.

Can you generate an image of Lucky sitting in front of 
the Golden Gate Bridge?

Chatting with SEED-LLaMA

Figure 1: The introduced SEED-LLaMA, a multimodal AI assistant, demonstrates emergent ability
in the multi-turn in-context image and text generation given multimodal instructions.

ABSTRACT

The great success of Large Language Models (LLMs) has expanded the potential
of multimodality, contributing to the gradual evolution of General Artificial Intelli-
gence (AGI). A true AGI agent should not only possess the capability to perform
predefined multi-tasks but also exhibit emergent abilities in an open-world con-
text. However, despite the considerable advancements made by recent multimodal
LLMs, they still fall short in effectively unifying comprehension and generation
tasks, let alone open-world emergent abilities. We contend that the key to over-
coming the present impasse lies in enabling text and images to be represented and
processed interchangeably within a unified autoregressive Transformer. To this
end, we introduce SEED, an elaborate image tokenizer that empowers LLMs with
the ability to SEE and Draw at the same time. We identify two crucial design
principles: (1) Image tokens should be independent of 2D physical patch positions
and instead be produced with a 1D causal dependency, exhibiting intrinsic interde-
pendence that aligns with the left-to-right autoregressive prediction mechanism in
LLMs. (2) Image tokens should capture high-level semantics consistent with the
degree of semantic abstraction in words, and be optimized for both discriminative-
ness and reconstruction during the tokenizer training phase. With SEED tokens,
LLM is able to perform scalable multimodal autoregression under its original
training recipe, i.e., next-word prediction. SEED-LLaMA is therefore produced
by large-scale pretraining and instruction tuning on the interleaved textual and
visual data, demonstrating impressive performance on a broad range of multimodal
comprehension and generation tasks. More importantly, SEED-LLaMA has ex-
hibited compositional emergent abilities such as multi-turn in-context multimodal
generation, acting like your AI assistant. The code (training and inference) and
models are released in https://github.com/AILab-CVC/SEED.

*Equal Contribution.
†Correspondence to yixiaoge@tencent.com.
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Figure 2: (a) SEED is a discrete image tokenizer, producing quantized visual codes with 1D causal
dependency and high-level semantics. (b) With SEED tokenizer, LLM is able to perform scalable
multimodal autoregression on interleaved visual and textual data with next-word-prediction objective.

1 INTRODUCTION

In recent years, Large Language Models (Touvron et al., 2023; Brown et al., 2020; Chowdhery et al.,
2022) (LLMs) pre-trained on massive text corpus with straightforward training objectives such as
next-word prediction have exhibited remarkable abilities to understand, reason, and generate texts
across a variety of open-ended tasks. Recent studies further exploit the strong generality of LLMs
to improve visual understanding or generation tasks, collectively referred to as Multimodal LLM
(MLLM). While these studies have contributed to technological advancements, MLLMs have yet to
achieve the remarkable success of LLMs in terms of emergent capabilities. We have made a bold
assumption that the premise for the emergence of multimodal capabilities is that text and images can
be represented and processed interchangeably in a unified autoregressive Transformer.

We posit that a proper visual tokenizer is the key as it can facilitate the follow-up multimodal training
by (i) easing the semantic alignment between visual and word tokens, and (ii) enabling LLM’s
original training recipe (i.e., next-word prediction) for multimodal data without specific adaptation
for visual tokens. Representing images as a sequence of discrete IDs is naturally compatible with
the autoregressive training objective of LLMs. But unfortunately, works (Ramesh et al., 2021;
Ding et al., 2021) that utilize discretized visual tokens for multimodal tasks have receded from
prominence, as such models generally rely on super-scale training to converge, leading to substantial
training costs. Moreover, we empirically found that the dominant tokenizer VQ-VAE (Van Den Oord
et al., 2017) in existing works captures too low-level information for LLMs to effectively perform
multimodal comprehension tasks. Existing image tokenizers fail to meet the requirements of unifying
the generation of images and texts and facilitating multimodal training.

To this end, we introduce SEED, a VQ-based image tokenizer that produces discrete visual codes
with 1D causal dependency and necessary high-level semantics for both visual comprehension and
generation tasks, as shown in Fig. 2 (a). The off-the-shelf LLMs can be readily equipped with
SEED by treating discrete visual tokens as new words and updating the vocabulary. We would like
to emphasize the design principles of SEED. (1) Why causal-dependent tokens? Existing visual
tokens (e.g., from VQ-VAE or CLIP-ViT (Sun et al., 2023a)) are generated using 2D context, which
is incompatible with the unidirectional attention in dominant LLMs and counterintuitive for text-
to-image tasks requiring raster order prediction. Thus, we convert 2D raster-ordered embeddings
into a sequence of semantic codes with 1D causal dependency. (2) Why high-level semantics? Since
visual and textual tokens in LLMs are expected to be interoperable—sharing weights and training
objectives—they should encompass the same degree of semantics to prevent misalignment, i.e., the
high-level semantics inherently present in words.

Specifically, the SEED tokenizer is composed of a ViT encoder (Dosovitskiy et al., 2020), Causal
Q-Former, VQ Codebook (Van Den Oord et al., 2017), multi-layer perceptron (MLP), and a UNet
decoder (Ronneberger et al., 2015). The ViT encoder and UNet decoder are directly derived from the
pre-trained BLIP-2 (Li et al., 2023c) and unCLIP-SD model (Rombach et al., 2022; Ramesh et al.,
2022), respectively. (1) Tokenize: Causal Q-Former converts 2D raster-ordered features produced by
the ViT encoder into a sequence of causal semantic embeddings, which are further discretized by the
VQ Codebook. (2) De-Tokenize: The discrete visual codes are decoded into generation embedding
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via MLP. The generation embedding is aligned with the latent space of unCLIP-SD so that realistic
images with consistent semantics can be generated using the off-the-shelf SD-UNet.

We further present SEED-LLaMA by equipping the pre-trained LLM (Touvron et al., 2023) with
SEED tokenizer. SEED-LLaMA is pretrained on multimodal data, including image-text pairs, video-
text pairs, and interleaved image-text data, toward the training objective of next-word prediction as
shown in Fig. 2 (b). Such an easy-to-implement and unified proxy task facilitates scalable multimodal
pretraining. We further apply multimodal instruction tuning to align SEED-LLaMA with human
instructions through supervised fine-tuning. Our model demonstrates extensive emergent abilities
such as multi-turn in-context image and text generation given multimodal instructions as shown
in Fig. 1. We also benchmark on a broad range of tasks including image captioning, image/video
question answering, and text-to-image generation, receiving competitive performance.

In summary, our contributions are three-fold. (1) We introduce SEED, an advanced image tokenizer,
designed based on the insights that visual tokens compatible with LLMs should capture high-level
semantics while being generated with 1D causal dependency. The tailored SEED improves the
scalability of subsequent multimodal training. (2) We present SEED-LLaMA, composed of a pre-
trained LLM and SEED tokenizer, through large-scale multimodal pretraining and instruction tuning
under the next-word-prediction training objective. It successfully unified multimodal comprehension
and generation tasks in one framework. (3) SEED-LLaMA shows competitive results on existing
multimodal tasks (e.g., text-to-image, image-to-text) and further demonstrates emergent abilities in
multi-turn in-context multimodal understanding, reasoning, and generation.

2 RELATED WORK

MLLMs for Comprehension and Generation. With the impressive success of Large language
models (Touvron et al., 2023; Brown et al., 2020; Chowdhery et al., 2022) (LLMs), recent studies
work on Multimodal LLM (MLLM) to improve visual comprehension through utilizing the strong
generality of LLMs. Previous work (Ye et al., 2023; Li et al., 2023c; Zhu et al., 2023a; Zhang et al.,
2023b; Gao et al., 2023; Liu et al., 2023b; Alayrac et al., 2022; Driess et al., 2023) align visual
features of pre-trained image encoder with LLMs on image-text datasets. However, these work
commonly use the prediction of the next text token as the objective, thus can only output texts.

To empower LLMs with the image generation ability, CogView (Ding et al., 2021) pre-trains a visual
tokenizer by reconstructing image pixels, and fine-tunes GPT (Brown et al., 2020) with the objective
of next-token prediction. GILL (Koh et al., 2023a) learns a mapping between the embeddings of a
LLM and a frozen text-to-image generation model. Both work aim to generate images with LLMs,
without being explicitly designed for unifying multimodal comprehension and generation.

Our concurrent works (Sun et al., 2023b; Lili et al., 2023) both perform multimodal autoregression
including the generation of images and texts. CM3Leon (Lili et al., 2023) utilizes discrete visual
codes from a image tokenizer (Gafni et al., 2022) pre-trained on image pixel reconstruction and
performs image-to-text and text-to-image autoregression. However, it yields suboptimal performance
in visual comprehension tasks (e.g., CIDEr 61.6 vs. ours 126.9 on COCO image captioning) because
the image tokenizer captures too low-level information. Emu (Sun et al., 2023b) employs continuous
visual representations and is pre-trained on interleaved multimodal sequences through classifying the
next text token or regressing the next visual embedding. For image generation, Emu further fine-tunes
a SD model to accommodate the output representations from the LLM. By contrast, we pre-train
a discrete image tokenizer, where the visual codes can be decoded to realistic images using the
off-the-shelf SD model, and perform multimodal autoregressive with a unified next-word-prediction
objective, which facilitates scalable multimodal training.

Visual Tokenizer. Visual tokenizer aims to represent images as a sequence of discrete tokens.
Previous work (Van Den Oord et al., 2017; Ramesh et al., 2021; Esser et al., 2021; Gu et al., 2022)
trains a Vector Quantized Variational AutoEncoders (VQ-VAE) by reconstructing image pixels, which
captures only low-level details such as color, texture and edge. Beit v2 (Peng et al., 2022) trains
a visual tokenizer through reconstructing high-level features from the teacher model, but its visual
codes from 2D features of a vision transformer (Dosovitskiy et al., 2020) are incompatible with the
unidirectional attention in dominant LLMs for image generation. By contrast, we present SEED
tokenizer, which produces discrete visual codes with 1D causal dependency and high-level semantics.
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Figure 3: Overview of SEED tokenizer, which produces discrete visual codes with causal dependency
and high-level semantics. The generation embedding from visual codes can be decoded to realistic
images with the frozen unCLIP (Ramesh et al., 2022) SD, which is conditioned on image embedding.

3 METHOD

3.1 SEED TOKENIZER

As shown in Fig. 3, the SEED tokenizer consists of the following components for tokenization and
de-tokenization:
(1) ViT encoder (Dosovitskiy et al., 2020), which is derived from the pre-trained BLIP-2 (Li et al.,
2023c) and is frozen, providing visual features as the inputs of the Causal Q-Former.
(2) Causal Q-Former, which is trained (Enq. 1) to convert 2D raster-ordered features (16×16 tokens)
produced by the ViT encoder into a sequence of causal embeddings (32 tokens).
(3) VQ Codebook (Van Den Oord et al., 2017), which is trained (Enq. 2) to discretize the causal
embeddings from Causal Q-Former to quantized visual codes (32 tokens) with causal dependency.
(4) Multi-layer perceptron (MLP), which is trained (Enq. 3) to decode the visual codes from VQ
Codebook into generation embedding (1 token) for the alignment with the latent space of the pre-
trained unCLIP-SD (Ramesh et al., 2022) conditioned on image embedding.
(5) UNet decoder (Ronneberger et al., 2015), which is derived from the unCLIP-SD to encode realistic
images from the generation embedding, and is kept frozen.
We pre-train SEED tokenizer on image-text pairs including CC3M (Sharma et al., 2018), Unsplash
(Luke Chesser, 2023), LAION-COCO (Christoph et al., 2022) and MS-COCO (Chen et al., 2015).

3.1.1 TRAINING STAGE I: CAUSAL Q-FORMER

As shown in Fig. 3, we first train Causal Q-former to extract a fixed number of output features with
causal dependency from from the image encoder through contrastive learning. Specifically, a set
number of learnable query embeddings (32 tokens) and features of a pre-trained ViT encoder (Sun
et al., 2023a) are fed into the Causal Q-former to encode a fixed number of causal embeddings (32
tokens) of the input image. The query embeddings can interact with only previous queries through
self-attention layers with causal mask, and interact with frozen image features through cross-attention
layers. We adopt contrastive learning to maximize the similarity between the final causal embedding
ĉ and text features t of the corresponding caption, while minimizing the similarity between the
final causal embedding and text features of other captions in a batch, using Noise-Contrastive
Estimation Oord et al. (2018) as below,

LCQ = −log
exp(ĉTi ti/τ)∑B
j=1 exp(ĉTi tj/τ)

− log
exp(tTi ĉi/τ)∑B
j=1 exp(tTi ĉj/τ)

(1)

where B is the number of the batch size and τ is the learnable temperature parameter.
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Figure 4: Overview of the multimodal autoregressive pretraining on interleaved visual and textual data
for SEED-LLaMA. Visual inputs are pre-processed into discrete tokens to conserve computational
resources. Given the multimodal discrete sequence, a unified next-word-prediction objective is em-
ployed. During inference, visual codes are decoded into a realistic image by SEED De-Tokenization.

3.1.2 TRAINING STAGE II: VISUAL TOKENIZE AND DE-TOKENIZE

As shown in Fig. 3, we train a VQ codebook to discretize the causal embeddings (32 tokens) into
quantized visual codes (32 tokens) for visual tokenization, and a MLP to decode the visual codes
into generation embedding (1 token) for visual de-tokenization. The vocabulary size of the VQ
codebook is set as 8192. Specifically, causal embeddings C from the frozen Causal Q-Former
are first fed into a linear projection layer to reduce the dimensions as C ′ for improving codebook
utilization following previous work Peng et al. (2022). A quantizer looks up the nearest neighbor
embeddings Z in the codebook for C ′ and obtains the corresponding codes. We employ a decoder,
which is a multi-layer Transformer (Dosovitskiy et al., 2020), to reconstruct the continuous causal
embeddings C from discrete codes as C recon. We employ a MLP to reconstruct the image embedding
I (1 token) of a frozen unCLIP-SD from discrete codes as generation embedding G. As shown in
Enq. 2, during training, besides the original VQ objective Van Den Oord et al. (2017) (the first and
second term), we maximize the cosine similarity between reconstructed causal embeddings C recon and
causal embeddings C (the third term), and minimize the MSE loss between generation embedding G
and image embedding I of unCLIP-SD (the fourth term).

LVQ = ||sg[C′]− Z||22 + ||C′ − sg[Z]||22 − cos(C recon, C) + LMLP (2)

LMLP = MSE(G, I) (3)
where sg[.]denotes the stop-gradient operation. During inference, the generation embedding G are

fed into the off-the-shelf SD-UNet to decode realistic images.

3.2 SEED-LLAMA

3.2.1 TRAINING STAGE I: MULTIMODAL PRETRAINING

As shown in Fig. 4, SEED-LLaMA adopts a unified next-word-prediction training objective on
interleaved visual and textual data. Specifically, visual inputs are first discretized into a sequence
of causal codes by SEED tokenizer. Then the interleaved visual codes and text tokens are fed into
the pretrained LLM for performing multimodal autoregression, where the visual codes are treated as
new words and the vocabulary of the LLM is updated accordingly. We maximize the likelihood in a
unified autoregressive manner as follows:

L(U) =
∑
i

logP (ui | ui−k, . . . , ui−1; Θ) (4)

where ui represents visual code or text token, and Θ denotes the the parameters of the transformer.
We initialize SEED-LLaMA from a pre-trained LLM, and add 8192 visual codes to the vocabulary.
The embedding layer and decoder head layer in the transformer are expanded and the parameters of
added visual codes are randomly initialized.

For efficiency, we first train SEED-LLaMA using LoRA (Hu et al., 2021) tuning and together optimize
the parameters of the embedding layer and decoder head layer due to the added visual codes. We
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Table 1: Evaluation of Image-Text Retrieval. Causal codes are quantized causal embeddings.

Model
Flickr30K (1K test set) COCO (5K test set)

Image → Text Text → Image Image → Text Text → Image

R@1 R@5 R@10 R@1 R@5 R@10 R@m R@1 R@5 R@10 R@1 R@5 R@10 R@m

BLIP-2 (Li et al., 2023c) 81.9 98.4 99.7 82.4 96.5 98.4 92.9 65.3 89.9 95.3 59.1 82.7 89.4 80.3

SEED (causal embedding) 91.0 99.5 100.0 79.3 94.8 97.1 93.6 74.2 93.1 96.7 59.0 82.8 89.2 82.5
SEED (causal code) 85.4 98.3 99.6 73.7 92.3 95.7 90.8 66.9 89.3 94.4 53.2 78.8 86.6 78.2
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n

Figure 5: Reconstruction images of SEED tokenizer (i.e., original image → SEED tokenize → causal
visual codes → SEED de-tokenize → reconstructed image).

then merge the parameters of LoRA onto the LLM backbone and fine-tune all parameters except for
the embedding layer. We freeze the embedding layer since we observe that fine-tuning it together
with other parameters can lead to unstable training loss, which is also reported in BLOOM (Scao
et al., 2022) and GLM-130B (Zeng et al., 2022). We preprocess the images and videos into discrete
tokens beforehand to conserve computational resources. We perform pretraining using two versions
of LLM, Vicuna-7B and Llama2-chat-13B, with 64 A100-40G GPUs, and yield SEED-LLaMA-8B
(144 hours) and SEED-LLaMA-14B (216 hours), respectively. See Appendix. B for details.

3.2.2 TRAINING STAGE II: MULTIMODAL INSTRUCTION TUNING

We perform multimodal instruction tuning on SEED-LLaMA to align it with human instructions
through supervised finetuning on public datasets. The details of datasets can be found in Appendix. C.
We fine-tune a LoRA module on the pre-trained SEED-LLaMA with the template as below,

USER: <Instruction> ASSISTANT: <Answer> (5)

Only the content of <Answer> is accounted for loss. The overall instruction tuning phase takes 16
hours for SEED-LLaMA-8B and 27 hours for SEED-LLaMA-14B with 32 A100-80G GPUs.

3.3 SEED TOKENIZER

4 EXPERIMENT

Evaluation of Causal Embeddings. We evaluate the performance of Causal Q-Former on the image-
text retrieval using COCO (Lin et al., 2014) and Flickr30K (Young et al., 2014). The performance
is measured by Recall@K (R@K). Note that we adopt the dual-stream paradigm for inference and
remove the image-text-matching (ITM) re-rank module in BLIP-2 for a fair comparison. As shown in
Tab. 1, our Causal Q-former achieves better results than BLIP-2 in terms of an aggregated metric
Recall@mean. It demonstrates that the output query embeddings with causal dependency do not drop
performance than the output embeddings with bi-directional attention in BLIP-2.

Evaluation of Causal Codes. We evaluate causal codes on the image-text retrieval, where the
reconstructed embeddings from causal codes are used for retrieval. As shown in Tab. 1, discrete codes
exhibit competitive performance compared to BLIP-2, which demonstrates that the discrete codes
from SEED tokenizer capture high-level semantics, which are suitable for visual comprehension.

We visualize the reconstructed images of SEED tokenizer in Fig. 5. Through obtaining the generation
embedding from the causal visual codes, realistic images can be generated using the frozen SD-UNet,
which maintain consistent semantics with inputs. The above evaluation and visualization demonstrate
the versatility of SEED visual tokens for both comprehension and generation tasks.
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Table 2: Comparison for multimodal comprehension. “Image Gen” denotes whether the model can
generate images besides texts, and “-I” denotes the instruction tuned model. The best results are bold
and the second best are underlined.

Models Size Image Image-Text Tasks Video-Text Tasks

Gen COCO VQAv2 OKVQA VizWiz SEED
Bench MSVDQA MSRVTTQA NExTQA

Flamingo (Alayrac et al., 2022) 9B × 79.4 51.8 44.7 28.8 42.7 30.2 13.7 23.0
BLIP-2 (Li et al., 2022) 4.1B × 144.5 63.0 40.7 29.8 49.7 33.7 16.2 -
InstructBLIP (Li et al., 2023c) 8.1B × - - - 34.5 58.8 41.8 22.1 -
Kosmos-1 (Huang et al., 2023) 1.6B × 84.7 51.0 - 29.2 - - - -
Kosmos-2 (Peng et al., 2023) 1.6B × - 45.6 - - 54.4 - - -
MetaLLM (Hao et al., 2022) 1.7B × 82.2 41.1 11.4 - - - - -
IDEFICS (Laurençon et al., 2023) 80B × 91.8 60.0 45.2 36.0 - - - -
IDEFICS-I (Laurençon et al., 2023) 80B × 117.2 37.4 36.9 26.2 53.2 - - -
CM3Leon (Lili et al., 2023) 7B ✓ 61.6 47.6 23.8 37.6 - - - -
Emu (Sun et al., 2023b) 14B ✓ 112.4 52.0 38.2 34.2 47.3 18.8 8.3 19.6
Emu-I (Sun et al., 2023b) 14B × 117.7 40.0 34.7 35.4 58.0 32.4 14.0 6.8
SEED-LLaMA 8B ✓ 123.6 44.2 29.2 21.5 42.2 11.5 5.0 14.3
SEED-LLaMA-I 8B ✓ 124.5 66.2 45.9 55.1 51.5 40.9 30.8 24.9
SEED-LLaMA 14B ✓ 125.0 48.1 27.1 23.3 46.0 13.9 3.7 11.3
SEED-LLaMA-I 14B ✓ 126.9 63.4 43.2 49.4 53.7 45.2 35.3 24.7

Sure, here's a poem for you:

Oh cherry blossom, so delicate and fair,
Your petals dance in the breeze with care.
Your pink and white hues, a sight to see,
A symbol of spring, a time to be free.

You bloom for just a week or two,
But your beauty is worth a lifetime to know.
You bring joy to all who behold,
A reminder of life's fleeting hold.

So let us cherish your beauty,
And appreciate the time we have with you.
For though you may bloom and fade,
Your memory will forever be made.

Can you generate an image of a cartoon cat in a garden?

Once upon a time, there was a curious and adventurous cat 
named Cookie. Cookie loved to explore the world around her and 
try new things. One day, she found a book and decided to read it. 
As she read, she discovered a love for learning and decided to 
become a chef. She practiced cooking and baking every day, and 
soon became the best chef in the neighborhood. But Cookie 
wasn't done yet. She wanted to try something new, so she picked 
up a piano and started playing. With her natural talent, she 
became a famous pianist and entertained everyone with her 
beautiful music. Cookie's love for learning and trying new things 
led her to become a successful chef, pianist, and adventurer.

It looks so cute! Let's name the cat Cookie. Can you make Cookie read a book?

It looks like Cookie enjoys reading. Now let's make Cookie cook food in the kitchen.

Cookie looks like an excellent chef. It is time for Cookie to practice playing the piano.

I love these paintings! Can you write a story about Cookie?

Do you know what kind of flower it is?

Yes, it's a cherry blossom.

Can you show me a close-up picture of this flower?

It looks so beautiful. Can you write a poem about this flower?

Is there any suitable country for traveling to see this scene?

Yes, Japan is known for its beautiful 
cherry blossoms, and it's a popular 
destination for tourists during the 
spring season. You can visit places 
like Tokyo, Kyoto, and Osaka to see 
the cherry blossoms in full bloom.

User

SEED-LLaMA

Figure 6: Qualitative examples of multi-turn in-context image and text generation by SEED-LLaMA
given multimodal instructions.

4.1 SEED-LLAMA

4.1.1 QUANTITATIVE EVALUATION

Multimodal Comprehension. We evaluate SEED-LLaMA on a wide range of multimodal com-
prehension tasks including image captioning and image/video question answering. Details of these
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Figure 7: Qualitative examples of compositional image generation by SEED-LLaMA.

benchmarks and evaluation metrics are provided in Appendix. D. As shown in Tab. 2, our SEED-
LLaMA achieves competitive performance in both the image and video understanding tasks compared
with MLLMs that use continuous visual representations. The results demonstrate that our SEED
tokenizer can generate discrete visual codes with high-level semantics, which facilities the visual
comprehension. We can observe that pretraining from a LLM with larger model size improves
performance on SEED-Bench and instruction tuning further contributes to enhanced results. Note
that as pointed out by recent work (Liu et al., 2023c; Li et al., 2023b), previous VQA benchmarks
listed in Tab. 2 are not tailored for evaluating MLLMs with open-from output, since they require an
exact match between the model prediction and the target word or phrase. The qualitative examples of
multimodal comprehension is provided in Appendix. F.

Text-to-image Generation. We evaluate the text-to-image generation on MS-COCO (Chen et al.,
2015) and Flickr30K (Young et al., 2014) and compute the pair-wise CLIP similarity score as the
evaluation metric following GILL (Koh et al., 2023b). As shown in Tab. 10, images generated by our
SEED-LLaMA from textual descriptions show higher similarity with the ground-truth images. The
results demonstrate that SEED-LLaMA generates images that are highly correlated with text prompts
via a frozen SD-UNet. We show qualitative examples of text-to-image generation in Appendix. F.

4.1.2 EMERGENT ABILITY

Multi-turn In-context Multimodal Generation. As shown in Fig. 1 and Fig. 6, given multimodal
instructions including images and open-form texts from a user, our SEED-LLaMA can respond with
synthesized image (e.g., a dog in front of the Golden Gate Bridge), sequentially generated images
(e.g., a cartoon cat in different scenes), instruction-followed image (e.g., a closer look-up of a cherry
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blossom), various forms of texts via creation and real-world knowledge (e.g., a story, a poem and
flower identification). The results illustrate the impressive capability of SEED-LLaMA in reasoning
and generating long-context multimodal content.

Compositional Image Generation. As shown in Fig. 7, our SEED-LLaMA can realize a variety of
zero-shot compositional image generation as below,

• Stylized Image Generation. SEED-LLaMA can take a text prompt and a style reference
image as inputs and produce an output image that adheres to both the style and text prompt.

• Image Blending. SEED-LLaMA can take two images as inputs and generate an image that
blends the visual components of the input images.

• Multimodal Composition. SEED-LLaMA can take an image prompt and a text prompt as
inputs and generate a composite image that combines the multimodal inputs.

• In-context Generation. SEED-LLaMA can take images, their textual references, and text
prompts as inputs and generate context-related images.

4.2 ABLATION STUDY

Generation Embedding. The generation embedding of SEED is aligned with the image embedding of
unCLIP-SD, and can be decoded to realistic images with the unCLIP-SD-UNet. We also train a visual
tokenizer SEEDtext through aligning the generation embeddings with the text embeddings (77 tokens)
of SD (Rombach et al., 2022) conditioned on texts. As shown in Tab. 10, the similarity between the
reconstructed images of SEEDtext and original images drop heavily. The semantic representations of
texts can not fully preserve the rich visual information of images. The visual comparison of the the
reconstructed images between SEEDtext and SEED are provided in Appendix. A.

Causal Visual Codes vs. Bilateral Visual Codes. We train a Causal Q-Former to convert 2D
features produced by the ViT encoder into a sequence of causal semantic embeddings, which are
further discretized as causal visual codes. To verify whether the causal visual codes are necessary
for compatibility with LLM, we train a visual tokenizer SEEDBi, which produces bilateral visual
codes from a pre-trained Q-Former with bilateral self-attention. We then pre-train SEEDBi-LLM∗ and
SEED-LLM∗ on image-text pairs and evaluate the text-to-image generation on COCO test set. Given
5000 captions of COCO, SEEDBi-LLM only generates 2134 images successfully while SEED-LLM∗

generates 4997 images (Failure cases occur when the model predicts a number of visual tokens
not equal to 32). The results demonstrate that the non-causal codes lead to highly unstable model
performance since they contradict with the left-to-right autoregressive mechanism of LLM.

SEED-LLaMA Pretraining. We first train SEED-LLaMA using LoRA tuning, and then merge the pa-
rameters of LoRA with the original LLM and fine-tune all parameters except for the embedding layer.

Table 3: Evaluation of image captioning and
text-to-image generation on COCO test set.

Pretraining Captioning Generation

LoRA 124.5 68.87
LoRA + Fully 125.0 69.07

To explore whether fully fine-tuning helps, we evalu-
ate the performance of the model before and after fully
fine-tuning on image captioning and text-to-image
generation, with evaluation metric CIDEr and clip
similarity score. Tab. 3 shows that fully fine-tuning
the LoRA tuned model enhances model’s capability
for both image comprehension and generation.

5 CONCLUSION

We present SEED, a discrete image tokenizer, designed based on the premise that visual tokens
compatible with LLMs should capture high-level semantics while being generated with 1D causal
dependency. SEED enables LLMs to be trained with multimodal data following the original recipe of
text (i.e., next-word prediction), which is mature and scalable. We further present SEED-LLaMA
via multimodal pretraining and instruction tuning on the interleaved visual and textual data with
SEED tokenizer. SEED-LLaMA not only exhibits remarkable performance across multimodal
comprehension and image generation tasks, but also demonstrates extensive compositional emergent
abilities. We hope that SEED would draw increased attention to visual tokenizers. A more rational
visual tokenizer could substantially reduce the complexity of multimodal LLM training.
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(a)

(b)

(c)

Figure 8: (a) Input image. (b) Reconstruction images of SEEDtext tokenizer, which is aligned with the
feature space of a SD conditioned on text embeddings. (c) Reconstruction images of SEED tokenizer,
which is aligned with the feature space of a SD conditioned on image embedding.

A SEED TOKENIZER

The generation embedding of SEED is aligned with the image embedding of unCLIP (Ramesh et al.,
2022) SD, and can be decoded to realistic images with the unCLIP-SD-UNet. We also train a visual
tokenizer SEEDtext through aligning the generation embeddings with the text embeddings (77 tokens)
of SD (Rombach et al., 2022), and the generation embeddings can be decoded to images with the
SD-UNet. The visual comparison of the the reconstructed images between SEEDtext and SEED are
shown in Fig. 8. We can observe that compared with SEEDtext, the images reconstructed by SEED
can better preserve the visual information of the original images.

B PRETRAINING

B.1 PRETRAINING DATA

As shown in Tab. 4, we utilize diverse categories of datasets as pretraining data, which can be
summarized as follows.

Image-text Pairs. We use the image-text pairs from CC3M (Sharma et al., 2018), Unsplash
(Luke Chesser, 2023), LAION-COCO (Christoph et al., 2022) and MS-COCO (Chen et al., 2015).
We filtered the samples in these datasets based on image resolution, aspect ratio, and visual-textual
similarity. We randomly place images or text at the forefront, in order to achieve the generation of
captions based on images and vice versa.

Video-text Pairs. We use a large-scale dataset WebVid-10M (Bain et al., 2021) containing videos
and captions. We implemented heuristic rules to exclude extraneous metadata, such as the resolution
of the original video and camera parameters. We sample four frames of each video for training. Each
frame is discretized into 32 codes. The input sequence of a video is <IMG> the token of frame 1
</IMG> <IMG> the token of frame 2 </IMG> <IMG> the token of frame 3 </IMG> <IMG> the
token of frame 4 </IMG>.

Interleaved Image and Text. We use publicly available MMC4 (Zhu et al., 2023b) and OBELISC
(Laurençon et al., 2023) datasets, which were extracted and thoroughly filtered from Common Crawl.
Specifically, we employ the MMC4-core split, consisting of 7.3 million samples, and the complete
OBELISC dataset, containing 141 million samples. For documents in MMC4, we create a sequence
of length 1024 and randomly shuffle the order of images and their corresponding texts (those with the
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Table 4: Description of pretraining datasets of SEED-LLaMA.

Dataset Name Dataset Description
COCO Caption
(Chen et al., 2015)

0.5M image-text pairs with human-written captions. Specifically,
Karpathy train split is used.

CC3M
(Sharma et al., 2018) 3.3M image-text pairs from the web.

Unsplash
(Luke Chesser, 2023)

4.8M image-text pairs, in which images are composed of high-quality
Unsplash photos.

LAION-COCO
(Christoph et al., 2022)

600M image-text pairs, where the caption is generated by the BLIP
(Li et al., 2022).

MMC4
(Zhu et al., 2023b)

101M image-interleaved documents collected from Common Crawl.
We use the mmc4-core split which is consist of 7.3M documents. We
randomly shuffle the order of images and their corresponding text
(those with the highest CLIP score).

OBELISC
(Laurençon et al., 2023) 141M image-interleaved documents collected from Common Crawl.

WebVid
(Bain et al., 2021)

8M video-text pairs, we have implemented heuristic rules to exclude
extraneous metadata,such as the resolution of the original video and
camera parameters.

Table 5: Summary of pretraining hyperparameters of SEED-LLaMA.

Configuration SEED 8B SEED 14B
Vision encoder EVA-CLIP
LLM Vicuna-7B LLaMA2-Chat-13B
Training Strategy LoRA + Fully fine-tuning
Peak learning rate 1.5e-4
Warmup ratio 0.03
LR schedule Cosine decay
Optimizer AdamW
Optimizer hyper-parameters β1,β2, ϵ = 0.9, 0.98, le-6
Image resolution 224 × 224
Weight decay 0.05
Iterations 30k + 10k

Data
(MS-COCO, CC3M, Unsplash), LAION-COCO,

OBELISC, MMC4, WebVid
Sequence length per dataset 160, 128, 1024, 1024, 200
Batch size per dataset 146, 180, 26, 26, 116 46, 56, 8, 8, 36
Sample ratio per dataset 4.5%, 54.5%, 9.1%, 27.3%, 4.5%

highest CLIP score). As for OBELISC, we generate a sequence of length 1024 based on the order of
data in the dataset.

B.2 PRETRAINING HYPERPARAMETERS

We report the detailed pretraining hyperparameters of SEED-LLaMA in Tab. 5.
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C INSTRUCTION TUNING

We summarize the datasets and their prompts for supervised instruction tuning of SEED-LLaMA
in Tab. 6 and Tab. 7. Note that MagicBrush (Zhang et al., 2023a) contains both the single-turn and
multi-turn scenarios, and we only use the single-turn for multimodal prompt image generation.

D EVALUATION

D.1 BENCHMARKS

In order to assess the multimodal comprehension and image generation ability of SEED-LLaMA, we
evaluate SEED-LLaMA on 10 benchmarks as shown in Tab. 8. For the evaluation of image generation,
we adopt the CLIP-ViT-L/14 to calculate the CLIP score between the ground-truth image and the
generated image. When evaluating SEED-Bench, we adhere to the official guidelines, selecting the
option with the highest log likelihood as the response for each multi-choice question (MCQ). For
the evaluation on video tasks, we uniformly sample 4 frames for MSVDQA and MSRVTTQA, and
8 frames for NExTQA. For the other tasks, we follow the evaluation procedures in prior works (Li
et al., 2023c; Sun et al., 2023b) and either submit the results to the official server (VQAv2, VizWiz)
or assess them using the official code ourselves.

D.2 PROMPT TEMPLATES

We summarize the prompt templates used for evaluating SEED-LLaMA in Tab. 9. As the pre-trained
SEED-LLaMA with size of 8B and 14B adopt different LLM (Vicuna-7B and Llama2-chat-13B),
their prompts differ accordingly.

D.3 EVALUATION OF IMAGE RECONSTRUCTION

We further evaluate image reconstruction on COCO and Flickr30K dataset. SEED first discretizes
input images into causal codes (32 tokens) and obtain generation embedding (1 token), which are
fed into the unCLIP-SD-UNet for reconstruction. We follow GILL (Koh et al., 2023a) to compute
the CLIP similarity score as the metric to evaluate the semantic consistency. As shown in Tab. 10,
compared with the upper bound unCLIP-SD, SEED only slightly drops performance.

E QUALITATIVE COMPARISON

For the qualitative comparison of multi-turn in-context image and text generation, as shown in
Fig. 9, we can observe that our SEED-LLaMA exhibits exceptional emergent ability in generating
long-context multimodal content, while Emu Sun et al. (2023b) and Next-GPT Wu et al. (2023)
that employ continuous representations to unify comprehension and generation within a LLM show
less competitive performance. They generate images with incorrect semantics or context, or can not
follow instruction accurately in a multi-turn dialogue.

F QUALITATIVE CASES

More examples of multi-turn in-context multimodal generation and compositional image generation
are shown in Fig. 10 and Fig. 11. Note that generating images with multimodal prompt is not an
emergent ability since SEED-LLaMA is fine-tuned on corresponding paired data such as Instruct-
Pix2Pix (Brooks et al., 2023). We showcase qualitative examples of text-to-image generation by
SEED-LLaMA in Fig. 12. Given various textual descriptions, our SEED-LLaMA can generate
realistic images that aligns with the text prompts. We further provide qualitative examples of multi-
modal comprehension by SEED-LLaMA in Fig. 13, Fig. 14 and Fig. 15. SEED-LLaMA can realize
in-context multi-image understanding, real-world knowledge grounding, complex reasoning, story
creation and video understanding.
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Table 6: Description of datasets in the instruction tuning of SEED-LLaMA.
Task Dataset Name Dataset Description Type

Text-to-Image
Generation

JourneyDB
(Pan et al., 2023)

It contains 4429K Midjourney images, with text
prompt, image caption, and QA pairs.

Single-turn

DiffusionDB
(Wang et al., 2022)

It contains 14 million images generated by Stable
Diffusion using prompts by real users.

Single-turn

LAION-Aesthetics It contains several collections of subsets from
LAION 5B with high visual quality.

Single-turn

VIST
(Huang et al., 2016)

It contains photos in 20K sequences, aligned to
both caption and story language.

Multi-turn

Multimodal
Prompt Image
Generation

Instructpix2pix
(Brooks et al., 2023)

It contains text editing instructions and the
corresponding images, with 454K samples.

Single-turn

MagicBrush
(Zhang et al., 2023a)

It contains 10K manually annotated triplets
(source image, instruction, target image).

Single-turn

Image
Conversation

LLaVA
(Liu et al., 2023b)

We use 58K multi-turn conversations between an
assistant and a person.

Multi-turn

SVIT
(Zhao et al., 2023)

It contains conversations, complex reasoning,
referring QA and detailed image description.

Multi-turn

LLaVAR
(Zhang et al., 2023c)

It contains 16K multi-turn conversations, each
with QA pairs for text-rich images.

Multi-turn

Multi-Image
Understanding

GSD
(Li et al., 2023a)

It contains 141K pairs of images with text
describing the differences.

Single-turn

Image
Captioning

VSR
(Liu et al., 2023a)

It contains texts describing the spatial
relations in the image, with 7K training samples.

Single-turn

COCO Caption
(Chen et al., 2015)

It contains image-text pairs with human-written
captions, with 82K training samples.

Single-turn

TextCaps
(Sidorov et al., 2020)

It requires the model to comprehend and reason
the text in images, with 21K training samples.

Single-turn

Image QA

VQAv2
(Goyal et al., 2017)

A dataset for open-ended image question
answering, with 82K training samples.

Single-turn

OKVQA
(Marino et al., 2019)

It contains questions that require outside
knowledge to answer, with 9K training samples.

Single-turn

A-OKVQA
(Schwenk et al., 2022)

It is a successor of OKVQA containing more
challenging questions, with 17K training samples.

Single-turn

GQA
(Hudson & Manning, 2019)

It contains questions for image understanding
and reasoning, with 30K training samples.

Single-turn

VizWiz
(Gurari et al., 2018)

It contains visual questions asked by people who
are blind, with 20K training samples.

Single-turn

TextVQA
(Singh et al., 2019)

It contains questions that require models to read
text in the image, with 800K training samples.

Single-turn

OCR-VQA
(Mishra et al., 2019)

It contains questions that requires reasoning about
text to answer, with 173K training samples.

Single-turn

Video
Conversation

Video-ChatGPT
(Maaz et al., 2023)

It contains of 100K video-instruction pairs
via manual and semi-automated pipeline.

Single-turn

Video QA

ActivityNet
(Caba Heilbron et al., 2015)

It contains 200 different types of activities from
YouTube, with 10K training videos.

Single-turn

Next-QA
(Xiao et al., 2021)

It contains 52K QA pairs of videos grouped into
causal, temporal and descriptive questions.

Single-turn

MSVD
(Chen & Dolan, 2011)

It contains videos from YouTube with descriptions,
containing 1.2K training samples.

Single-turn

MSR-VTT
(Xu et al., 2016)

It contains videos from YouTube with descriptions,
containing 19K training samples.

Single-turn

iVQA
(Yang et al., 2021)

It is a video QA dataset with mitigated language
biases, containing 6K training samples.

Single-turn
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Table 7: Details of prompt templates used in supervised instruction tuning of SEED-LLaMA.
Type Prompt
Text-to-Image Generation USER: {caption} Please generation an image.\nASSISTANT: {image}
Multimodal Prompt
Image Generation

USER: {image1} {instruction} Please generation an image.
\nASSISTANT: {image2}

Image Conversation USER: {image} {question}\nASSISTANT: {answer}
Multi-Image
Understanding

USER: This is the first image. {image1} This is the second image.
{image2} {question}\nASSISTANT: {answer}

Image Captioning
USER: {image} Please provide an accurate and concisedescription of
the given image.\nASSISTANT: {caption}

Image QA
USER: {image} {question} Please provide an accurate answer consisting
of only one word or phrase.\nASSISTANT: {answer}

Video Conversation USER: {video} {question}\nASSISTANT: {answer}

Video QA
USER: {video} {question} Please provide an accurate answer
consisting of only one word or phrase.\nASSISTANT: {answer}

Last year, I visited the Golden Gate Bridge and was deeply 
impressed. Let me show you a picture.

I regret not bringing my dog Lucky along for the visit. This is Lucky.

It looks great! Can you make Lucky wear sunglasses?

Can you generate an image of Lucky sitting in front of 
the Golden Gate Bridge?

SEED-LLaMA Emu Next-GPT

SEED-LLaMA Emu Next-GPT

Wrong semantics:
No Golden Gate Bridge.

Wrong semantics:
No Lucky (the dog).

Capable of context retention, 
given the similar dog and its 
grass background. But show 
the wrong semantics as 
there are no sunglasses.

The model correctly 
generates sunglasses, but 
lacks of context retention, 
given the wrong object 
and background.

Lucky looks cool in this image. Can you 
turn it into an oil painting?

Emu Next-GPT 

Not an oil painting style. Not an oil painting 
style, and lack of 
context consistency.

I love this painting. Can you create a story 
about Lucky's adventure for this painting?

Once upon a time, Lucky was 
on a mission to find the 
perfect spot to enjoy the 
view of the Golden Gate 
Bridge. He wandered around 
the park, sniffing and 
exploring, until he finally 
found a patch of grass where 
he could lay down and take 
in the beauty of the bridge. 
As he sat there, he put on his 
sunglasses to protect his 
eyes from the sun and 
admired the view.

SEED-LLaMA Emu Next-GPT
Can you create a story about 
Lucky's adventure for this 
painting? Can you create a 
story about Lucky's adventure 
for this painting? Can you 
create a story about Lucky's 
adventure for this painting? 
Can you create a story about 
Lucky's adventure for this 
painting? Can you create a 
story about Lucky's

Wrong context.Cannot follow instruction.

SEED-LLaMA

Once upon a time, there was a dog named 
Lucky. Lucky was a curious and 
adventurous dog, always eager to explore 
new places and meet new people. One day, 
Lucky‘s owner took him on a trip to the 
beach. Lucky was thrilled to be outdoors, 
playing in the sand and chasing after 
seagulls. As he ran, he noticed a group of 
people sitting on a bench, watching him 
play. Lucky decided to approach them and 
introduce himself. The people were 
fascinated by Lucky’s friendly demeanor 
and soon, they became fast friends. Lucky 
was grateful for the opportunity to make 
new friends and he knew that he would 
always have a special place in their hearts. 

Figure 9: Comparison of multi-turn in-context image and text generation between SEED-LLaMA
and MLLMs that unify comprehension and generation.
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User

SEED-LLaMA

I am planning a trip to Barcelona. Can you recommend some 
places to visit for me?

Of course! Barcelona is a beautiful city with a lot to offer. 
Here are some places you should definitely visit:
1. La Sagrada Familia: This is a famous cathedral designed by 
Antoni Gaudi. It's a must-see attraction in Barcelona.
2. Park Guell: Another Gaudi masterpiece, this park is full of 
colorful mosaics and unique architecture. It's a great place to 
take some photos.
3. La Rambla: This is a lively street filled with shops, 
restaurants, and street performers. It‘s a great place to take a 
stroll and enjoy the sights and sounds.
4. Casa Batllo: Another Gaudi creation, this house is known 
for its unique architecture and colorful facade. It's a must-see 
for any architecture lover.
5. Barceloneta Beach: If you're looking for a place to relax and 
soak up the sun, this beach is a great option. It's a popular 
spot for locals and tourists alike.
These are just a few of the many places to visit in Barcelona. I 
hope you enjoy your trip!

Yes, there are many delicious snacks to try in Barcelona. One 
popular snack is the churro, which is a fried dough pastry that is 
often sprinkled with sugar. Another popular snack is the croquette, 
which is a small ball of breading filled with meat or fish. You can 
also try the pan con tomate, which is a simple dish made with 
bread, tomatoes, and olive oil. And if you're feeling adventurous, 
you can try the calamari, which is a fried squid dish that is often 
served with lemon and aioli. These are just a few examples of the 
many delicious snacks you can try in Barcelona. Enjoy!

Thanks for your suggestion. I am interested in La Sagrada Familia. 
Can you show me a picture?

This looks spectacular and I am going to visit it. I also want to try 
some local snacks. Do you have any suggestions?

I am interested in Churros. Can you show me what it looks like? 

Cartoon Character: "Hey, Mr. Einstein! I'm SpongeBob 
SquarePants! I'm a sponge who lives in a pineapple under the 
sea. What's your story?"
Einstein: "Ah, hello there, my young friend. I am Albert 
Einstein, the famous theoretical physicist. I've been working 
on a theory of relativity that could change the way we 
understand the universe."
Cartoon Character: "Wow! That sounds amazing! I've never 
been to the sea, but I've been to the bottom of the ocean in a 
submarine. Maybe I can help you with your theory! What do 
you need help with?"
Einstein: "Actually, I've been trying to figure out how to travel 
through time. Do you think you could help me with that?"
Cartoon Character: "Sure! I can use my underwater bubble to 
travel through the water. Maybe we can use that to travel 
through time too! Let's give it a try!"
Einstein: "I'm not sure that's the right way to go about it, but 
I'm willing to try anything at this point. Let's give it a shot!”

This is a cartoon character in photo A.

This is a man in photo B.

Who is the cartoon character in photo 
A, and who is the man in photo B?

Imagine what kind of conversation will the cartoon character 
and the man have when they sit in the same room? Please 
give a possible dialogue script.

The cartoon character in photo A is SpongeBob 
SquarePants, and the man in photo B is Albert Einstein.

Can you generate a cartoon image of the man in 
the style of the character?

Figure 10: Qualitative examples of multi-turn in-context image and text generation by SEED-LLaMA
given multimodal instructions.
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the flower in the
second image.
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Input Prompt Input PromptGeneration Generation

Replace the apple
with vegetables

Make the cat on
green grass

Color flowers white Add a thunderstorm

Input Prompt Input PromptGeneration Generation

Make it in Hong Kong Insert a train

Mount Rainier
reflected in the lake.

A girl in front of
Mount Rainier.

A cartoon image
of Mount Rainier.

Mount Rainier
under moonlight.

A wooden house
beside Mount Rainier.

Input Prompt

Figure 11: Qualitative examples of compositional image generation by SEED-LLaMA.
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Renaissance-style portrait 
of an astronaut in space, 
detailed starry background, 
reflective helmet.

Food photo of a gourmet 
meal, with a shallow depth 
of field, elegant plating, and 
soft lighting.

Aerial photography of a 
winding river through 
autumn forests, with vibrant 
red and orange foliage.

Cyberpunk cityscape 
with towering 
skyscrapers, neon 
signs, and flying cars.

A black shepherd 
wearing a red beret.

A dog wearing a bike.A cybernatic locomotive 
on rainy day.

A cat reading a book 
in the forest.

A captivating scene 
of a seed cracking 
open and sprouting 
under sunlight.

A cozy and inviting 
library filled with books 
and reading nooks.

a couple on a beach, walking 
hand-in-hand, with the sun 
setting over the horizon and 
waves crashing at their feet.

Portrait of young nordic girl, 
age 25, freckled skin, neck 
tatoo, blue eyes 35mm lens, 
photography, ultra details.

A cybernetic soldier, enhanced 
with advanced weapons 
systems and tactical analysis 
software, on a mission.

A soaring hot air 
balloon floating over a 
scenic landscape.

Kingfisher bird, by 
Akihito Yoshida, Cool 
Color Palette.

Two flamingos are in 
love in a sunset, concept 
art. high quality.

Figure 12: Qualitative examples of text-to-image generation by SEED-LLaMA.
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This is the second image.

Tell me the difference between these two species 
in detail.

Horses and zebras are both members of the 
Equidae family, but they belong to different species. 
Horses are domesticated animals that have been 
bred for thousands of years for their strength, speed, 
and intelligence. Zebras, on the other hand, are wild 
animals that are known for their distinctive black 
and white stripes, which help them blend in with 
their surroundings and avoid predators. Zebras are 
also social animals that live in groups called herds.

What's the difference?

This is the first image.

The first image shows a white horse running in a 
field while the second image shows a zebra standing 
in a grassy field.

What is unusual about this image?

What should I do if I see this sign?

The man in the painting is Napoleon Bonaparte. 
He was a French military and political leader who 
rose to prominence during the French Revolution. 
He's known for his military prowess and his 
conquests of much of Europe. In this painting, he's 
depicted riding a horse, which is a symbol of his 
military power and conquests. The painting captures 
a moment in history when Napoleon was at the 
height of his power.

Who is he?

This image depicts a painting of a man riding a 
horse. The man is wearing a red jacket and a white 
hat, and he's holding a sword. The horse is brown 
and white, and it's jumping over a hill. There's also a 
mountain in the background. The painting is quite 
detailed and captures the movement of the horse 
and the rider. The colors are vibrant, with the red 
jacket and white hat of the rider standing out 
against the brown and white of the horse and the 
green of the mountain. The painting is quite large, 
taking up a significant portion of the image. Overall, 
it's a dynamic and action-packed scene.

What's in this picture?

The unusual aspect of this image is that it
features a dog in a space suit, which is not a 
common sight.

If you see this sign, you should not pass. It's 
important to follow traffic signs and signals to ensure 
your safety and the safety of others on the road.

Which ball is heavier?

SpongeBob SquarePants, Patrick Star.

Tell me the characters in the image.

Where is it in the image?

The red ball.

The Arc de Triomphe is in the middle of the image.

Figure 13: Qualitative examples of multimodal comprehension by SEED-LLaMA.
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Tell me a story based on 
these 3 images in detail.

This is the third image.

This is the first image. This is the second image.What's the name of those characters?

Tom and Jerry.

Explain in detail What they are doing.

The table is made of wood.

Once upon a time, in a far-off galaxy, there was a 
lonely dog named Max. Max had always 
dreamed of being an astronaut and exploring 
the cosmos. One day, his wish came true when 
he was chosen to be the first dog in space. As he 
soared through the stars, he marveled at the 
beauty of the universe. But when he returned to 
Earth, he realized that he missed the company 
of his fellow canines. So, he set out on a journey 
to find other dogs who shared his passion for 
space exploration. Along the way, he met a 
friendly alien who offered to take him on a trip 
to the moon. Max eagerly accepted the offer 
and soon found himself standing on the moon's 
surface, staring up at the vast expanse of space. 
From that moment on, Max knew that he had 
found his true calling and would spend the rest 
of his life exploring the wonders of the universe.

The Eiffel Tower is made of metal.

Albert Einstein was a theoretical physicist who is 
widely regarded as one of the most influential 
scientists of the 20th century. He is best known 
for his theory of relativity and the famous 
equation E=mc². He was awarded the Nobel Prize 
in Physics in 1921.

What are his important achievements in life?

Albert Einstein.

What's in this picture?

In the image, Tom and Jerry are engaged in a 
comical chase scene. Tom, the cat, is holding a 
knife and appears to be chasing Jerry, the mouse, 
who is trying to evade him. The knife in Tom's 
hand adds an element of danger and tension to 
the scene, suggesting that the chase is not just a 
playful game but potentially life-threatening for 
Jerry. The background of the image shows a 
living room, which adds a domestic setting to 
the chase. Overall, the image captures a 
moment of suspense and action in the ongoing 
rivalry between Tom and Jerry.

Figure 14: Qualitative examples of multimodal comprehension by SEED-LLaMA.
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There are two people in the video - a man and a woman.

How many people are in the video?

Can you describe this video in details?

Sure, in this video, we see a man riding a bike down a street. He is wearing a helmet and a backpack, 
and he seems to be enjoying the ride. As he rides down the street, he passes by several cars parked on 
the side of the road. The man's bike looks sturdy and well-maintained, and he seems to be riding it with 
ease. The street he is riding on appears to be relatively quiet, with only a few pedestrians visible in the 
background. Overall, this video captures a peaceful and enjoyable moment of a man riding his bike down 
a quiet street.

What are they doing?

They are drinking tea and talking to each other.

where are they?

The man and woman are sitting on a train and looking out the window.

One unusual aspect of the video is that the man is riding a small train on a track in the middle of a 
forest, which is not a common sight. Additionally, the train appears to be old and rusty, which adds to 
the unusual nature of the video.

What is unusual about this video?

Figure 15: Qualitative examples of multimodal comprehension by SEED-LLaMA.
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Table 8: Summary of the evaluation benchmarks.

Dataset Task Split Metric
Im

ag
e

COCO(Lin et al., 2014) Text-to-Image Generation Karpathy test CLIP score (↑)
Flickr30K (Young et al., 2014) Text-to-Image Generation test CLIP score (↑)
COCO Caption (Chen et al., 2015) Scene Description test CIDEr (↑)
VQAv2 (Goyal et al., 2017) Scene Understanding QA test-dev VQA acc. (↑)
OKVQA (Marino et al., 2019) External Knowledge QA val VQA acc. (↑)
VizWiz (Gurari et al., 2018) Scene Understanding QA test-dev VQA acc. (↑)
SEED-Bench (Li et al., 2023b) Comprehensive QA dim 1-9 MCQ acc. (↑)

V
id

eo

MSVDQA (Chen & Dolan, 2011) Event Understanding QA test Top-1 acc. (↑)
MSRVTTQA (Xu et al., 2016) Event Understanding QA test Top-1 acc. (↑)
NExTQA (Yang et al., 2021) Temporal/Causal QA test WUPS (↑)

Table 9: Summary of the prompting template for evaluating SEED-LLaMA.

Model Type Template

SEED-LLaMA
8B

Image Captioning {image}

Image QA
{image}USER: {question} Please provide an accurate answer
consisting of only one word or phrase.\nASSISTANT:

Video QA
{video}USER: {question} Please provide an accurate answer
consisting of only one word or phrase.\nASSISTANT:

SEED-LLaMA
14B

Image Caption {image}

Image QA
{image} Please provide an accurate answer consisting of only
one word or phrase based on the image.\n
Question:{question} \n Answer:

Video QA
{video} Please provide an accurate answer consisting of only
one word or phrase based on the video.\n
Question:{question}\n Answer:

SEED-LLaMA-I
8B & 14B

Image Caption
USER: {image}Please provide an accurate and con-
cise description of the given image.\nASSISTANT:

Image QA
USER: {image}{question} Please provide an accurate answer
consisting of only one word or phrase.\nASSISTANT:

Video QA
USER: {video}{question} Please provide an accurate answer
consisting of only one word or phrase.\nASSISTANT:

Table 10: Evaluation of Image Generation.
Model COCO Flickr30K

Image-to-image
unCLIP (Ramesh et al., 2022) SD 79.30 79.55
SEEDtext 68.23 65.22
SEED 77.35 76.52
Text-to-image
GILL (Koh et al., 2023b) 67.45 65.16
Emu (Sun et al., 2023b) 66.46 64.82
SEED-LLaMA 69.07 65.54
SEED-LLaMA-I 70.68 66.55
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