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Abstract

The growing literature on “benign overfitting” in overparameterized models has
been mostly restricted to regression or binary classification settings; however, most
success stories of modern machine learning have been recorded in multiclass set-
tings. Motivated by this discrepancy, we study benign overfitting in multiclass
linear classification. Specifically, we consider the following popular training algo-
rithms on separable data: (i) empirical risk minimization (ERM) with cross-entropy
loss, which converges to the multiclass support vector machine (SVM) solution;
(ii) ERM with least-squares loss, which converges to the min-norm interpolating
(MNI) solution; and, (iii) the one-vs-all SVM classifier. Our first key finding is
that under a simple sufficient condition, all three algorithms lead to classifiers that
interpolate the training data and have equal accuracy. When the data is generated
from Gaussian mixtures or a multinomial logistic model, this condition holds under
high enough effective overparameterization. Second, we derive novel error bounds
on the accuracy of the MNI classifier, thereby showing that all three training algo-
rithms lead to benign overfitting under sufficient overparameterization. Ultimately,
our analysis shows that good generalization is possible for SVM solutions beyond
the realm in which typical margin-based bounds apply.

Organization of the supplementary material

The supplementary material (SM) is organized as follows.
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1. Section A: We present additional numerical experiments validating our theoretical findings
throughout the paper. For completeness, we also present error bars computed over Monte
Carlo realizations.

2. Section B: We provide a detailed proof of our key finding in Theorem 1.

3. Section C: We prove Theorem 2 on multiclass SVM interpolation for GMM data.

4. Section D: We prove Theorems 3 and 4 on multiclass SVM interpolation for MLM data.

5. Section E: We prove Theorems 3 and 4 on classification error of the MNI classifier for
GMM and MLM data.

6. Section F: Here we derive recursive formulas for computing quadratic forms, which are
required for the proofs in Sections C and E for GMM data.

7. Section G: We derive conditions under which the OvA-classifier interpolates the data for
both GMM and MLM data. Thus, all three classifiers the (i) MNI, (ii) multiclass-SVM, and
(iii) OvA-SVM lead to interpolation.

To ease readability and accessibility, we also opted to keep the main manuscript. The SM starts at
page 18.

1 Introduction

Modern deep neural networks are overparameterized with respect to the amount of training data
and achieve zero training error, yet generalize well on test data. Recent analysis has shown that
fitting of noise in regression tasks can in fact be relatively benign for sufficiently high-dimensional
linear models [BLLT20, BHX20, HMRT19, MVSS20, KLS20]. However, these analyses do not
directly extend to classification, which requires separate treatment. In fact, very recent progress on
sharp analysis of interpolating binary classifiers [MNS+20, CL21, WT21, CGB21] revealed high-
dimensional regimes in which binary classification generalizes well, but the corresponding regression
task does not work and/or the success cannot be predicted by classical margin-based bounds.

In an important separate development, these same high-dimensional regimes admit an equivalence
of loss functions used at training time. The support vector machine (SVM), which arises from
minimizing the logistic loss using gradient descent [SHN+18, JT19], was recently shown to sat-
isfy a high-probability equivalence to interpolation, which arises from minimizing the squared
loss [MNS+20, HMX21]. This equivalence suggests that interpolation is ubiquitous in very overpar-
maeterized settings, and can arise naturally as a consequence of the optimization procedure even
when this is not explicitly encoded or intended. Moreover, this equivalence to interpolation and
corresponding analysis implies that the SVM can generalize even in regimes where classical learning
theory bounds are not predictive. In the logistic model case [MNS+20] and Gaussian binary mixture
model case [CL21, WT21, CGB21], it is shown that good generalization of the SVM is possible
beyond the realm in which classical margin-based bounds apply. These analyses lend theoretical
grounding to the surprising hypothesis that squared loss can be equivalent to, or possibly even
superior, to the cross-entropy loss for classification tasks. This hypothesis was supported empirically
on kernel machines in Ryan Rifkin’s doctoral dissertation work [Rif02, RK04], and more recently in
overparameterized neural networks [HB20, PL20].

These compelling perspectives have thus far been limited to regression and binary classification
settings. In contrast, most success stories and surprising new phenomena of modern machine
learning have been recorded in multiclass classification settings, which appear naturally in a host of
applications that demand the ability to automatically distinguish between large numbers of different
classes; for example, the popular ImageNet dataset [RDS+15] contains on the order of 1000 classes.
Whether a) good generalization beyond effectively low-dimensional regimes where margin-based
bounds are predictive is possible, and b) equivalence of squared loss and cross-entropy loss holds in
multiclass settings remained open problems.

This paper makes significant progress towards a complete understanding of the optimization and gener-
alization properties of high-dimensional linear multiclass classification, both for unconditional Gaus-
sian covariates (where labels are generated via a multinomial logistic model), and high-dimensional
Gaussian mixture models. Our contributions are listed in more detail below.
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1.1 Our Contributions

Figure 1: Contributions and organization.

• We establish a deterministic sufficient condi-
tion under which the multiclass SVM solution
has a very simple and symmetric structure: it is
identical to the solution of the One-vs-All (OvA)
SVM classifier that uses the one-hot encoded la-
bels. Moreover, the constraints at both solutions
are active. Geometrically, this means that all
data points are support vectors.
• This implies a surprising equivalence be-
tween traditionally different formulations of
multiclass SVM, which in turn are equivalent
to the minimum-norm interpolating (MNI) clas-
sifier on one-hot label vectors. Thus, the out-
comes of training with cross-entropy (CE) loss
and squared loss are identical.
• Next, for data following a Gaussian-mixtures model (GMM) or a Multinomial logistic model
(MLM), we show that the above sufficient condition is satisfied with high-probability under sufficient
effective overparameterization depending on the number of classes, and on quantities related to the
data covariance. Our numerical results show excellent agreement with our theoretical findings.
• Subsequently, we provide novel bounds on the error of the MNI classifier for data generated
either from the GMM or the MLM and characterize overparmeterization conditions under which
benign overfitting occurs. A direct outcome of our results is that benign overfitting occurs under these
conditions regardless of whether the cross-entropy loss or squared loss is used during training.

Figure 1 describes our contributions and their implications through a flowchart. To the best of
our knowledge, these are the first results characterizing a) equivalence of loss functions, and b)
generalization of interpolating solutions in the multiclass setting. The multiclass setting poses several
challenges over and above the recently studied binary case. When presenting our results in later
sections, we discuss in detail how our analysis circumvents these challenges.

1.2 Related Work

Multiclass classification and the impact of training loss functions. There is a classical body of
work on algorithms for multiclass classification, e.g., [WW98, BB99, DB95, CS02, LLW04] and
several empirical studies of their comparative performance [RK04, F0̈2, ASS01] (also see [HYS16,
GCOZ17, KS18, BEH20, DCO20, HB20, PL20] for recent such studies in the context of deep nets).
Many of these (e.g. [RK04, HB20, BEH20]) have found that least-squares minimization yields
competitive test classification performance to cross-entropy minimization. Our proof of equivalence
of the SVM and MNI solutions under sufficient overparameterization provides theoretical support
for this line of work. This is a consequence of the implicit bias of gradient descent run on the CE
and squared losses leading to the multiclass SVM [SHN+18, JT19] and MNI [EHN96] respectively.
Numerous classical works investigated consistency [Zha04, LLW04, TB07, PGS13, PS16] and finite-
sample behavior, e.g., [KP02, CKMY16, LDBK15, Mau16, LDZK19] of multiclass classification
algorithms in the underparameterized regime. In contrast, our focus is on the highly overparameterized
regime, where the typical uniform convergence techniques cannot apply.

Binary classification error analyses in overparameterized regime. The recent wave of analyses
of the minimum-`2-norm interpolator (MNI) in high-dimensional linear regression (an incomplete
list is [BLLT20, BHX20, HMRT19, MVSS20, KLS20]) prompted researchers to consider to what
extent the phenomena of benign overfitting and double descent [BHMM19, GJS+20] can be proven
to occur in classification tasks. Even the binary classification setting turns out to be significantly
more challenging to study owing to the discontinuity of the 0− 1 test loss function. Sharp asymptotic
formulas for the generalization error of binary classification algorithms in the linear high-dimensional
regime have been derived in several recent works [Hua17, SC19, MLC19, SAH19, TPT20, TPT21,
DKT21, MRSY19, KA21, LS20, SAH20, AKLZ20, Lol20, DL20]. These formulas are solutions
to complicated nonlinear systems of equations that typically do not admit closed-form expressions.
A separate line of work provides non-asymptotic error bounds for both the MNI classifier and the
SVM classifier [CL21, MNS+20, WT21, CGB21]; in particular, [MNS+20] analyzed the SVM
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in a Gaussian covariates model by explicitly connecting its solution to the MNI solution. Subse-
quently, [WT21] also took this route to analyze the SVM and MNI in mixture models, which turn
out to be more technically involved. Even more recently, [CGB21] provided extensions of the result
by [WT21] to sub-Gaussian mixtures. While these non-asymptotic analyses are only sharp in their
dependences on n and p, they provide closed-form generalization expressions in terms of easily
interpretable summary statistics. Interestingly, these results imply good generalization of the SVM
beyond the regime in which margin-based bounds are predictive. Specifically, [MNS+20] identifies
a separating regime for Gaussian covariates in which corresponding regression tasks would not
generalize. In the Gaussian mixture model, margin-based bounds [SFBL98, BM03] (as well as
corresponding recently derived mistake bounds on interpolating classifiers [LR21]) would require the
intrinsic signal-to-noise-ratio (SNR) to scale at least as ω(p1/2) for good generalization; however,
the analyses of [CL21, WT21, CGB21] show that good generalization is possible for significantly
lower SNR scaling as ω(p1/4) The above error analyses are specialized to the binary case, where
closed-form error expressions are easy to derive [MNS+20]. The only related work applicable to
multiclass settings is [TOS20], which also highlights the numerous challenges of obtaining a sharp
error analysis in multiclass settings. Specifically, [TOS20] derived sharp generalization formulas for
multiclass least-squares in underparameterized settings; extensions to the overparameterized regime
and other losses beyond least-squares remained wide open. Finally, [KT21] recently derived sharp
phase-transition thresholds for the feasibility of OvA-SVM on multiclass Gaussian mixture data
in the linear high-dimensional regime. However, their result does not cover the more challenging
multiclass-SVM that we investigate here.

Other SVM analyses. The number of support vectors in binary SVM has been characterized in low-
dimensional separable and non-separable settings [DOS99, BG01, MO05] and scenarios have been
identified in which there is vanishing fraction of support vectors, as this implies good generalization1

via PAC-Bayes sample compression bounds [Vap13]. In the highly overparameterized regime that
we consider, perhaps surprisingly, the opposite behavior occurs: all training points become support
vectors with high probability [DOS99, BG01, MO05, MNS+20, HMX21]. In particular, [HMX21]
provided sharp non-asymptotic sufficient conditions for this phenomenon for both isotropic and
anisotropic settings. The techniques in [MNS+20, HMX21] are highly specialized to the binary
SVM and its dual, where a simple complementary slackness condition directly implies the property
of interpolation. In contrast, the complementary slackness condition for the case of multiclass SVM
does not directly imply interpolation; in fact, the operational meaning of “all training points becoming
support vectors" is unclear in the multiclass SVM. Our proof of deterministic equivalence goes
beyond the complementary slackness condition and uncovers a surprising symmetric structure2 by
showing equivalence of multiclass SVM to a symmetric OvA classifier.

Notation For a vector v ∈ Rp , let ‖v‖2 =
√∑p

i=1 v
2
i , ‖v‖1 =

∑p
i=1 |vi|, ‖v‖∞ = maxi{|vi|}.

v > 0 is interpreted elementwise. 1 / 0 denote the all-ones / all-zeros vectors and ei denotes the
i-th standard basis vector. For a matrix M, ‖M‖2 denotes its 2 → 2 operator norm and ‖M‖F
denotes the Frobenius norm. � denotes the Hadamard product. [n] denotes the set {1, 2, ..., n}.
We also use standard “Big O" notations Θ(·), ω(·), e.g., see [CLRS09, Chapter 3]. Finally, we
write N (µ,Σ) for the (multivariate) Gaussian distribution of mean µ and covariance matrix Σ, and,
Q(x) = P(Z > x), Z ∼ N (0, 1) for the Q-function of a standard normal. Throughout, constants
refer to numbers that do not depend on the problem dimensions n or p.

2 Problem setting

We consider the multiclass classification problem with k classes. Let x ∈ Rp denote the feature
vector and y ∈ [k] represent the class label associated with one of the k classes. We assume that
the training data has n feature/label pairs {xi, yi}ni=1. We focus on the overparameterized regime,
i.e., p > Cn, and will frequently consider p� n. For convenience, we express the labels using the
one-hot coding vector yi ∈ Rk, where only the yi-th entry of yi is 1 and all other entries are zero,

1In this context, the fact that [MNS+20, WT21] provide good generalization bounds in the regime where
support vectors proliferate is particularly surprising. In conventional wisdom, a proliferation of support vectors
was associated with overfitting but this turns out to not be the case here.

2This symmetric structure is somewhat reminiscent of the recently observed neural collapse phenomenon in
deep neural networks [PHD20], although the details of the obtained solutions are quite different.
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i.e., yi = eyi . With this notation, the feature and label matrices are given in compact form as follows:
X = [x1 x2 · · · xn] ∈ Rp×n and Y = [y1 y2 · · · yn] = [v1 v2 · · ·vk]

T ∈ Rk×n,
where we have defined vc ∈ Rn, c ∈ [k] to denote the c-th row of the matrix Y.

2.1 Data models

We assume that the data pairs {xi, yi}ni=1 are generated IID. We will consider two models for the
distribution of (x, y). For both models, we define the mean vectors {µj}kj=1 ∈ Rp, and the mean
matrix is given by M := [µ1 µ2 · · · µk] ∈ Rp×k.
Gaussian Mixture Model (GMM). In this model, the mean vector µi represents the conditional
mean vector for the i-th class. Specifically, each observation (xi, yi) belongs to to class c ∈ [k] with
probability πc and conditional on the label yi, xi follows a multivariate Gaussian distribution. In
summary, we have

P(y = c) = πc and x = µy + q, q ∼ N (0,Σ). (1)

In this work, we focus on the isotropic case Σ = Ip. Our analysis can likely be extended to more
general settings, but we leave this to future work.

Multinomial Logit Model (MLM). In this model, the feature vector x ∈ Rp follows N (0,Σ), and
the conditional density of the class label y is given by the soft-max function. Specifically, we have

x ∼ N (0,Σ) and P(y = c|x) = exp(µTc x)
/∑
j∈[k]

exp(µTj x). (2)

For this model, we analyze both the isotropic and anisotropic cases.

2.2 Data separability

We consider linear classifiers parameterized by W = [w1 w2 · · · wk]
T ∈ Rk×p. Given input

feature vector x, the classifier is a function that maps x into an output of k via3 x 7→ Wx ∈ Rk.
We will operate in a regime where the training data are linearly separable. In multiclass settings,
there exist multiple notions of separability. Here, we focus on (i) multiclass/k-class separability (ii)
one-vs-all (OvA) separability, and, recall their definitions below.

Definition 1 (multiclass and OvA separability). The dataset {xi, yi}i∈[n] is multiclass linearly sepa-
rable when ∃W = [w1,w2, . . . ,wk]T ∈ Rk×p : (wyi −wc)

Txi ≥ 1, ∀c 6= yi, c ∈ [k], and ∀i ∈
[n]. The dataset is one-vs-all (OvA) separable when ∃W = [w1,w2, . . . ,wk]T ∈ Rk×p : wT

c xi ≥ 1
if yi = c and wT

c xi ≤ −1 if yi 6= c , ∀c ∈ [k], and ∀i ∈ [n].

In the overparameterized regime p > n with Gaussian data, we have rank(X) = n almost surely,
which implies OvA separability. It turns out that OvA separability implies multiclass separability, but
not vice versa (see [BM94] for a counterexample).

2.3 Classification error

Consider a linear classifier Ŵ and a fresh sample (x, y) generated following the same distri-
bution as the training data. As is standard, we predict ŷ by a “winner takes it all strategy",
i.e., ŷ = arg maxj∈[k] ŵ

T
j x. Then, the classification error conditioned on the true label be-

ing c, which we refer to as the class-wise classification error, is defined as Pe|c := P(ŷ 6=
y|y = c) = P(ŵT

c x ≤ maxj 6=c ŵT
j x). In turn, the total classification error is defined as

Pe := P(ŷ 6= y) = P(arg maxj∈[k] ŵ
T
j x 6= y) = P(ŵT

y x ≤ maxj 6=y ŵT
j x).

2.4 Classification algorithms

Next, we review several different training strategies for which we characterize the total/class-wise
classification error in this paper.

3For simplicity, we ignore the bias term throughout.
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Multiclass SVM. onsider training W by minimizing the popular cross-entropy (CE) loss L(W) :=

− log
(
ew

T
yi

xi
/∑

c∈[k] e
wT

c xi
)

with the gradient descent algorithm (with constant step size η). In
the separable regime that we consider, the CE loss L(W) can be driven to zero. Moreover,
[SHN+18, Thm. 7] showed that the normalized iterates {Wt}t≥1 converge as limt→∞

∥∥Wt/ log t−
WSVM

∥∥
F

= 0, 4 where WSVM is the solution of the multiclass SVM [WW98] given by

WSVM := arg min
W
‖W‖F sub. to (wyi −wc)

Txi ≥ 1, ∀i ∈ [n], c ∈ [k] s.t. c 6= yi. (3)

One-vs-all SVM. In contrast to Eqn. (3) that optimizes the hyperplanes {wc}c∈[k] jointly, the one-
vs-all (OvA)-SVM classifier solves k separable optimization problems maximizing the margin of
each class with respect to all the rest. Concretely, the OvA-SVM solves for all c ∈ [k]:

wOvA,c := arg min
w
‖w‖2 sub. to wTxi ≥ 1, if yi = c; wTxi ≤ −1 if yi 6= c, ∀i ∈ [n]. (4)

In general, the solutions to Equations (3) and (4) are different. While the OvA-SVM does not have
an obvious connection to any training loss function, its relevance will become clear in Section 3.
Perhaps surprisingly, we will prove that in the highly overparameterized regime the multiclass SVM
solution is identical to a slight variant of (4).

Min-norm interpolating (MNI) classifier. An alternative to the CE loss is the square loss L(W) :=
1
2n‖Y −WX‖22 = 1

2n

∑n
i=1 ‖Wxi − yi‖22. While the square-loss appears to be more tailored to

regression, it in fact has competitive classification accuracy to the CE loss in practice [Rif02, HB20,
PL20]. Since rank(X) = n almost surely, the data can be linearly interpolated, i.e. the square-loss
can be made zero. Then, it is well-known [EHN96] that gradient descent with sufficiently small step
size and appropriate initialization converges to the minimum-norm -interpolating (MNI) solution:

WMNI := arg min
W
‖W‖F , sub. to XTwc = vc,∀c ∈ [k]. (5)

Since XTX is invertible, the solution above is given in closed form as WT
MNI = X(XTX)−1YT .

From here on, we refer to (5) as the MNI classifier.

3 Proliferation of support vectors

In this section, we show equivalence of the solutions of the three classifiers defined above.

3.1 A key deterministic condition

We first establish a key deterministic property of SVM that holds for generic multiclass datasets
(X,Y) (not necessarily generated by either the GMM or MLM), as long as rank(X) = n. Specif-
ically, Theorem 1 below derives a sufficient condition (cf. (8)) under which the multiclass SVM
solution has a surprisingly simple structure. First, the constraints are all active at the optima (cf. (9)).
Second, and perhaps more interestingly, the equality of the constraints is satisfied in a very symmetric
way such that (cf. (10)) for all i ∈ [n], c ∈ [k], we have

ŵT
c xi = zci :=

{
(k − 1)/k , c = yi
−1/k , c 6= yi

. (6)

Theorem 1. For a multiclass separable dataset with feature matrix X = [x1,x2, . . . ,xn] ∈ Rp×n
and label matrix Y = [v1,v2, . . . ,vk]T ∈ Rk×n, let WSVM = [ŵ1, ŵ2, . . . , ŵk]T be the multiclass
SVM solution in (3). For each class c ∈ [k] define vectors zc ∈ Rn such that

zc = vc − (1/k)1n, c ∈ [k]. (7)

Assume that the Gram matrix XTX is invertible and that the following condition holds

zc � (XTX)−1zc > 0, ∀c ∈ [k]. (8)

4Note that the scaling factor log t here does not depend on the class label; hence, in the limit of GD iterations,
the solution Wt decides the same label as multiclass SVM for any test sample.
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Then, the SVM solution WSVM is such that all the constraints in (3) are active. That is,
(ŵyi − ŵc)

Txi = 1, ∀c 6= yi, c ∈ [k], and ∀i ∈ [n]. (9)
Moreover, it holds that

XT ŵc = zc, ∀c ∈ [k]. (10)

For k = 2 classes, it can be checked that Eqn. (8) reduces to the condition in Eqn.(22) of [MNS+20]
for the binary SVM. Compared to the binary setting, the conclusion for multiclass is richer: provided
that Eqn. (8) holds, not only do we show that all data points are support vectors, but also, that they
satisfy a set of symmetric OvA-type constraints. The proof of Eqn. (10) is particularly subtle and
involved: unlike in the binary case, it does not follow directly from a complementary slackness
condition on the dual of the multiclass SVM. We provide a short proof sketch in Section 3.1.1 and
defer details to the supplementary material (SM).

We make the following additional remarks on the interpretation of Eqn. (10). First, our proof shows a
somewhat stronger conclusion: when inequality (8) holds, the multiclass SVM solutions ŵc, c ∈ [k]
are same as the solutions to the following symmetric OvA-type classifier (cf. Eqn. (4)):

min
wc

1

2
‖wc‖22 sub. to xTi wc

{
≥ (k − 1)/k , yi = c,

≤ −1/k , yi 6= c,
∀i ∈ [n], (11)

for all c ∈ [k]. The OvA-type classifier above can be interpreted as a binary cost-sensitive SVM
classifier [IMSV19] that enforces the margin corresponding to all other classes to be (k − 1) times
smaller compared to the margin for class c .

The second remark regarding (10) is crucial for the rest of this paper. Precisely, (10) shows that
when (8) holds, then the multiclass SVM solution WSVM has the same classification error as that of
the minimum-norm interpolating solution. This conclusion, stated as a corollary below, drives our
classification error analysis in Section 4.
Corollary 1 (SVM=MNI). Under the same assumptions as in Theorem 1, and provided that the
inequality in Eqn. (8) holds, it holds that Pe|c(WSVM) = Pe|c(WMNI) for all c ∈ [k]. Thus, the total
classification errors of both solutions are equal: Pe(WSVM) = Pe(WMNI).

Proof sketch. First, it follows from Eqn. (10) that ŵc, c ∈ [k] coincides with the unique solution
of a MNI classifier on shifted labels, given by w̃c = w̃c := X(XTX)−1zc. Second, using the
affine relation between zc and vc in Eqn. (7), we get Pe|c(WMNI) = Pe|c(W̃MNI), where we denote
W̃MNI = [w̃1, . . . , w̃k]. This completes the proof of the corollary. More details given in the SM.

3.1.1 Proof sketch of Theorem 1

To prove Theorem 1, we constructed a new parameterization of the dual of the multiclass SVM (given
in Eqn. (14)). Letting dual variables {λc,i} for every i ∈ [n], c ∈ [k] : c 6= yi corresponding to the
constraints on the primal form in (3), the standard form of the dual of multiclass SVM is written as

max
λc,i≥0

∑
i∈[n]

( ∑
c6=yi

λc,i
)
− 1

2

∑
c∈[k]

∥∥ ∑
i∈[n]:yi=c

( ∑
c′ 6=yi

λc′,i
)
xi −

∑
i∈[n]:yi 6=c

λc,ixi
∥∥2
2
. (12)

Let λ̂c,i be the maximizers in Eqn. (12). By complementary slackness, we have

λ̂c,i > 0 =⇒ (ŵyi − ŵc)
Txi = 1. (13)

Thus, to prove Eqn. (9), it will suffice showing that λ̂c,i > 0,∀i ∈ [n], c ∈ [k] : c 6= yi provided that
Eqn. (8) holds. The challenge is that it is hard to work directly with (12) because the variables λc,i
are coupled within the objective. Our key idea is to re-parameterize the dual objective in terms of
new variables βc,i and of coefficients involving the vectors zc we introduced in Eqn. (7). Deferring
the detailed derivations to the SM, we can show that (12) is equivalent to the following program:

max
βc∈Rn,c∈[k]

∑
c∈[k]

βTc zc −
1

2
‖Xβc‖22 (14)

sub. to βyi,i = −
∑
c6=yi

βc,i, ∀i ∈ [n] and βc � zc ≥ 0,∀c ∈ [k],
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where, for each c ∈ [k] we let βc = [βc,1, βc,2, . . . , βc,n] ∈ Rn. Moreover, the new dual variables
are related to the original ones in that

zc,iβc,i > 0 ⇐⇒ λc,i > 0, for all c ∈ [k] and i ∈ [n] : yi 6= c. (15)

The next step is to consider the unconstrained maximizer in (14), that is β̂c = (XTX)−1zc, ∀c ∈ [k],
and show that β̂c, c ∈ [k] is feasible in (14). Skipping the detailed argument here, by doing so,
we prove that β̂c, c ∈ [k] is in fact the unique optimal solution of (14). But now, realizing that
Eqn. (8) is equivalent to zc � β̂c > 0, we have found that β̂c, c ∈ [k] further satisfies the n strict
inequality constraints in (14). Thus, from Eqn. (15), the original dual variables {λc,i} are also all
strictly positive, which completes the proof of the first part of the theorem (Eqn. (9)).

Next, we outline the proof of Eqn. (10). We consider the OvA-classifier in (11). The proof has two
steps. First, using similar arguments to what was done above, we show that when Eqn. (8) holds,
then all the inequality constraints in (11) are active at the optimal. That is, the minimizers wsym-OvA,c
of (11) satisfy Eqn. (10). Second, to prove that Eqn. (10) is satisfied by the minimizers ŵc of the
multiclass SVM in Eqn. (3), we need to show that wsym-OvA,c = ŵc for all c ∈ [k]. We do this by
showing that, under Eqn. (8), the duals of (3) and (11) are equivalent. By strong duality, the optimal
costs of the primal problems are also the same. Then, because the objective is the same for the two
primals and because w∗c is feasible and (3) is strongly convex, we can conclude with the desired.

3.2 Connection to effective overparameterization

Theorem 1 establishes a deterministic condition that applies to any multiclass separable dataset as long
as the data matrix X is full-rank. In this subsection, we show that the inequality (8) occurs with high-
probability under both the GMM and MLM models for data, with sufficient overparameterization.

3.2.1 Gaussian mixture model

We focus on an equal-energy, equal-prior setting for ease of exposition. Our proofs extend rather
naturally to more general settings, but the results are more complicated to state and offer no new
insights for our purpose.
Assumption 1 (Equal energy/prior). The mean vectors have equal energy and the priors are equal,
i.e. we have ‖µ‖2 := ‖µc‖2 and πc = π = 1/k, for all c ∈ [k].

Theorem 2. Assume that the training set follows a multiclass GMM with Σ = Ip and Assumption 1,
and that the number of training samples n is large enough. There exist constants c1, c2, c3 > 1 and
C1, C2 > 1 such that inequality (8) holds with probability at least 1− c1

n − c2ke
− n

c3k2 , provided that

p > C1k
3n log(kn) + n− 1 and p > C2k

1.5n1.5‖µ‖2. (16)

Our theorem establishes a set of two conditions under which inequality (8) and the conclusions of
Theorem 1 hold, i.e. WSVM = WMNI. The first condition requires sufficient overparameterization
p = Ω(k3n log(kn)),while the second one requires that the signal strength is not too large. Intuitively,
we can understand these conditions as follows. Note that inequality (8) is satisfied provided that the
inverse Gram matrix (XTX)−1 is “close" to identity, or any other positive-definite diagonal matrix.
(This is the proof strategy that is also followed in [MNS+20] for the case of Gaussian features;
here, we show this for the more difficult mixture-of-Gaussians case.) Recall from Eqn. (1) that
X = MY + Q =

∑k
j=1 µjv

T
j + Q where Q is a p× n standard Gaussian matrix. Our theorem’s

first condition is sufficient for (QTQ)−1 to have the desired property; the major technical challenge is
that (XTX)−1 involves additional terms that intricately depend on the label matrix Y itself. Our key
technical contribution is showing that these extra terms do not drastically change the desired behavior,
provided that the norms of the mean vectors are well controlled. At a high-level we accomplish
this with a recursive argument as follows. Denote X0 = Q and Xi =

∑i
j=1 µjv

T
j + Q for i ∈ [k].

Then, at each stage i of the recursion, we show how to bound quadratic forms involving
(
XT
i Xi

)−1
using bounds established previously at stage i− 1 on quadratic forms involving

(
XT
i−1Xi−1

)−1
. A

critical property for the success of our proof strategy is the observation that the rows of Y are always
orthogonal, that is, vTi vj = 0, for i 6= j. The complete proof of the theorem is given in the SM.
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Figure 2: Fraction of support vectors satisfying Eqn. (10). (a) GMM: k = 4 and 7, (b) MLM:
k = 3, 4, 5, 6. In (a), "(4) 0.2" means 4 classes and ‖µ‖2/

√
p = 0.2. The curves nearly overlap when

plotted versus k1.5n1.5‖µ‖2/p as predicted by the second condition in Eqn. (16) of Theorem 2. In
(b), the curves overlap when plotted versus k2n log(

√
kn)/p as predicted by Thm. 4.

Next, we present numerical results that confirm our theoretical statement. We also discuss the
tightness of the two sufficient conditions in Eqn. (16). Throughout the paper, in all our figures, we
show averages over 100 Monte-Carlo realizations. In Fig. 2(a), we plot the fraction of training points
in the multiclass SVM satisfying Eqn. (10) as a function of training size n for k = 4 and k = 7
classes (please see SM for other experiment details and more results). To verify the second condition
in Eqn. (16), Fig. 2(a) also plots the same set of curves over a re-scaled axis k1.5n1.5‖µ‖2/p. The
6 curves corresponding to different settings nearly overlap in this new scaling, which suggests the
correct order of the corresponding condition. We conjecture that our second condition is tight up to
an extra

√
n factor which we believe is an artifact of the analysis. We also believe that the k3 factor

in the first condition can be relaxed slightly to k2 (as is done for the MLM case; see Fig. 2(b)).

3.2.2 Multinomial logistic model

We now consider the MLM data and the anisotropic setting. The eigendecomposition of the covariance
matrix is given by Σ =

∑p
i=1 λiuiu

T
i , where λ = [λ1, · · · , λp]. Following [HMX21], we also

define the effective dimensions d2 := ‖λ‖21/‖λ‖22 and d∞ := ‖λ‖1/‖λ‖∞. The following result
contains sufficient conditions for the SVM and MNI solutions to coincide.

Theorem 3. Assume n training samples following the MLM defined in (2). There exist constants
c and C1, C2 > 1 such that inequality (8) holds with probability at least (1 − c

n ) provided that
d∞ > C1k

2n log(kn) and d2 > C2(log(kn) + n). In fact, the only conditions we require on the
generated labels is conditional independence.

The sufficient conditions in Theorem 3 require that the spectral structure in the covariance matrix Σ
has sufficiently slowly decaying eigenvalues (corresponding to sufficiently large d2), and that it is
not too “spiky" (corresponding to sufficiently large d∞). For the special case of k = 2 classes, our
conditions reduce to those in [HMX21] for binary classification; in fact under the MLM model we
can leverage a more sophisticated deterministic equivalence to Eqn. (8) provided in that work. The
dominant dependence on k, given by k2, is a byproduct of the “unequal" margin in (6). Fig. 2(b)
empirically verifies the tightness of this factor. For the isotropic case Σ = Ip, we can prove a slightly
sharper result in logarithmic factors, which we state next.

Theorem 4. Assume n samples from the MLM with Σ = Ip. There exist a constant c > 1 such that
inequality (8) holds with probability at least (1− c

n ) provided that p > 10k2n log(
√
kn) + n− 1.

Our numerical results in Fig. 2(b) suggest that this sufficient condition is order-wise tight. Specifically,
in Fig. 2, we fixed p = 1000, varied n from 10 to 100 and the numbers of classes from k = 3 to k = 6.
We chose orthogonal mean vectors for each class with equal energy ‖µ‖22 = p. Fig. 2(b) shows the
fraction of training points in the multiclass SVM satisfying Eqn. (10) as a function of n. Clearly,
smaller k results in higher proportion of support vectors for the same number of measurements
n. To verify the condition in Theorem 4, Fig. 2(b) plots the same curves over a re-scaled axis
k2n log(

√
kn)/p (as suggested by Thm.4). These curves nearly overlap.
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4 Generalization bounds and benign overfitting

In this section, we derive non-asymptotic bounds on the error of the MNI classifier, and discuss
sufficient conditions for the multiclass SVM to satisfy benign overfitting. We focus on the case of
GMM data due to space constraints, and discuss corresponding results on MLM data in the SM.

4.1 Generalization bounds for the MNI classifier

We present classification error bounds under the additional assumption of orthogonal means for ease
of exposition — this can be relaxed with some additional work as described in the SM.

Assumption 2 (Orthogonal means). In addition to Assumption 1, assume that the means are orthog-
onal, that is µTc µj = 0, for all c 6= j ∈ [k].

Theorem 5. Let Assumption 2 and condition in Eqn.(16) hold. Further assume constants
C1, C2, C3 > 1 such that

(
1 − C1√

n
− C2n

p

)
‖µ‖2 > C3

√
k. Then, there exist additional constants

c1, c2, c3 and C4 > 1 such that Pe|c ≤ (k− 1) exp
(
− ‖µ‖22

(
(1− C1√

n
−C2n

p )‖µ‖2−C3

√
k
)2

C4(‖µ‖22+
kp
n )

)
with prob-

ability at least 1− c1
n − c2ke

− n
c3k2 , for every c ∈ [k]. Moreover, the same bound holds for the total

classification error Pe.

For large enough and finite n, our bound reduces to the results in [WT21, CGB21] when k = 2 (with
slightly different constant numbers). There are two major challenges in the proof, which is presented
in the SM. First, in contrast to the binary case the classification error does not simply reduce to
bounding correlations between vector means µc and their estimators ŵc. Second, just as in the proof
of Theorem 2, technical complications arise from the multiple mean components in X. We use a
variant of the recursion-based argument described in Section 3.2.1 to obtain our final bound.

4.2 Conditions for benign overfitting

In our results thus far, we have studied the classification error of the MNI classifier (Theorem 5),
and shown equivalence of the multiclass SVM and MNI solutions (Theorems 1, 2 and Corollary 1).
Combining these results, we now provide sufficient conditions under which the classification error of
the multiclass SVM solution (also of the MNI) approaches 0 as model size p increases.

Corollary 2. Let the same assumptions as in Theorem 5 hold. Then, for finite number of classes k
and finite sample size n, there exist positive constants ci’s and Ci’s > 1, such that the multiclass
SVM classifier WSVM in (3) satisfies the symmetric interpolation constraint in (10) and its total
classification error approaches 0 as p→∞ with probability at least 1− c1

n − c2ke
− n

c3k2 , provided
‖µ‖2 = Θ(pβ) for β ∈ (1/4, 1).
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Figure 3: The plot shows the classification error
and fraction of support vectors with k = 4. We
can see the classification errors approach 0 and
the fractions of support vectors approach 1 as p
gets larger. Different colors correspond to different
mean norms.

We compare our result with the binary case
result in [CL21, WT21, CGB21]. When k
and n are both finite, condition ‖µ‖2 =
Θ(pβ) for β ∈ (1/4, 1) is the same as the bi-
nary result. Note that, like in the binary case,
Corollary 2 applies beyond the regime in which
margin-bounds would be predictive of good gen-
eralization, which would require β ∈ (1/2, 1).

We now present numerical illustrations validat-
ing our results. We set the number of classes
k = 4, fix n = 40, and vary p = 50, . . . , 1200
to guarantee sufficient overparameterization.
We consider the case of orthogonal and equal-
norm mean vectors ‖µ‖2 = µ

√
p, with µ =

0.2, 0.3 and 0.4. In Fig. 3, we plot the classi-
fication error as a function of p for both MNI
estimates (solid lines) and multiclass SVM solutions (dashed lines). As we now expect, the solid and
dashed curves almost overlap. Further, as p increases, we see that the classification error decreases
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towards zero. Fig. 3 shows the fraction of support vectors satisfying (10) among all the constraints
in (3). We see that the classification error goes to zero very fast when µ is large, but the proportion
of support vectors increases at a slow rate. In contrast, when µ is small, the proportion of support
vectors increases fast, but the classification error decreases slowly.

5 Conclusion and future work

Our work provides, to the best of our knowledge, the first results characterizing a) equivalence of
loss functions, and b) generalization of interpolating solutions in multiclass settings. Like almost
all benign overfitting analysis, our techniques are tailored to high-dimensional linear models with
Gaussian or independent sub-Gaussian features. Extending these results to kernel machines and
other nonlinear settings is of substantial interest. It would also be interesting to explore the potential
connections of the symmetric structure shown in Theorem 1 with the recently discovered neural
collapse phenomenon on deep nets [PHD20].
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Figure 4: Fraction of support vectors satisfying Equation (10). The error bars show the standard
deviation. (a) k = 4 and 7, (b) k = 3 and 6. On the legend, "(4) 0.3" means 4 classes and
‖µ‖2/

√
p = 0.2. The curves nearly overlap when plotted versus k1.5n1.5‖µ‖2/p as predicted by the

second condition in Equation (16) of Theorem 2.
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Figure 5: The plot shows the fraction of support vectors under MLM with different number of classes.
The curves overlap when plotted versus k2n log(

√
kn)/p (Middle plot) as predicted by Theorem 4.

G.2 Multinomial logistic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

H One-vs-one SVM 54

A Experiment details and additional results

We first present numerical results that confirm our conclusions in Theorem 2. We also discuss the
tightness of the two sufficient conditions in Eqn.(16). Recall that throughout the paper, in all our
figures, we show averages over 100 Monte-Carlo realizations. In Fig. 4(a) (same as Figure 2(a),
repeated here for convenience), we solved the multiclass SVM and plotted the fraction of support
vectors satisfying Equation (10) as a function of training size n. The error bars show the standard
deviation at each point. We fixed dimension p = 1000 and class priors π = 1

k . To study how the
outcome depends on the number of classes k and mean strength ‖µ‖2, we experimented with two
values of class number k = 4, 7 and three equal-energy scenarios where ∀c ∈ [k] : ‖µc‖2 = ‖µ‖2 =
µ
√
p with µ = 0.2, 0.3, 0.4. Fig. 4(a)(Left) shows how the fraction of support vectors changes with

n. Observe that smaller µ results in larger proportion of support vectors for the same n. To verify
our theorem’s second condition in Equation (16), Fig. 4(a)(Right) plots the same set of curves over a
re-scaled axis k1.5n1.5‖µ‖2/p. The 6 curves corresponding to different settings nearly overlap in
this new scaling, which suggests the correct order of the corresponding condition. In Fig. 4(b), we
repeat the experiment in Fig. 4(a) for different values of k = 3 and k = 6. Again, these curves nearly
overlap when the x-axis is scaled according to the second condition in Equation (16).

We next confirm our results in Theorem 3 in Fig. 5. (The first two subplots are same as Figure
2(b), repeated here for convenience.) Here, we fixed p = 1000, varied n from 10 to 100 and the
numbers of classes from k = 3 to k = 6. We chose orthogonal mean vectors for each class with equal
energy ‖µ‖22 = p and solved multiclass SVM. Fig. 5(Left) shows the fraction of support vectors
satisfying Equation (10) as a function of n. Clearly, smaller k results in higher proportion of support
vectors with the desired property for the same number of measurements n. To verify the condition in
Theorem 4, Fig. 5(Middle) plots the same curves over a re-scaled axis k2n log(

√
kn)/p (as suggested

by Theorem 4). We additionally draw the same curves over kn log(
√
kn)/p in Fig. 4(Right). Note

the overlap of the curves in the middle plot.
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Figure 6: The plot shows the classification error and fraction of support vectors. (a) sets k = 4 and
(b) sets 6. The mean vector ‖µ‖2 = µ

√
p, where µ = 0.2, 0.3 and 0.4. We can see the classification

errors approach 0 and the fractions of support vectors approach 1 as p gets larger.

Finally, we present numerical illustrations validating our results in Corollary 2. In Fig. 6(a), we set
the number of classes k = 4. To guarantee sufficient overparameterization, we fix n = 40 and vary p
from 50 to 1200. In Fig. 6(a)(Left), we plot the classification error as a function of p for both MNI
estimates (solid lines) and multiclass SVM solutions (dashed lines). Different colors correspond to
different mean norms. The solid and dashed curves almost overlap as predicted from our results
in Section 3. We simulated 3 different settings for the mean matrices: each has orthogonal and
equal-norm mean vectors ‖µ‖2 = µ

√
p, with µ = 0.2, 0.3 and 0.4. We verify that as p increases, the

classification error decreases towards zero. Fig. 6(a)(Right) shows the fraction of support vectors
satisfying (10) among all the constraints in (3). The probabilities approach 1 as p gets larger. Also,
we see that the classification error goes to zero very fast when µ is large, but then the proportion of
support vectors increases at a slow rate. In contrast, when µ is small, the proportion of support vectors
increases fast, but the classification error decreases slowly. In Fig. 6(b), we use the same setting as in
Fig. 6(a) except for the number of classes k = 6 and n = 30. The rate at which classification error
goes to zero and the proportion of support vectors increase, both become slower as now there are
more classes.

B Proofs for Section 3.1

In this section, we provide the proofs of deterministic equivalence between the multiclass SVM, OvA
SVM and MNI classifiers. We begin with the proof of Theorem 1.

B.1 Detailed proof of Theorem 1

We start by writing the dual of the multiclass SVM, repeated here for convenience.

min
W

1

2
‖W‖2F sub. to (wyi −wc)

>xi ≥ 1, ∀i ∈ [n], c ∈ [k] : c 6= yi. (17)

We have dual variables {λc,i} for every i ∈ [n], c ∈ [k] : c 6= yi corresponding to the constraints on
the primal form above. Then, the dual of the multiclass SVM takes the form

max
λc,i≥0

∑
i∈[n]

( ∑
c∈[k]
c6=yi

λc,i

)
− 1

2

∑
c∈[k]

∥∥∥ ∑
i∈[n]:yi=c

( ∑
c′∈[k]
c′ 6=yi

λc′,i

)
xi −

∑
i∈[n]:yi 6=c

λc,ixi

∥∥∥2
2
. (18)

Let λ̂c,i, i ∈ [n], c ∈ [k] : c 6= yi be the maximizers in Equation (18). By complementary slackness,
we have

λ̂c,i > 0 =⇒ (ŵyi − ŵc)
>xi = 1. (19)

Thus, it will suffice to prove that λ̂c,i > 0,∀i ∈ [n], c ∈ [k] : c 6= yi provided that (8) holds.

Key alternative parameterization of the dual. It is challenging to work directly with Equation (18)
because the variables λc,i are coupled in the objective function. Our main idea is to re-parameterize
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the dual objective in terms of new variables {βc,i}, which we define as follows for all c ∈ [k] and
i ∈ [n]:

βc,i =

{∑
c′ 6=yi λc′,i , yi = c,

−λc,i , yi 6= c.
(20)

For each c ∈ [k], we denote βc = [βc,1, βc,2, . . . , βc,n] ∈ Rn. With these, we show that the dual
objective becomes∑

c∈[k]

β>c zc −
1

2

∑
c∈[k]

∥∥∥ ∑
i∈[n]

βc,ixi

∥∥∥2
2

=
∑
c∈[k]

β>c zc −
1

2
‖Xβc‖22. (21)

The equivalence of the quadratic term in β is straightforward. To show the equivalence of the linear
term in β, we denote A :=

∑
i∈[n]

(∑
c∈[k],c 6=yi λc,i

)
, and simultaneously get

A =
∑
i∈[n]

βyi,i and A =
∑
i∈[n]

∑
c 6=yi

(−βc,i),

by the definition of variables {βc,i} in Equation (20). Then, we have

A =
k − 1

k
·A+

1

k
·A =

k − 1

k

∑
i∈[n]

βyi,i +
1

k

∑
i∈[n]

∑
c 6=yi

(−βc,i)

(i)
=
∑
i∈[n]

zyi,iβyi,i +
∑
i∈[n]

∑
c6=yi

zc,iβc,i

=
∑
i∈[n]

∑
c∈[k]

zc,iβc,i =
∑
c∈[k]

β>c zc.

Above, inequality (i) follows from the definition of zc in Equation (7), rewritten coordinate-wise as:

zc,i =

{
k−1
k , yi = c,

− 1
k , yi 6= c.

Thus, we have shown that the objective of the dual can be rewritten in terms of variables {βc,i}. After
rewriting the constraints in terms of {βc,i}, the dual of the SVM (Equation (3)) can be equivalently
written as:

max
βc∈Rn,c∈[k]

∑
c∈[k]

β>c zc −
1

2
‖Xβc‖22 (22)

sub. to βyi,i = −
∑
c6=yi

βc,i, ∀i ∈ [n] and βc � zc ≥ 0,∀c ∈ [k].

Note that the first constraint above ensures consistency with the definition of βc in Eqn. (20). The
second constraint guarantees the non-negativity constraint of the original dual variables in (18),
because we have

βc,izc,i =
λc,i
k

for all i ∈ [n], c ∈ [k] : c 6= yi.

Consequently, we have

βc,izc,i ≥ 0 ⇐⇒ λc,i ≥ 0 (23)

for all c ∈ [k] and i ∈ [n] : yi 6= c. In fact, the equivalence above also holds with the in-
equalities replaced by strict inequalities. Also note that the second constraint for c = yi yields
k−1
k

∑
c′ 6=yi λc′,i ≥ 0, which is automatically satisfied when Equation (23) is satisfied. Thus, these

constraints are redundant.

Proof of Equation (9). Let β̂c, c ∈ [k] be the unconstrained maximizer in (22), i.e.

β̂c = (X>X)−1zc, ∀c ∈ [k].
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We will show that the unconstrained maximizer β̂c, c ∈ [k] is feasible in the constrained program in
(22). Thus, it is its unique optimal solution.

To prove this, we will first prove that β̂c, c ∈ [k] satisfies the n equality constraints in (22). For
convenience, let gi ∈ Rn, i ∈ [n] denote the i-th row of (X>X)−1. Then, for the i-th element β̂c,i
of β̂c, it holds that β̂c,i = g>i zc. Thus, for all i ∈ [n], we have

β̂yi,i +
∑
c6=yi

β̂c,i = g>i

(
zyi +

∑
c6=yi

zc

)
= g>i

( ∑
c∈[k]

zc

)
= 0,

where in the last equality we used the definition of zc in (7) and the fact that
∑
c∈[k] vc = 1n, since

each column of the label matrix Y has exactly one non-zero element equal to 1. Second, since
Equation (8) holds, β̂c, c ∈ [k] further satisfies the n strict inequality constraints in (22).

We have shown that the unconstrained maximizer is feasible in the constrained program (22). Thus,
we can conclude that it is also the solution to the latter. By Equation (23), we note that the original
dual variables {λc,i} are all strictly positive. This completes the proof of the first part of the theorem,
i.e. the proof of Equation (9).

Proof of Equation (10). To prove Equation (10), consider the following OvA-type classifier: for all
c ∈ [k],

min
wc

1

2
‖wc‖22 sub. to x>i wc

{
≥ k−1

k , yi = c,

≤ − 1
k , yi 6= c,

∀i ∈ [n]. (24)

To see the connection with Equation (10), note the condition for the constraints in (24) to be active
is exactly Equation (10). Thus, it suffices to prove that the constraints of (24) are active under the
theorem’s assumptions. We work again with the dual of (24):

max
νc∈Rk

− 1

2
‖Xνc‖22 + z>c νc sub. to zc � νc ≥ 0. (25)

Again by complementary slackness, the desired Equation (10) holds provided that all dual constraints
in (25) are strict at the optimal.

We now observe two critical similarities between (25) and (22): (i) the two dual problems have the
same objectives (indeed the objective in (22) is separable over c ∈ [k]); (ii) they share the constraint
zc � νc ≥ 0

/
zc � βc ≥ 0. From this observation, we can use the same argument as for (22) to

show that when Eqn. (8) holds, β̂c is optimal in (25).

Now, let OPT(17) and OPTc
(24) be the optimal costs of the multiclass SVM in (17) and of the

symmetric OvA-SVM in (24) parameterized by c ∈ [k]. Also, denote OPT(22) and OPTc
(25), c ∈ [k]

the optimal costs of their respective duals in (22) and (25), respectively. We proved above that

OPT(22) =
∑
c∈[k]

OPTc
(25). (26)

Further let Wsym-OvA = [wsym-OvA,1, . . . ,wsym-OvA,k] be the optimal solution in the symmetric OvA-
SVM in (25). We have proved that under Equation (8) w?

c satisfies the constraints in (25) with
equality, that is X>wsym-OvA,c = zc, ∀c ∈ [k]. Thus, it suffices to prove that Wsym-OvA = WSVM.
By strong duality, we get

OPTc
(24) = OPTc

(25), c ∈ [k] =⇒
∑
c∈[k]

OPTc
(24) =

∑
c∈[k]

OPTc
(25)

(26)
=⇒

∑
c∈[k]

OPTc
(24) = OPT(22)

(24)
=⇒

∑
c∈[k]

1

2
‖wsym-OvA,c‖22 = OPT(22). (27)

Again, by strong duality we get OPT(22) = OPT(17). Thus, we have∑
c∈[k]

1

2
‖wsym-OvA,c‖22 = OPT(17).
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Note also that WOvA is feasible in (17) since

X>wsym-OvA,c = zc, ∀c ∈ [k] =⇒ (wsym-OvA,yi−wsym-OvA,c)
>xi = 1, ∀c 6= yi, c ∈ [k], and ∀i ∈ [n].

Therefore, Wsym-OvA is optimal in (17). Finally, note that the optimization objective in (17) is strongly
convex. Thus, it has a unique minimum and therefore WSVM = Wsym-OvA as desired.

B.2 Detailed proof of Corollary 1

The corollary follows directly by combining Theorem 1 with the following lemma.

Lemma 1. Fix arbitrary constants α > 0, β and consider the MNI-solution wα,β
c =

X(X>X)−1(αvc + β1), c ∈ [k] corresponding to a target vector of labels αvc + β1n. Let
Pα,βe|c , c ∈ [k] be the class-conditional and total classification errors of the classifier wα,β . Then, for

any constants α′ > 0, β′, it holds that Pα,βe|c = Pα
′,β′

e|c ,∀c ∈ [k].

Proof. Note that wα=1,β=0
c = wMNI,c, c ∈ [k] and for arbitrary α > 0, β, we have: wα,β

c =
αwMNI,c + βX(X>X)−11. Moreover, it is not hard to check that w>MNI,cx ≤ maxj 6=c w>MNI,jx if
and only if (αwMNIc + b)>x ≤ maxj 6=c(αwMNI,j + b)>x, for any b ∈ Rp. The claim then follows
by choosing b = βX(X>X)−11 and noting that α > 0, β were chosen arbitrarily.

C Proof of Theorem 2

In this section, we provide the proof of Theorem 2, which was stated and discussed in Section 3.2.1.

C.1 Notation and proof strategy

We begin by defining notation that is specific to this proof. For c ∈ [k], we define

Ac := (Q +

c∑
j=1

µjv
T
j )T (Q +

c∑
j=1

µjv
T
j ).

Recall that in the above, µj denotes the jth class mean of dimension p, and vj denotes the n-
dimensional indicator that each training example is labeled as class j. Since we have made an
equal-energy assumption on the class means (Assumption 2), we will denote ‖µ‖2 := ‖µc‖2
throughout this proof as shorthand. Further, recall from Eqn. (1) that the feature matrix can be
expressed as X = MY + Q, where Q ∈ Rp×n is a standard Gaussian matrix. Thus, we have

XTX = Ak and QTQ = A0.

Further, let dc := QTµc, for c ∈ [k]. Finally, we define the following quadratic forms involving
A−1c for c, j,m ∈ [k] and i ∈ [n]:

s
(c)
mj := vTmA−1c vj ,

t
(c)
mj := dTmA−1c dj ,

h
(c)
mj := vTmA−1c dj , (28)

g
(c)
ji := vTj A−1c ei,

f
(c)
ji := dTj A−1c ei.

For convenience, we refer to terms above as quadratic forms of order c or the c-th order quadratic
forms, where c indicates the corresponding superscript. Because of the sum of multiple mean
components

∑c
j=1 µjv

T
j , it is challenging to bound the quadratic forms involving the Gram matrix

A−1k directly. Our idea is to work recursively starting from bounding quadratic forms involving A−10 .
Specifically, we denote P1 = Q + µ1v

T
1 and derive the following recursion on the A0,A1, . . . ,Ak
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matrices:

A1 = PT
1 P1 = A0 +

[
‖µ‖2v1 QTµ1 v1

] ‖µ‖2vT1vT1
µT1 Q

 ,
A2 = (P1 + µ2v

T
2 )T (P1 + µ2v

T
2 ) = A1 +

[
‖µ‖2v2 PT

1 µ2 v2

] ‖µ‖2vT2vT2
µT2 P1

 , (29)

and so on, until Ak (see Appendix F.1 for the complete expressions for the recursion). Using this
trick, we can exploit bounds on forms involving A−10 to obtain bounds for quadratic forms involving
A−11 , and so on until A−1k . A complementary useful observation facilitating this approach is that
the class label indicators are orthogonal by definition, i.e. vTi vj = 0, for i, j ∈ [k]. (This is a
consequence of the obvious fact that any training data point has a unique label.) Thus, the newly
added mean component µc+1v

T
c+1 is orthogonal to the already existing mean components included

in the matrix Ac. Consequently, we will see that adding new mean components will only slightly
change the magnitude of these these quadratic forms as c ranges from 0 to k.

Following the above prescribed approach leads to a key technical Lemma 2, which is presented in
Appendix C.2. In Appendix C.2, we also show how to prove Theorem 2 using that lemma. A series
of auxiliary lemmas used to prove Lemma 2 are stated in Appendix C.3. The proofs of all the lemmas
are given in the remaining subsections.

C.2 Proof of Theorem 2

In our new notation, the desired inequality in Eqn. (8) becomes

zcie
T
i A−1k zc > 0, for all c ∈ [k] and i ∈ [n].

We can equivalently write the definition of zc in Eqn. (7) as

zc =
k − 1

k
vc +

∑
j 6=c

(
−1

k

)
vj = z̃c(c)vc +

∑
j 6=c

z̃j(c)vj , (30)

where we denote

z̃j(c) =

{
− 1
k , if j 6= c

k−1
k , if j = c

.

Note that by this definition, we have z̃yi(c) := zci. This gives us

zcie
T
i A−1k zc = z2cie

T
i A−1k vyi +

∑
j 6=yi

zciz̃j(c)e
T
i A−1k vj ,

= z2cig
(k)
yii

+
∑
j 6=yi

zciz̃j(c)g
(k)
ji . (31)

Recall that

zci =

{
k−1
k , if c = yi
− 1
k , if c 6= yi

.

For each eTi A−1k vj , we then use the matrix inversion lemma to leave the j-th mean component in Ak

out. Using this, we can express the terms {g(k)ji } in terms of the leave-one-out versions of quadratic
forms that we defined in (28), as below:

g
(k)
ji = eTi A−1k vj =

(1 + h
(−j)
jj )g

(−j)
ji − s(−j)jj f

(−j)
ji

s
(−j)
jj (‖µ‖22 − t

(−j)
jj ) + (1 + h

(−j)
jj )2

. (32)

Above, we define s(−j)jj := vTj A−1−jvj , where A−j denotes the version of the Gram matrix Ak with

the j-th mean component left out. The quadratic forms h(−j)jj , f (−j)ji , g(−j)ji and t(−j)jj are defined
similarly. The following technical lemma bounds all of these quantities.
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Lemma 2 (Quadratic forms of high orders). Let Assumption 1 hold and further assume that p >
Ck3n log(kn) + n− 1 for large enough constant C > 1 and large n. There exist constants ci’s and
Ci’s > 1 such that the following bounds hold for every i ∈ [n] and j ∈ [k] with probability at least
1− c1

n − c2ke
− n

c3k2 ,

C1 − 1

C1
· n
kp
≤s(−j)jj ≤ C1 + 1

C1
· n
kp
,

t
(−j)
jj ≤C2n‖µ‖22

p
,

−C3n‖µ‖2√
kp

≤h(−j)jj ≤ C3n‖µ‖2√
kp

,

|f (−j)ji | ≤C4
√
n‖µ‖2
p

,

g
(−j)
ji ≥

(
1− 1

C5

)
1

p
, for j = yi,

|g(−j)ji | ≤
1

C6k2p
, for j 6= yi.

Observe that the bounds stated in the lemma hold for any j ∈ [k] and the bounds themselves are
independent of j. We now show how to use Lemma 2 to complete the proof of the theorem. Following
the second condition in the statement of Theorem 2, we define

ε :=
k1.5n1.5‖µ‖2

p
≤ τ, (33)

where τ is a sufficiently small positive constant, the value of which will be specified later in the proof.
First, we will show that the denominator of Eqn. (32) is strictly positive on the event where Lemma 2
holds. We define

det−j := s
(−j)
jj (‖µ‖22 − t

(−j)
jj ) + (1 + h

(−j)
jj )2.

By Lemma 2, the quadratic forms s(−j)jj are of the same order Θ
(
n
kp

)
for every j ∈ [k]. Similarly,

we have t(−j)jj = O
(
n
p ‖µ‖

2
2

)
and |h(−j)jj | = O

(
ε

k2
√
n

)
for j ∈ [k]. Thus, we have

n‖µ‖22
C1kp

(
1− C2n

p

)
+

(
1− C3ε

k2
√
n

)2

≤ det−j ≤
C1n‖µ‖22

kp
+

(
1 +

C3ε

k2
√
n

)2

, (34)

with probability at least 1− c1
n − c2ke

− n
c3k2 , for every j ∈ [k]. Here, we use the fact that t−jjj ≥ 0

by the positive semidefinite property of the leave-one-out Gram matrix A−1−j . Next, we choose τ in
Eqn. (33) to be sufficiently small so that C3τ ≤ 1/2. Provided that p is sufficiently large compared
to n, there then exist constants C ′1, C

′
2 > 0 such that we have

C ′1 ≤
det−m
det−j

≤ C ′2, for all j,m ∈ [k].

with probability at least 1− c1
n − c2ke

− n
c3k2 . Now, assume without loss of generality that yi = k.

Eqn. (34) shows that there exists constant c > 0 such that det−j > c for all j ∈ [k] with high
probability provided that p/n is large enough (guaranteed by the first condition of the theorem).
Hence, to make the right-hand-side of Eqn. (31) positive, it suffices to show that the numerator will
be positive. Accordingly, we will show that

z2ci
(
(1 + h

(−k)
kk )g

(−k)
ki − s(−k)kk f

(−k)
ki

)
+ Czci

∑
j 6=k

z̃j
(
(1 + h

(−j)
jj )g

(−j)
ji − s(−j)jj f

(−j)
ji

)
> 0, (35)

for some C > 1.

We can show by simple algebra that it suffices to consider the worst case of zci = −1/k. To see why
this is true, we consider the simpler term z2cig

(−yi)
yii

− |
∑
j 6=yi zciz̃j(c)g

(−j)
ji |. Clearly, Eqn. (35) is
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positive only if the above quantity is also positive. Lemma 2 shows that when zci = −1/k, then
z2cig

(−yi)
yii

≥
(

1− 1
C1

)
1
k2p and |zciz̃j(c)g

(−j)
ji | ≤ 1

C2k3p
, for j 6= yi. Hence

z2cig
(−yi)
yii

− |
∑
j 6=yi

zciz̃j(c)g
(−j)
ji | ≥

(
1− 1

C3

)
1

k2p
.

Here, zci = −1/k minimizes the lower bound z2cig
(−yi)
yii

−|
∑
j 6=yi zciz̃j(c)g

(−j)
ji |. To see this, we first

drop the positive common factor |zci| in the equation above and get |zci|g(−yi)yii
− |
∑
j 6=yi z̃j(c)g

(−j)
ji |.

If we had zci = −1/k, then |z̃j(c)| is either (k − 1)/k or 1/k. In contrast, if we consider zci =

(k−1)/k, then we have |z̃j(c)| = 1/k for all j 6= yi and so the term |zci|g(−yi)yii
−|
∑
j 6=yi z̃j(c)g

(−j)
ji |

is strictly larger.

Using this worst case, i.e. zci = −1/k, and the trivial inequality |z̃j(c)| < 1 for j 6= yi together with
the bounds for the terms s(−j)jj , t

(−j)
jj , h

(−j)
jj and f (−j)ji derived in Lemma 2 gives us

(35) ≥ 1

k2

((
1− C1ε

k2
√
n

)(
1− 1

C2

)
1

p
− C3ε

k1.5n
· n
kp

)
− k

C4k

((
1 +

C5ε

k2
√
n

)
1

k2p
− C6ε

k1.5n

n

kp

)
≥ 1

k2

(
1− 1

C9
− C10ε

k2
√
n
− C11ε

k2
− C12ε

)
1

p

≥ 1

k2p

(
1− 1

C9
− C10τ

)
, (36)

with probability at least 1− c1
n − c2ke

− n
c3k2 for some constants Ci’s > 1. Above, we recalled the

definition of ε and used from Lemma 2 that h(−j)jj ≤ C11ε
k2
√
n

and |f (−j)ji | ≤ C12ε
k1.5n with high probability.

To complete the proof, we choose τ to be a small enough constant to guarantee C10τ < 1− 1/C9,
and substitute this in Eqn. (36) to get the desired condition of Eqn. (35).

C.3 Auxiliary Lemmas

In this section, we state a series of auxiliary lemmas that we use to prove Lemma 2. The following
result shows concentration of the norms of the label indicators vc, c ∈ [k] under the equal-priors
assumption (Assumption 1). Intuitively, in this balanced setting there are Θ(n/k) samples for each
class; hence, Θ(n/k) non-zeros (in fact, 1’s) in each label indicator vector vc.

Lemma 3. Under the setting of Assumption 1, there exist large constants C1, C2 > 0 such that the
event

Ev :=
{(

1− 1

C1

)
n

k
≤ ‖vc‖22 ≤

(
1 +

1

C1

)
n

k
, ∀c ∈ [k]

}
, (37)

holds with probability at least 1− 2ke
− n

C2k2 .

Next, we provide bounds on the “base case" 0-th order quadratic forms that involve the Gram matrix
A−10 . We do this in three lemmas presented below. The first Lemma 4 follows by a direct application
of [WT21, Lemma 4 and 5], the only difference being the scalings of O(1/k) arising from the
multiclass case in the vj’s. The other two Lemmas 5 and 6 are proved in Section C.5.
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Lemma 4 (0-th order Quadratic forms, Part I). Under the event Ev, there exist constants ci’s and
Ci’s > 1 such that the following bounds hold with probability at least 1− c1ke−

n
c2 .

t
(0)
jj ≤

C1n‖µ‖22
p

for all j ∈ [k],

|h(0)mj | ≤
C2n‖µ‖2√

kp
for all m, j ∈ [k],

|t(0)mj | ≤
C3n‖µ‖22

p
for all m 6= j ∈ [k],

‖dj‖22 ≤ C4n‖µ‖22 for all j ∈ [k],

max
i∈[n]
|f (0)ji | ≤

C5

√
log(2n)‖µ‖2

p
for all j ∈ [k].

To sharply characterize the forms s(0)ij we need additional work, particularly for the cross-terms where
i 6= j. We will make use of fundamental concentration inequalities on quadratic forms of inverse
Wishart matrices. The following lemma controls these quadratic forms, and shows in particular that
the s(0)ij terms for i 6= j are much smaller than the corresponding terms s(0)jj . This sharp control of the
cross-terms is essential for several subsequent proof steps.
Lemma 5 (0-th order Quadratic forms, Part II). Working on the event Ev defined in Eqn. (37), assume
that p > Cn log(kn) + n− 1 for large enough constant C > 1 and large n. There exist constants
Ci’s > 1 such that with probability at least 1− C0

n , the following bound holds:

C1 − 1

C1
· n
kp
≤s(0)jj ≤

C1 + 1

C1
· n
kp
, for j ∈ [k],

−C2 + 1

C2
·
√
n

kp
≤s(0)ij ≤

C2 + 1

C2
·
√
n

kp
, for i 6= j ∈ [k].

The proof of Lemma 5 for the cross terms with i 6= j critically uses the in-built orthogonality of the
label indicator vectors {vc}c∈[k]. Finally, the following lemma controls the quadratic forms g(0)ji .

Lemma 6 (0-th order Quadratic forms, Part III). Working on the event Ev defined in Eqn. (37), given
p > Ck3n log(kn) + n− 1 for a large constant C, there exist large enough constants C1, C2, such
that with probability at least 1− 2

kn , we have for every i ∈ [n]:(
1− 1

C1

)
1

p
≤g(0)(yi)i

≤
(

1 +
1

C1

)
1

p
,

− 1

C2
· 1

k2p
≤g(0)ji ≤

1

C2
· 1

k2p
, for j 6= yi.

C.4 Proof of Lemma 2

In this section, we provide the full proof of Lemma 2. We begin with a proof outline.

C.4.1 Proof outline

It suffices to consider the case where j = k. To see this, note that when j 6= k we can simply change
the order of adding mean components, described in Eqn. (29), so that the j-th mean component is
added last. For concreteness, we will also fix i ∈ [n], yi = k and m = k− 1. These fixes are without
loss of generality.

For the case j = k, the leave-one-out quadratic forms in Lemma 2 are equal to the quadratic forms of
order k− 1, given by s(k−1)kk , t

(k−1)
kk , h(k−1)kk , g(k−1)ki and f (k−1)ki . We will proceed recursively starting

from the quadratic forms of order 1 building up all the way to the quadratic forms of order k − 1.
Specifically, starting from order 1, we will work on the event

Eq := {all the inequalities in Lemmas 4, 5 and 6 hold}, (38)
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Further, we note that Lemma 6 shows that the bound for g(0)yii is different from the bound for g(0)ji
when j 6= yi. We will show the following set of upper and lower bounds:(

C11 − 1

C11

)
n

kp
≤ s(1)kk ≤

(
C11 + 1

C11

)
n

kp
,

−
(
C12 + 1

C12

) √
n

kp
≤ s(1)mk ≤

(
C12 + 1

C12

) √
n

kp
,

t
(1)
kk ≤

C13n‖µ‖22
p

,

|h(1)mk| ≤
C14n‖µ‖2√

kp
,

|t(1)mk| ≤
C15n‖µ‖22

p
,

‖dk‖22 ≤ C16n‖µ‖22,

|f (1)ki | ≤
C17
√
n‖µ‖2
p

,(
1− 1

C18

)
1

p
≤ g(1)(yi)i

≤
(

1 +
1

C18

)
1

p
, and

− 1

C19k2p
≤ g(1)mi ≤

1

C19k2p

(39)

with probability at least 1− c
kn2 . Comparing the bounds on the terms of order 1 in Eqn. (39) with

the terms in Lemmas 4, 5 and 6 of order 0, the key observation is that they are all at the same order.
The only exception is the term f

(1)
ki , which has a higher upper bound than f (0)ki . For this case, the

subsequent c-th order terms f (c)ki will be of the same order as f (1)ki . This allows us to repeat the same
argument to now bound corresponding terms of order 2, and so on until order k − 1. Note that for
each j ∈ [k], we have n terms of the form g

(1)
ji , corresponding to each value of i ∈ [n]. Thus, we will

adjust the final probabilities by applying a union bound over the n training examples.

C.4.2 Proofs for 1-st order quadratic forms in Eqn. (39)

The proof makes repeated use of Lemmas 4, 5 and 6. In fact, we will throughout condition on
the event Eq, defined in Equation (38), which holds with probability at least 1 − c1

n − c2e
− n

c0k2 .
Specifically, by Lemma 4 we have

h
(0)
mj ≤

C1ε

k2
√
n
, max

i∈[n]
|f (0)mi | ≤

C2ε

k1.5n
, and

s
(0)
mj

s
(0)
kk

≤ C√
n

for m, j 6= k, (40)

where we recall from Eqn. (33) the notation ε := k1.5n1.5‖µ‖2
p . Also, recall that we choose ε ≤ τ for

a sufficiently small constant τ . In Eqn. (40), note that we used a loose upper bound C
√
n‖µ‖2/p

for maxi∈[n] |f
(0)
mi | compared to the bound given in Lemma 4. This looser bound will suffice for the

proof of Equation (33). Moreover, it actually coincides with the bound on maxi∈[n] |f
(1)
mi | given in

Equation (33). This remark is important as it will allow us to use Equation (33) to bound 2-nd order
quadratic forms in the same way as shown below.

In order to make use of Lemmas 4, 5 and 6, we need to relate the quantities of interest to corresponding
quadratic forms involving A0. We do this recursively and make repeated use of the Woodbury identity.
The recursions are proved in Appendix F.1. We now provide the proofs for the bounds on the terms
in Eqn. (39) one-by-one.

Bounds on s(1)mk. By Eqn. (71) in Appendix F.1, we have

s
(1)
mk = s

(0)
mk −

1

det0
(?)(0)s , (41)
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where we define

(?)(0)s := (‖µ‖22 − t
(0)
11 )s

(0)
1k s

(0)
1m + s

(0)
1mh

(0)
k1 h

(0)
11 + s

(0)
1k h

(0)
m1h

(0)
11 − s

(0)
11 h

(0)
k1 h

(0)
m1 + s

(0)
1mh

(0)
k1 + s

(0)
1k h

(0)
m1

and det0 := s
(0)
11 (‖µ‖22 − t

(0)
11 ) + (1 + h

(0)
11 )2. (42)

The essential idea is to show that | (?)
(0)
s

det0
| is sufficiently small compared to |s(0)mk|. We first look at the

first term given by
(

(‖µ‖22 − t
(0)
11 )s

(0)
1k s

(0)
1m

)
/ det0. By Lemmas 4, 5 and the definition of det0, we

have∣∣∣ 1

det0

(
(‖µ‖22 − t

(0)
11 )s

(0)
1k s

(0)
1m

)∣∣∣ ≤ (‖µ‖22 − t
(0)
11 )|s(0)1k s

(0)
1m|

s
(0)
11 (‖µ‖22 − t

(0)
11 )

=
∣∣∣s(0)1k s

(0)
1m

s
(0)
11

∣∣∣ ≤ C1√
n
· C2 + 1

C2
·
√
n

kp
,

where we use det0 ≥ s
(0)
11 (‖µ‖22 − t

(0)
11 ) and s(0)mj/s

(0)
kk ≤ C/

√
n for all m, j 6= k. Now, we upper

bound the other two dominant terms |s(0)1mh
(0)
k1 / det0 | and |s(0)1k h

(0)
m1/ det0 |. Note that the same bound

will apply to the remaining terms in Eqn. (42) because we trivially have |h(0)ij | = O(1) for all
(i, j) ∈ [k]. Again, Lemmas 4 and 5 give us∣∣∣s(0)1mh

(0)
k1

det0

∣∣∣ ≤ |s(0)1mh
(0)
k1 |

(1 + h
(0)
11 )2

≤ C3ε(
1− C5ε

k2
√
n

)2
k2
√
n
· C2 + 1

C2
·
√
n

kp
.

The identical bound holds for |s(0)1k h
(0)
m1|. Noting that |s(0)mk| ≤

C2+1
C2
·
√
n
kp , we then have

|s(1)mk| ≤ |s
(0)
mk|+

∣∣∣ (?)(0)s
det0

∣∣∣
≤

1 +
C6√
n

+
C7ε(

1− C5ε
k2
√
n

)2
k2
√
n

 C2 + 1

C2
·
√
n

kp

≤ (1 + α) · C2 + 1

C2
·
√
n

kp
, (43)

where in the last inequality, we use that ε ≤ τ for sufficiently small constant τ > 0, and defined

α :=
C6√
n

+
C7τ(

1− C5τ
k2
√
n

)2
k2
√
n
.

Now, we pick τ to be sufficiently small and n to be sufficiently large such that (1 + α)C2+1
C2
≤ C8+1

C8

for some constant C8 > 0. Then, we conclude with the following upper bound:

|s(1)mk| ≤
C8 + 1

C8
·
√
n

kp
.

Bounds on s(1)kk . Eqn. (72) in Appendix F.1 gives us

s
(1)
kk = s

(0)
kk −

1

det0

(
(‖µ‖22 − t

(0)
11 )s

(0)
1k

2
+ 2s

(0)
1k h

(0)
k1 h

(0)
11 − s

(0)
11 h

(0)
k1

2
+ 2s

(0)
1k h

(0)
k1

)
.

First, we lower bound s(1)kk by upper bounding 1
det0

(
(‖µ‖22 − t

(0)
11 )s

(0)
1k

2)
. Lemmas 4 and 5 yield

1

det0

(
(‖µ‖22 − t

(0)
11 )s

(0)
1k

2)
≤

(‖µ‖22 − t
(0)
11 )s

(0)
1k

2

s
(0)
11 (‖µ‖22 − t

(0)
11 ) + (1 + h

(0)
11 )2

≤
(‖µ‖22 − t

(0)
11 )s

(0)
1k

2

s
(0)
11 (‖µ‖22 − t

(0)
11 )

≤ C1

n
· n
kp
.

It suffices to upper bound the other dominant term |s(0)1k h
(0)
k1 |/ det0. For this term, we have∣∣∣s(0)1k h

(0)
k1

det0

∣∣∣ ≤ |s(0)1k h
(0)
k1 |

(1 + h
(0)
11 )2

≤ C3ε(
1− C4ε

k2
√
n

)2
k2
√
n
· C2 + 1

C2
·
√
n

kp
.
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Thus, we get

s
(1)
kk ≥

1− C1

n
− C5ε(
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Next, we upper bound s(1)kk by a similar argument, and get
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Bounds on h(1)mk. Eqn. (73) in Appendix F.1 gives us
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Thus, we get
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and there exists constant C8 such that (1 + α)C7 ≤ C8, which shows the desired upper bound.

Bounds on t(1)kk . Eqn. (75) in Appendix F.1 gives us
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We only need an upper bound on t(1)kk . The first dominant term s
(0)
11 t

(0)
1k

2
/det0 is upper bounded as

follows:

s
(0)
11 t

(0)
1k

2

det0
≤

s
(0)
11 t

(0)
1k

2

(1 + h
(0)
11 )2

≤ C6n
3‖µ‖42(

1− C3ε
k2
√
n

)2
kp3
≤ C7ε

2(
1− C3ε

k2
√
n

)2
pk4n

· n‖µ‖
2
2

p
.

29



Next, the second dominant term, t(0)1k h
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Combining the results above gives us
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This shows the desired upper bound.

Bounds on t(1)mk. Eqn. (74) in Appendix F.1 gives us
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Again, we only need an upper bound on t(1)mk. As in the previously derived bounds, we have
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Combining the results above yields
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Note that both t(0)kk and t(0)mk are much smaller than ‖µ‖22. The above upper bound shows that this
continues to hold for t(1)kk and t(1)mk since p� n.

Bounds on f (1)ki . Consider i ∈ [n] and fix yi = k without loss of generality. Eqn. (76) in Appendix F.1
gives us
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We only need an upper bound on f (1)ki . We consider the dominant terms (‖µ‖22 − t
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where, in the last two steps, we used the (loose) upper bound C
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and we have (1 + α)C10 ≤ C11 for a large enough positive constant C11. This shows the desired
upper bound.

Bounds on g(1)ki and g(1)mi . Eqn. (77) in Appendix F.1 gives
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Lemmas 4, 5 and 6 give us
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where for large enough n and positive constant C9, we have (1 +α)C+1
C ≤ C9+1
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As a consequence of our equal energy and priors assumption (Assumption 1), we can directly use the
bounds of the terms in (?)
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gm. We get
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Finally, there exists a sufficiently large constant C10 such that (1 + α)/C ≤ 1/C10. This shows the
desired bounds.

C.4.3 Completing the proof for k-th order quadratic forms

Notice from the above analysis that the 1-st order quadratic forms exhibit the same order-wise
dependence on n, k and p as the 0-th order quadratic forms, e.g. both s(0)mk and s(1)mk are of order
Θ(
√
n
kp ). Thus, the higher-order quadratic forms that arise by including more mean components will

not change too much5. By Eqn. (29), we can see that we can bound the 2-nd order quadratic forms by
bounding quadratic forms with order 1. We consider s(2)mk as an example:
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We additionally show how f
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Observe that the equations above are very similar to Equations (41) and (42) (for s), and Equations (44)
and (45) (for f ), except that the quadratic forms are in terms of Gram matrix A1. We have shown
that the quadratic forms with order 1 will not be drastically different different from the quadratic
forms with order 0. Hence, we repeat the above procedures of bounding these quadratic forms k − 1
times to obtain the desired bounds in Lemma 2. The only quantity that will change in each iteration
is α, which nevertheless remains negligible6.

Our analysis so far is conditioned on event Eq. We define the unconditional event Eu := {all the
inequalities in Lemma 2 hold}. Then, we have

P(Ecu) ≤ P(Ecu|Eq) + P(Ecq ) ≤ P(Ecu|Eq) + P(Ecq |Ev) + P(Ecv)
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for constants ci’s > 1. This completes the proof.
5There are several low-level reasons for this. One critical reason is the aforementioned orthogonality of the

label indicator vectors {vc}c∈[k], which ensures by Lemma 5 that the cross-terms |s(j)mk| are always dominated
by the larger terms |s(j)kk |. Another reason is that h(0)

mk, which can be seen as the “noise" term in our analysis, is
small and thus does not affect other terms.

6To see this, recall that in the first iteration we had α1 := α = C1√
n
+ C2τ

(1−(C5τ/(k2
√
n)))2k2

√
n

for the
first-order terms. Thus, even if we repeat the procedure k − 1 times, then we have αk ≤ Ckα1, which remains
small since we consider n� k.
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C.5 Proofs of Auxiliary lemmas

We complete this section by proving the auxiliary Lemmas 3, 5 and 6, which were used in the proof
of Lemma 2.

C.5.1 Proof of Lemma 3

Our goal is to upper and lower bound ‖vc‖22, for c ∈ [k]. Note that every entry of vc is either 1 or 0,
hence these entries are independent sub-Gaussian random variables with sub-Gaussian parameter 1
[Wai19, Chapter 2]. Under the equal-prior Assumption 1, we have E[‖vc‖22] = n/k when we assume
equal priors. Thus, a straightforward application of Hoeffding’s concentration inequality on bounded
random variables [Wai19, Chapter 2] gives us
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We complete the proof by setting t = n
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for a large enough constant C1 and applying the union
bound over all c ∈ [k].

C.5.2 Proof of Lemma 5

We use the following lemma adapted from [MNS+20, Lemma 2] to bound quadratic forms of inverse
Wishart matrices.
Lemma 7. Define p′(n) := (p − n + 1), and consider matrix M ∼ Wishart(p, In). For any unit
Euclidean norm vector v and any t > 0, we have
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with probability at least 1− 2
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where in the last step we use the fact that C > 1 is large enough. To lower bound s(0)cj , we get

vTc A−10 vj ≥
1

4

(
ñ

(p′(n) +
√

4 log(kn)p′(n) + 4 log(kn))
− ñ

(p′(n)−
√

4 log(kn)p′(n))

)

≥ 1

4
·

−2ñ
√

4 log(kn)p′(n)− 4ñ log(kn)

(p′(n)−
√

4 log(kn)p′(n))(p′(n) +
√

4 log(kn)p′(n))

≥ −C1 + 1

2C1k
·

2n
√

4 log(kn)p′(n) + 4n log(kn)

(p′(n)−
√

4 log(kn)p′(n))(p′(n) +
√

4 log(kn)p′(n))

with probability at least 1 − 2
k2n2 . Then following similar steps to the upper bound of vTc A−10 vj

gives us

vTc A−10 vj ≥ −
C1 + 1

2C1k
·

2
√
np′(n)

√
4/C + (4/C)p′(n)

(p′(n)−
√

4/(Cn)p′(n))p′(n)

≥ −C1 + 1

2C1
·
√
n

k
·

2
√

4/C + (4/C
√
n)

p′(n)(1−
√

4/(Cn))

≥ −C2 + 1

C2
·
√
n

kp
.

We finally apply the union bound on all pairs of c, j ∈ [k] and complete the proof.

C.5.3 Proof of Lemma 6

We first lower and upper bound g(0)(yi)i
. Recall that we assumed yi = k without loss of generality.

With a little abuse of notation, we define ‖vk‖22 = ñ and u :=
√
ñei. We use the parallelogram law

to get

eTi A−10 vk =
1

4
√
ñ

(
(u + vk)TA−10 (u + vk)− (u− vk)TA−10 (u− vk)

)
.

Note that ‖u + vk‖22 = 2(ñ +
√
ñ) and ‖u− vk‖22 = 2(ñ −

√
ñ). As before, we apply Lemma 7

with t = 2 log(kn) to get with probability at least 1− 2
k2n2 ,

eTi A−10 vk ≥
1

4
√
ñ

(
2(ñ+

√
ñ)

(p′(n) +
√

4 log(kn)p′(n) + 4 log(kn))
− 2(ñ−

√
ñ)

(p′(n)−
√

4 log(kn)p′(n))

)

≥ 1

4
√
ñ
·

4
√
ñp′(n)− 4ñ

√
4 log(kn)p′(n)− 8ñ log(kn)

(p′(n) +
√

4 log(kn)p′(n) + 4 log(kn))p′(n)

≥
p′(n)−

√
ñ
√

4 log(kn)p′(n)− 2
√
ñ log(kn)

(p′(n) +
√

4 log(kn)p′(n) + 4 log(kn))p′(n)
,

≥
p′(n)−

√
(1 + 1/C1)n/k

√
4 log(kn)p′(n)− 2

√
(1 + 1/C1)n/k log(kn)

(p′(n) +
√

4 log(kn)p′(n) + 4 log(kn))p′(n)
.
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The last inequality works on event Ev , by which we have ñ ≤ 2(C1+1)n
C1k

. Then, p′(n) > Ck3n log(kn)
gives us

eTi A−10 vk ≥
p′(n)−

√
(1 + 1/C1)n/k

√
4/(Ck3n)p′(n)−

√
(1 + 1/C1)n/k(2/Ck3n)p′(n)

(p′(n) +
√

4 log(kn)p′(n) + 4 log(kn))p′(n)

≥ 1− (1/(C2

√
k4))− (1/(C3k

3.5
√
n))

p′(n)(1 + 2
√

4/(Ck3n))

≥ C4 − 1

C4
· 1

p
,

where in the last step we use the fact that C,C2, C3 > 1 are large enough. To upper bound g(0)(yi)i
, we

have with probability at least 1− 2
k2n2 ,

eTi A−10 vk ≤
1

4
√
ñ

(
2(ñ+

√
ñ)

(p′(n)−
√

4 log(kn)p′(n))
− 2(ñ−

√
ñ)

(p′(n) +
√

4 log(kn)p′(n) + 4 log(kn))

)

≤ 1

4
√
ñ
·

4
√
ñp′(n) + 4ñ

√
4 log(kn)p′(n) + 8ñ log(kn)

(p′(n)−
√

4 log(kn)p′(n))p′(n)

≤
p′(n) +

√
ñ
√

4 log(kn)p′(n) + 2
√
ñ log(kn)

(p′(n)−
√

4 log(kn)p′(n))p′(n)
,

≤
p′(n) +

√
(1 + 1/C1)n/k

√
4 log(kn)p′(n) + 2

√
(1 + 1/C1)n/k log(kn)

(p′(n)−
√

4 log(kn)p′(n))p′(n)
.

Then p′(n) > Ck3n log(kn) gives us

eTi A−10 vk ≤
p′(n) +

√
(1 + 1/C1)n/k

√
4/(Ck3n)p′(n) + 2

√
(1 + 1/C1)n/k(4/Ck3n)p′(n)

(p′(n)−
√

4 log(kn)p′(n))p′(n)

≤ 1 + (1/(C2

√
k4)) + (1/(C3k

3.5
√
n))

p′(n)(1− 2
√

4/(Ck3n))

≤ C4 + 1

C4
· 1

p
.

We now upper and lower bound g(0)ji for a fixed j 6= yi. As before, we have

eTi A−10 vj =
1

4
√
ñ

(
(u + vj)

TA−10 (u + vj)− (u− vj)
TA−10 (u− vj)

)
.

Since eTi vj = 0, we now have ‖u + vj‖22 = ‖u− vj‖22 = 2ñ. We apply Lemma 7 with t =
2 log(kn) to get, with probability at least 1− 2

k2n2 ,

eTi A−10 vj ≤
1

4
√
ñ

(
2ñ

(p′(n)−
√

4 log(kn)p′(n))
− 2ñ

(p′(n) +
√

4 log(kn)p′(n) + 4 log(kn))

)

≤ 1

4
√
ñ
·

4ñ
√

4 log(kn)p′(n) + 8ñ log(kn)

(p′(n)−
√

4 log(kn)p′(n))p′(n)

≤
√
ñ
√

4 log(kn)p′(n) + 2
√
ñ log(kn)

(p′(n)−
√

4 log(kn)p′(n))p′(n)
,

≤
√

(1 + 1/C1)n/k
√

4 log(kn)p′(n) + 2
√

(1 + 1/C1)n/k log(kn)

(p′(n)−
√

4 log(kn)p′(n))p′(n)
.
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The last inequality works on event Ev , by which we have ñ ≤ 2(C1+1)n
C1k

. Then, p′(n) > Ck3n log(kn)
gives us

eTi A−10 vj ≤
√

(1 + 1/C1)n/k
√

4/(Ck3n)p′(n) +
√

(1 + 1/C1)n/k(2/Ck3n)p′(n)

(p′(n)−
√

4 log(kn)p′(n))p′(n)

≤ (1/(C2

√
k4)) + (1/(C3k

3.5
√
n))

p′(n)(1−
√

4/(Ck3n))

≤ C4 + 1

C4
· 1

k2p
,

where in the last step we use the fact that C,C2, C3 > 1 are large enough. To lower bound g(0)ij , we
have with probability at least 1− 2

k2n2 ,

eTi A−10 vj ≥
1

4
√
ñ

(
2ñ

(p′(n) +
√

4 log(kn)p′(n) + 4 log(kn))
− 2ñ

(p′(n)−
√

4 log(kn)p′(n))

)

≥ 1

4
√
ñ
·
−4ñ

√
4 log(kn)p′(n)− 8ñ log(kn)

(p′(n)−
√

4 log(kn)p′(n))p′(n)

≥ −
√
ñ
√

4 log(kn)p′(n) + 2
√
ñ log(kn)

(p′(n)−
√

4 log(kn)p′(n))p′(n)
,

≥ −
√

(1 + 1/C1)n/k
√

4 log(kn)p′(n) + 2
√

(1 + 1/C1)n/k log(kn)

(p′(n)−
√

4 log(kn)p′(n))p′(n)
.

Because p′(n) > Ck3n log(kn), we get

eTi A−10 vj ≥ −
√

(1 + 1/C1)n/k
√

4/(Ck3n)p′(n) +
√

(1 + 1/C1)n/k(2/Ck3n)p′(n)

(p′(n)−
√

4 log(kn)p′(n))p′(n)

≥ − (1/(C2

√
k4)) + (1/(C3k

3.5
√
n))

p′(n)(1−
√

4/(Ck3n))

≥ −C4 + 1

C4
· 1

k2p
,

where in the last step we use the fact that C,C2, C3 > 1 are large enough. We complete the proof by
applying a union bounds over all k classes and n training examples.

D Proofs for Section 3.2.2

In this section, we provide the proofs of Theorems 3 and 4, which were discussed in Section 3.2.2.
After having derived the interpolation condition in Equation (8) for multiclass SVM, these proofs are
in fact rather simple extensions of the arguments provided in [MNS+20, HMX21] to the multiclass
case. This is unlike the GMM case that we considered in Appendix C, which required substantial
additional effort over and above the binary case [WT21].

D.1 Proof of Theorem 3

For this section, we define A = XTX as shorthand (we denoted the same quantity as Ak in
Appendix C). Recall that the eigendecomposition of the covariance matrix is given by Σ =∑p

i=1 λiviv
T
i = V ΛV T . By rotation invariance of the standard normal variable, we can write

A = QTΛQ, where the entries of Q ∈ Rp×n are IID N (0, 1) random variables. Finally, recall that
we denoted λ = [λ1 · · · λp] and defined the effective dimensions d2 =

‖λ‖21
‖λ‖22

and d∞ = ‖λ‖1
‖λ‖∞ .

Observe that Eqn. (8) in Thm. 1 is equivalent to the condition

zcie
T
i A−1zc > 0, for all c ∈ [k] and i ∈ [n]. (48)
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We fix c ∈ [k] and drop the subscript c, using z to denote the vector zc. We first provide a deterministic
equivalence to Eqn. (8) that resembles the condition provided in [HMX21, Lemma 1]. Our proof is
slightly modified compared to [HMX21, Lemma 1] and relies on elementary use of block matrix
inversion identity.

Lemma 8. Let Q ∈ Rp×n = [q1, · · · ,qn]. In our notation, Eqn. (8) holds for a fixed c if and only
if:

1

zi
zT\i

(
QT
\iΛQ\i

)−1
QT
\iΛqi < 1, for all i = 1, · · · , n. (49)

Above, z\i ∈ R(n−1)×1 is obtained by removing the i-th entry from vector z and Q\i ∈ Rd×(n−1) is
obtained by removing the i-th column from Q.

Proof. By symmetry, it suffices to consider the case i = 1. We first write

A =

[
qT1 Λq1 qT1 ΛQ\1
QT
\1Λq1 QT

\1ΛQ\1

]
,

[
α bT

b D

]
.

By Schur complement [Ber09], we have

A � 0 iff either
{
α > 0 and D− bbT

α
� 0

}
or
{
D � 0 and α− bTD−1b > 0

}
.

Since the entries of Q are drawn from a continuous distribution (IID standard Gaussian), both A and
D = QT

\1ΛQ\1 are positive definite almost surely. Therefore, α− bTD−1b > 0 almost surely.

Thus, by block matrix inversion identity [Ber09], we have

A−1 =

[
(α− bTD−1b)−1 −(α− bTD−1b)−1bTD−1

−D−1b(α− bTD−1b)−1 D−1 + D−1b(α− bTD−1b)−1bTD−1

]
.

Therefore,eT1 A−1 = (α− bTD−1b)−1
[
1 −bTD−1

]
. Hence we have

z1e
T
1 A−1z = (α− bTD−1b)−1(z21 − bTD−1(z1z\1)),

where we use the fact that z1 = z1. Since α− bTD−1b > 0 almost surely, we have

z1e
T
1 A−1z > 0 ⇐⇒ (α− bTD−1b)−1(z21 − bTD−1(z1z\1)) > 0

⇐⇒ 1

z1
bTD−1z\1 < 1.

Recall that bT = qT1 ΛQ\1 and D = QT
\1ΛQ\1. This completes the proof.

Next, we define the following events:

1. For i ∈ [n], Bi :=
{

1
zi

zT\iA
−1
\i QT

\iΛqi ≥ 1
}

.

2. For i ∈ [n], given t > 0, Ei(t) :=
{
‖(zT\iA

−1
\i QT

\iΛ)T ‖22 ≥ 1
t

}
.

3. B := ∪ni=1Bi.

We know all the data points are support vectors i.e., Eqn. (48) holds, if none of the events Bi happens;
hence, B is the undesired event. We want to upper bound the probability of event B. As in the
argument provided in [HMX21], we have

P(B) ≤
n∑
i=1

(
P(Bi|Ei(t)c) + P(Ei(t))

)
. (50)

The lemma below gives an upper bound on P(Bi|Ei(t)c).

Lemma 9. For any t > 0, P(Bi|Ei(t)c) ≤ 2 exp
(
− t

2ck2

)
.
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Proof. On the event Ei(t)c, we have ‖(zT\iA
−1
\i QT

\iΛ)T ‖22 ≤ 1
t . Since, by its definition, | 1zi | ≤ k,

we have 1
zi

zT\iA
−1
\i QT

\iΛqi is conditionally sub-Gaussian [Wai19, Chapter 2] with parameter at most
ck2‖(zT\iA

−1
\i QT

\iΛ)T ‖22 ≤ ck2/t. Then the sub-Gaussian tail bound gives

P(Bi|Ei(t)c) ≤ 2 exp

(
− t

2ck2

)
, (51)

which completes the prof.

Next we upper bound P(Ei(t)) with t = d∞/(2n). Since ‖z\i‖2 ≤ ‖y\i‖2, we can directly use
[HMX21, Lemma 4].

Lemma 10 (Lemma 4, [HMX21]). P
(
Ei
(
d∞
2n

))
≤ 2 · 9n−1 · exp

(
−c1 min

{
d2
4c2 ,

d∞
c

})
.

The results above are proved for fixed choices of i ∈ [n] and c ∈ [k]. We combine Lemmas 9 and 10
with a union bound over all n training examples and k classes to upper bound the probability of the
undesirable event B over all k classes by:

kn9n−1 · exp

(
−c1 min

{
d2
4c2

,
d∞
c

})
≤ exp

(
−c1 min

{
d2
4c2

,
d∞
c

}
+ C1 log(kn) + C2n

)
and 2kn · exp

(
− d∞

2ck2n

)
≤ exp

(
−c2d∞
ck2n

+ C3 log(kn)

)
.

Thus, the probability that every data point is a support vector is at least

1− exp

(
−c1 min

{
d2
4c2

,
d∞
c

}
+ C1 log(kn) + C2n

)
− exp

(
−c2d∞
ck2n

+ C3 log(kn)

)
.

To ensure that exp
(
−c1 min

{
d2
4c2 ,

d∞
c

}
+ C1 log(kn) + C2n

)
+ exp

(
− c2d∞ck2n + C3 log(kn)

)
≤

c4
n , we consider the conditions c1 min

{
d2
4c2 ,

d∞
c

}
− C1 log(kn) − C2n ≥ log(n) and c2d∞

ck2n −
C3 log(kn) ≥ log(n) to be satisfied. These are equivalent to the conditions provided in Thm. 3.
This completes the proof. Note that throughout the proof, we did not use any generative model
assumptions on the labels given the covariates, so in fact our proof applies to scenarios beyond the
MLM.

D.2 Proof of Theorem 4

Now, we prove the sharper statement for the isotropic case. This proof is an extension of the proof
argument for the second statement in [MNS+20, Theorem 1]. As before, we seek sufficient conditions
under which

zcie
T
i A−1zc > 0 for all c ∈ [k] and i ∈ [n]. (52)

We again fix i ∈ [n] and c ∈ [k], and we use z to denote the vector zc as shorthand. We define
ui = 1

|zi|‖z‖2ziei. We use the parallelogram law to get:

zie
T
i A−1z =

|zi|
‖z‖2

uTi A−1z =
1

4

|zi|
‖z‖2

(
(ui + z)TA−1(ui + z)− (ui − z)TA−1(ui − z)

)
.

(53)

In the isotropic case, A−1 follows the inverse Wishart distribution. Thus, we can apply Lemma 7 with
t = 2 log(

√
kn). We know that ‖ui+z‖22 = 2(‖z‖22+|zi|‖z‖2) and ‖ui−z‖22 = 2(‖z‖22−|zi|‖z‖2).

We consider the worst case zi = − 1
k . Under the condition p′(n) = p− n+ 1 > 10k2n log(

√
kn),

we have
√

4n log(
√
kn) < 2

3k

√
p′(n). Thus, we have for all i ∈ [n] and with probability at least
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1− 2
kn2 :

zie
T
i A−10 z ≥ |zi|

4‖z‖2

 ‖z‖22 + |zi|‖z‖2

(p′(n) +
√

4 log(
√
kn)p′(n) + 4 log(

√
kn))

− ‖z‖22 − |zi|‖z‖2

(p′(n)−
√

4 log(
√
kn)p′(n))


≥ |zi|

8‖z‖2
·

2|zi|‖z‖2p′(n)− 2‖z‖22
√

4 log(
√
kn)p′(n)− 4‖z‖22 log(

√
kn)

(p′(n) +
√

4 log(
√
kn)p′(n))(p′(n)−

√
4 log(

√
kn)p′(n))

≥ |zi|
8
·

2|zi|p′(n)− 2
√

4n log(
√
kn)p′(n)− 4n log(

√
kn)

(p′(n) +
√

4 log(
√
kn)p′(n))(p′(n)−

√
4 log(

√
kn)p′(n))

, (54)

where the last inequality uses the fact that ‖z‖2 ≤
√
n. When |zi| = 1/k, we would like

2
√

4n log(
√
kn)p′(n) in the numerator of (54) to be smaller than p′(n)/(Ck), thus we would

like
√

4n log(
√
kn) ≤

√
p′(n)/k, which holds if p′(n) > 9k2n log(

√
kn). Under this condition,

we get

(54) >
|zi|
8
·

2|zi|p′(n)− 4
3kp
′(n)− 4

9k2 p
′(n)

(p′(n) +
√

4/(9kn)p′(n))p′(n)

≥ |zi|
8
·

1
k (2p′(n)− 4

3p
′(n)− 4

9p
′(n))

2p′(n)2

≥ |zi|
8
·

(2− 4
3 −

4
9 )

2kp

≥ |zi|
72kp

,

where we again use the relation 4n log(
√
kn) < 4

9k2 p
′(n), for all i ∈ [n]. Thus we have shown

that under this condition, zcieTi A−1zc > 0 for a fixed i ∈ [n] and c ∈ [k] with probability at least
1 − c0

kn2 . Finally, we apply the union bound over all n examples and all k classes, which gives
zcie

T
i A−10 zc > 0 for all i ∈ [n] and c ∈ [k] with probability at least 1 − c0

n . This completes the
proof. As in the proof of Thm. 3, we did not use any generative model assumptions on the labels
given the covariates.

E Classification error proofs

In this section, we provide the proofs of classification error of the MNI under both GMM and MLM
models. We begin with the proof for the GMM case (Thm. 5).

E.1 Proof of Theorem 5

E.1.1 Proof strategy and notations

The notation and main arguments of this proof follow closely the content of Section C.

Our starting point here is the lemma below (adapted from [TOS20, D.10]) that provides a simpler
upper bound on the class-wise error Pe|c.

Lemma 11. Under GMM, Pe|c ≤
∑
j 6=cQ

(
(ŵc−ŵj)

Tµc

‖ŵc−ŵj‖2

)
. In particular, if (ŵc − ŵj)

Tµc > 0,

then Pe|c ≤
∑
j 6=c exp

(
− ((ŵc−ŵj)

Tµc)
2

4(ŵT
c ŵc+ŵT

j ŵj)

)
.
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Proof. [TOS20, D.10] shows Pe|c is upper bounded by
∑
j 6=cQ

(
(ŵc−ŵj)

Tµc

‖ŵc−ŵj‖2

)
. Then if (ŵc −

ŵj)
Tµc > 0, the Chernoff bound [Wai19, Ch. 2] gives

Pe|c ≤
∑
j 6=c

exp

(
− ((ŵc − ŵj)

Tµc)
2

2‖ŵc − ŵj‖22

)
≤
∑
j 6=c

exp

(
− ((ŵc − ŵj)

Tµc)
2

4(ŵT
c ŵc + ŵT

j ŵj)

)
,

where the last inequality uses the identity aTb ≤ 2(aTa + bTb).

Thanks to Lemma 11, we can upper bound Pe|c by lower bounding the terms

((ŵc − ŵj)
Tµc)

2

(ŵT
c ŵc + ŵT

j ŵj)
, for all c 6= j ∈ [k]. (55)

Our key observation is that this can be accomplished without the need to control the more intricate
cross-correlation terms ŵT

c ŵj for c 6= j ∈ [k].

Without loss of generality, we assume onwards that c = k and j = k − 1 (as in Appendix C).
Similar to Appendix C, the quadratic forms introduced in Eqn. (28) play key role here, as well. For
convenience, we recall the definitions of the c-th order quadratic forms for c, j,m ∈ [k] and i ∈ [n]:

s
(c)
mj := vTmA−1c vj ,

t
(c)
mj := dTmA−1c dj ,

h
(c)
mj := vTmA−1c dj ,

g
(c)
ji := vTj A−1c ei,

f
(c)
ji := dTj A−1c ei.

Further, recall that ŵc = X(XTX)−1vc and X =
∑k
j=1 µjv

T
j + Q. Also, from orthogonality of

the class mean vectors (Assumption 2), we have µTc X = ‖µ‖22vTc + dTc . Thus,

ŵT
c µc − ŵT

j µc = ‖µ‖22vTc (XTX)−1vc + vTc (XTX)−1dc − ‖µ‖22vTc (XTX)−1vj − vTj (XTX)−1dc.
(56)

Additionally,

ŵT
c ŵc = vTc (XTX)−1vc, and ŵT

j ŵj = vTj (XTX)−1vj .

Using the leave-one-out trick in Appendix C.1 and the matrix-inversion lemma, we show in Appendix
E.1.5 that (55) is‖µ‖22s(j)cc − s(j)cc t(j)cc + h

(j)
cc

2
+ h

(j)
cc − ‖µ‖22s

(j)
jc − h

(j)
jc − h

(j)
jc h

(j)
cc + s

(j)
jc t

(j)
cc

detj

2/( s
(j)
cc

detj
+
s
(−j)
jj

det−j

)
,

(57)

where detj = (‖µ‖22 − t
(j)
cc )s

(j)
cc + (h

(j)
cc + 1)2. Note that detj = det−c when c = k and j = k − 1.

Next, we will prove that

(57) ≥ ‖µ‖22

((
1− C1√

n
− C2n

p

)
‖µ‖2 − C3

√
k
)2

C6

(
‖µ‖22 + kp

n

) . (58)

E.1.2 Proof of Equation (58)

We will lower bound the numerator and upper bound the denominator of Eqn. (57). We will work
on the high-probability event Ev defined in Eqn. (37) in Appendix C.3. For quadratic forms such as
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s
(j)
cc , t

(j)
cc and h(j)cc , the Gram matrix A−1j does not “include" the c-th mean component because we

have fixed c = k, j = k − 1. Thus, we can directly apply Lemma 2 to get

C1 − 1

C1
· n
kp
≤s(j)cc ≤

C1 + 1

C1
· n
kp
,

t(j)cc ≤
C2n‖µ‖22

p
,

−C3n‖µ‖2√
kp

≤h(j)cc ≤
C3n‖µ‖2√

kp
,

on the event Ev. We need some additional work to bound s(j)jc = vjA
−1
j vc and h(j)jc = vjA

−1
j dc,

since the Gram matrix A−1j “includes" vj . The proof here follows the machinery introduced in
Appendix C.4 for proving Lemma 2. We provide the core argument and refer the reader therein for
additional justifications. By Eqn. (71) in Appendix F.1 (with the index j − 1 replacing the index 0),
we first have

s
(j)
jc = s

(j−1)
jc − 1

detj−1
(?)(j−1)s ,

where we define

(?)(j−1)s = (‖µ‖22 − t
(j−1)
jj )s

(j−1)
jj s

(j−1)
jc + s

(j−1)
jc h

(j−1)
jj

2
+ s

(j−1)
jc h

(j−1)
jj + s

(j−1)
jj h

(j−1)
jc ,

and detj−1 = (‖µ‖22 − t
(j−1)
jj )s

(j−1)
jj + (h

(j−1)
jj + 1)2. Further, we have

|s(j)jc | =

∣∣∣∣∣∣
1−

(‖µ‖22 − t
(j−1)
jj )s

(j−1)
jj + h

(j−1)
jj

2

detj−1

 s
(j−1)
jc − 1

detj−1
(s

(j−1)
jc h

(j−1)
jj + s

(j−1)
jj h

(j−1)
jc )

∣∣∣∣∣∣
≤ 1

C
|s(j−1)jc |+ 1

detj−1
|(s(j−1)jc h

(j−1)
jj + s

(j−1)
jj h

(j−1)
jc )|.

We focus on the dominant term |s(j−1)jj h
(j−1)
jc |. Using a similar argument to that provided in Ap-

pendix C.4, we get

|s(j−1)jj h
(j−1)
jc |

detj−1
≤
|s(j−1)jj h

(j−1)
jc |

(1 + h
(j−1)
jj )2

≤ C1(
1− C2ε

k2
√
n

)2 · nkp · ε

k2
√
n
≤ C3ε(

1− C2ε
k2
√
n

)2
k2
·
√
n

kp
.

Thus, we have

|s(j−1)jc | ≤ C4 + 1

C4
·
√
n

kp
.

Similarly, we bound the remaining term h
(j)
jc . Specifically, by Eqn. (73) in Section F.1, we have

h
(j)
jc = h

(j−1)
jc − 1

detj−1
(?)

(j−1)
h ,

where we define

(?)
(j−1)
h = (‖µ‖22 − t

(j−1)
jj )s

(j−1)
jj h

(j−1)
jc + h

(j−1)
jc h

(j−1)
jj

2
+ h

(j−1)
jc h

(j−1)
jj + s

(j−1)
jj t

(j−1)
jc .

Furthermore,

|h(j)jc | =

∣∣∣∣∣∣
1−

(‖µ‖22 − t
(j−1)
jj )s

(j−1)
jj + h

(j−1)
jj

2

detj−1

h
(j−1)
jc − 1

detj−1
(h

(j−1)
jc h

(j−1)
jj + s

(j−1)
jj t

(j−1)
jc )

∣∣∣∣∣∣
≤ 1

C
|h(j−1)jc |+ 1

detj−1
|(h(j−1)jc h

(j−1)
jj + s

(j−1)
jj t

(j−1)
jc )|.
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We again consider the dominant term |s(j−1)jj t
(j−1)
jc |/ detj−1 and get

|s(j−1)jj t
(j−1)
jc |

detj−1
≤
|s(j−1)jj t

(j−1)
jc |

(1 + h
(j−1)
jj )2

≤ C1(
1− C2ε

k2
√
n

)2 · nkp · n‖µ‖22p
≤ C3ε(

1− C2ε
k2
√
n

)2
k2
√
n
· n‖µ‖2√

kp
.

Thus, we find that

|h(j−1)jc | ≤ C4n‖µ‖2√
kp

.

We are now ready to lower bound the RHS in Eqn. (57) by lower bounding its numerator and upper
bounding its denominator.

First, for the numerator we have the following sequence of inequalities:

‖µ‖22s(j)cc − s(j)cc t(j)cc + h(j)cc
2

+ h(j)cc − ‖µ‖22s
(j)
jc − h

(j)
jc − h

(j)
jc h

(j)
cc + s

(j)
jc t

(j)
cc

≥‖µ‖22s(j)cc − ‖µ‖22s
(j)
jc − s

(j)
cc t

(j)
cc + s

(j)
jc t

(j)
cc + h(j)cc − h

(j)
jc − h

(j)
jc h

(j)
cc

≥C1 − 1

C1
· ‖µ‖

2
2n

kp
− C2 + 1

C2
· ‖µ‖

2
2

√
n

kp
− C3n

p
· ‖µ‖

2
2n

kp
− C4n

p
· ‖µ‖

2
2

√
n

kp
− C5n‖µ‖2√

kp
.

Above, we use the fact that the terms |h(j)cc |, |h(j)jc | ≤ Cε/(k2
√
n) are sufficiently small compared to

1. Consequently, the numerator is lower bounded by(
C1 − 1

C1
· ‖µ‖

2
2n

kp
− C2 + 1

C2
· ‖µ‖

2
2

√
n

kp
− C3n

p
· ‖µ‖

2
2n

kp
− C4n

p
· ‖µ‖

2
2

√
n

kp
− C5n‖µ‖2√

kp

)2/
det2j .

(59)

Second, we upper bound the denominator. For this, note that under the assumption of equal energy
and equal priors on class means (Assumption 1), there exist constants C1, C2 > 0 such that C1 ≤
detj / det−j ≤ C2. (In fact, a very similar statement was proved in Eqn. (34) and used in the proof
of Theorem 2). Moreover, Lemma 2 shows that the terms s(j)cc and s(−j)jj are of the same order, so it

suffices to upper bound s(j)cc

detj
. Again applying Lemma 2, we have

s
(j)
cc

detj
≤ C6

detj
· n
kp

(60)

on the event Ev . Then, combining Equations (59) and (60) gives us

(57) ≥ n

C0kp
· 1

detj

(
(1− C1√

n
− C2n

p
)‖µ‖22 − C3

√
k‖µ‖2

)2

≥ n

C0kp
· 1
C4‖µ‖22n

kp + 2 +
C5n2‖µ‖22

kp2

((
1− C1√

n
− C2n

p

)
‖µ‖22 − C3

√
k‖µ‖2

)2

≥ ‖µ‖22

((
1− C1√

n
− C2n

p

)
‖µ‖2 − C3

√
k
)2

C6

(
‖µ‖22 + kp

n

) , (61)

where the second inequality follows from the following upper bound on detj on the event Ev:

detj = (‖µ‖22 − t(j)cc )s(j)cc + (h(j)cc + 1)2 ≤ ‖µ‖22s(j)cc + 2(h(j)cc
2

+ 1) ≤ C4‖µ‖22n
kp

+ 2 +
C5n

2‖µ‖22
kp2

.

E.1.3 Completing the proof

Because of our assumption of equal energy on class means and equal priors, the analysis above can
be applied to bound ((ŵc−ŵj)

Tµc)
2

(ŵT
c ŵc+ŵT

j ŵj)
, for every j 6= c and c ∈ [k]. We define the unconditional event

Eu2 :=

{
((ŵc − ŵj)

Tµc)
2

(ŵT
c ŵc + ŵT

j ŵj)
is lower bounded by (61) for every j 6= c

}
.
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We have
P(Ecu2) ≤ P(Ecu2|Ev) + P(Ecv)

≤ c4
n

+ c5k(e−
n
c6 + e

− n
c7k2 ) ≤ c4

n
+ c8ke

− n
c7k2

for constants ci’s > 1. Thus, the class-wise error Pe|c is upper bounded by

(k − 1) exp

−‖µ‖22
((

1− C1√
n
− C2n

p

)
‖µ‖2 − C3

√
k
)2

C4

(
‖µ‖22 + kp

n

)


with probability at least 1− c4
n − c8ke

− n
c7k2 . This completes the proof.

E.1.4 Proof of Equation (57)

Here, using the results of Section F.1, we show how to obtain Eqn. (57) from Eqn. (55). First, by
[WT21, Appendix C.2] (with y replaced by vm), we have

vm(XTX)−1vm =
s
(−m)
mm

det−m
, for all m ∈ [k],

where det−m = (‖µ‖22 − t
(−m)
mm )s

(−m)
mm + (h

(−m)
mm + 1)2. Then [WT21, Equation (44)] gives

‖µc‖22 · vc(XTX)−1vc + vc(X
TX)−1dc =

‖µc‖22s
(j)
cc − s(j)cc t(j)cc + h

(j)
cc

2
+ h

(j)
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detj
,

where detj = (‖µ‖22 − t
(j)
cc )s

(j)
cc + (h

(j)
cc + 1)2. Note that detj = det−c when c = k and j = k − 1.

For vc(X
TX)−1vj and vj(X

TX)−1dc, we can again express the k-th order quadratic forms in
terms of j-th order quadratic forms as follows:

vc(X
TX)−1vj =

s
(j)
cj + s

(j)
cj h

(j)
cc − s(j)cc h(j)jc

detj
,

vj(X
TX)−1dc =

‖µ‖22s
(j)
cc h

(j)
jc − ‖µ‖22s

(j)
cj h

(j)
cc + h

(j)
cc h

(j)
jc + h

(j)
jc − s

(j)
cj t

(j)
cc

detj
.

Thus, we have

‖µ‖22vc(XTX)−1vj + vj(X
TX)−1dc =

‖µc‖22s
(j)
jc + h

(j)
jc + h

(j)
jc h

(j)
cc − s(j)jc t

(j)
cc

detj
.

This completes the proof.

E.1.5 Extensions to unorthogonal means

While we made the orthogonality assumption on class means (Assumption 2) for simplicity, our error
analysis can conceivably be extended to the more general unorthogonal setting. We provide a brief
discussion of this extension here. To upper bound the class-wise error Pe|c, recall that we need to
lower bound the quantity in Eqn. (55). As with the orthogonal case, we consider c = k, j = k − 1

without loss of generality. Recall that ŵc = X(XTX)−1vc and X =
∑k
j=1 µjv

T
j + Q. Thus

ŵT
c µc = ‖µ‖22vTc (XTX)−1vc +

∑
m6=c

µTmµcv
T
m(XTX)−1vc + vTc (XTX)−1dc and

ŵT
j µc = ‖µ‖22vTj (XTX)−1vc + µTj µcv

T
j (XTX)−1vj +

∑
m6=c,j

µTmµcv
T
m(XTX)−1vj + vTj (XTX)−1dc.

We have already obtained the bounds for ‖µ‖22vTc (XTX)−1vc + vTc (XTX)−1dc −
‖µ‖22vTc (XTX)−1vj − vTj (XTX)−1dc in Appendix E.1. Moreover, under the equal energy and
priors assumption, the vTj (XTX)−1vj terms have the same bound for every j ∈ [k]. Similarly,
the vTj (XTX)−1vm terms also have the same bound for all j 6= m ∈ [k]. An upper bound on
classification error can then be derived in terms of the inner products between the mean vectors. We
leave the detailed derivation to the reader. Expressions are naturally more complicated.
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E.2 Proof of Corollary 2

We now prove the condition for benign overfitting provided in Corollary 2. Note that following
Theorem 2, we assume that

p > C1k
3n log(kn) + n− 1 and p > C2k

1.5n1.5‖µ‖2. (62)

We begin with the setting where ‖µ‖22 > C kp
n , for some C > 1. In this case, we get that Eqn. (61)

is lower bounded by 1
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n
− C4n

p

)
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√
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)2
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k‖µ‖2. (63)

Then Eqn. (62) gives
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kp
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√
n

)
, (64)

which goes to +∞ as
(
p
n

)
→∞.

Next, we consider the case ‖µ‖22 ≤
kp
n . Moreover, we assume that ‖µ‖42 = C2

(
p
n

)α
, for α > 1.

Then, Eqn. (61) is lower bounded by n
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4
2
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, and we get
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(
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)
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kp
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C6n
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kp2
‖µ‖42 −

C7n√
kp
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≥
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n
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1
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n
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, (65)

where the last inequality uses Equations (62) and condition ‖µ‖22 ≤
kp
n . Consequently, the RHS of

Eqn. (65) will go to +∞ as
(
p
n

)
→∞, provided that α > 1. Overall, it suffices to have

p > max

{
C1k

3n log(kn) + n− 1, C2k
1.5n1.5‖µ‖2,

n‖µ‖22
k

}
,

and ‖µ‖42 ≥ C8

( p
n

)α
, for α ∈ (1, 2].

All of these inequalities hold provided that ‖µ‖2 = Θ(pβ) for β ∈ (1/4, 1/2] for finite k and n. This
completes the proof.

E.3 Error analysis for MLM

In this section, we present partial results on error analysis of the MNI classifier when data is generated
by the MLM. Importantly, for this case we consider more general anisotropic structure in the co-
variance matrix Σ, in accordance with typical benign overfitting analyses [BLLT20, MNS+20]. The
analysis in this section builds non-trivially on analysis that was done for the binary case [MNS+20].
We start by carrying over the assumptions from that analysis, starting with the s-sparse assumption.
Assumption 3 (s-sparse class means [MNS+20]). We assume that all of the class means µc, c ∈ [k]
are s-sparse in the basis given by the eigenvectors of Σ. In other words, we have

V −1µc,j = 0 if j > s.

In addition to [MNS+20], this s-sparse assumption is also made in corresponding works on regres-
sion [HMRT19, TB20] and shown to be necessary for consistency of MSE of the minimum-`2-norm
interpolation arising from bias. Next, we make a special assumption of bi-level structure in the
covariance matrix for ease of statements of results, just as in [MNS+20].
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Assumption 4 (Bi-level ensemble [MNS+20]). We assume that the eigenvalues of the covariance
matrix, given by λ, have a bilevel structure. In particular, our bi-level ensemble is parameterized by
(n,m, q, r) where m > 1, 0 ≤ r < 1 and 0 < q < (p− r). We set parameters p := nm, s = nr and
a = n−q . Then, the eigenvalues of the covariance matrix are given by

λj =

{
λH := ap

s , 1 ≤ j ≤ s
λL := (1−a)p

p−s , otherwise.

We will fix (m, q, r) and study the classification error as a function of n. While the bi-level ensemble
structure is not in principle needed for complete statements of results, it admits particularly clean
characterizations of classification error rates as well as easily interpretable conditions for consistency.
See [MNS+20] for additional context on the bi-level ensemble and examples of its manifestation in
high-dimensional machine learning models.

Finally, we imbue the above assumptions with an equal energy and orthogonality assumption, as
in the GMM case. These assumptions are specific to the multiclass task, and effective subsume
Assumption 3.
Assumption 5 (Equal energy and orthogonality). We assume that the class means are equal energy,
i.e. ‖µ‖2 = 1/

√
λH for all c ∈ [k], and are orthogonal, i.e. µ>i µj = 0 for all i 6= j ∈ [k]. Together

with Assumptions 3 and 4, a simple coordinate transformation gives us

µc =
1√
λH
ejc for some jc ∈ [s], jc 6= jc′ for all c 6= c′ ∈ [k], and

Σ = Λ

without loss of generality. The normalization by the factor 1√
λH

is done to ensure that the signal

strength is equal to 1, i.e. E[(x>µc)
2] = 1 for all c ∈ [k].

Under these assumptions, we state our main result for the total classification error of MLM. Our
error bounds will be on the excess risk over and above the Bayes error rate incurred by the optimal
classifier {ŵc = µc}c∈[k], which we denote by Pe,Bayes.
Theorem 6. Under Assumptions 4 with q < 1 − r and 5, there are universal constants U,L1, L2

such that the total excess classification error of the MNI under the MLM model is given by

Pe − Pe,Bayes ≤ k2
(

1

2
− 1

π
tan−1(SNR(n))

)
, where

SNR(n) ≥ L1

√
log n · n

min{(m−1),(1−r)}
2 , 0 < q < (1− r).

Keeping k constant with respect to n, Theorem 6 implies benign overfitting in multiclass classification,
i.e. Pe − Pe,Bayes → 0 as n→∞, if q < (1− r). Whether we can obtain consistency for the larger
regime q < (1− r) + (m−1)

2 , as in the binary case [MNS+20], remains an open question: as we will
see in the proof, multiclass analysis introduces several new terms that are more difficult to deal with
than in the binary case.

We set up notation for important quantities in the analysis. Note that Assumption 5 directly implies
that µc,jc = 1 for all c ∈ [k]. For each class c ∈ [k], we define the survival and contamination terms
as below:

SUc(n) :=
√
λHŵc,jc (66a)

CNc(n) :=

√∑
j 6=jc

λjŵ2
c,j (66b)

Intuitively, we would like SUc(n) → 1 and CNc(n) → 0; note that this would be exactly the case
if ŵc = µc for all c ∈ [k]. We state and prove our main lemma that characterizes the classification
error in MLM as a function of survival and contamination.
Lemma 12. The excess classification risk is bounded by

Pe − Pe,Bayes ≤
∑
c1<c2

(
1

2
− 1

π
tan−1

(
SUc1(n) + SUc2(n)− CNc1(n)− CNc2(n)

2(|SUc1(n)− SUc2(n)|+ CNc1(n) + CNc2(n))

))
(67)
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Proof. We consider a fixed x, and (following the notation in [TOS20]) the k-dimensional vectors

g :=
[
x>ŵ1 x>ŵ2 . . . x>ŵk

]
h :=

[
x>µ1 x>µ2 . . . x>µk

]
Further, we define the multinomial logit variable

Y (h) = j w.p.
exp{hj}∑k

m=1 exp{hm}
.

Recall that Pe = P (arg max(g) 6= Y (h)), where the probability is taken both over the fresh test
sample x and the randomness in the multinomial logit variable. We note that for there to be a
classification error conditioned on x, at least one of the following two events needs to hold: a)
arg max(g) 6= arg max(h), or b) Y (h) 6= arg max(h). To see this, note that if neither a) nor b)
held, we would have arg max(g) = Y (h) and we would not have a classification error conditional
on the covariate being x. Thus, applying a union bound gives us

Pe ≤ Pe,0 + Pe,Bayes where
Pe,0 := P (arg max(g) 6= arg max(h)) and

Pe,Bayes := P (arg max(h) 6= Y (h)) .

Thus, it suffices to provide an upper bound on Pe,0 as defined. We note that for there to be an error
of the form arg max(g) 6= arg max(h), there needs to exist indices c1, c2 ∈ [k] (whose choice can
depend on x) such that x>µc1 ≥ x>µc2 but x>ŵc1 < x>ŵc2 . In other words, we have

Pe,0 ≤ P
(
x>µc1 ≥ x>µc2 and x>ŵc1 < x>ŵc2 for some c1 6= c2

)
≤
∑
c1 6=c2

P
(
x>µc1 ≥ x>µc2 and x>ŵc1 < x>ŵc2

)
=
∑
c1<c2

P
(
x>∆c1,c2 · x>∆̂c1,c2 < 0

)
where we define

∆c1,c2 := µc1 − µc2 and

∆̂c1,c2 := ŵc1 − ŵc2 .

Noting that x ∼ N (0,Σ), setting Ec1,c2 := Σ1/2∆c1,c2 , Êc1,c2 := Σ1/2∆̂c1,c2 , as well as using
rotation invariance of the Gaussian distribution and Gaussian decomposition yields:

P
(
x>∆c1,c2 · x>∆̂c1,c2 < 0

)
(68)

=Pg∼N (0,I)

(
g>Ec1,c2 · g>Êc1,c2 < 0

)
=PG∼N (0,1)

H∼N (0,1)

(
‖Ec1,c2‖2G ·

(
SU(∆̂c1,c2 ,∆c1,c2)G+ CN(∆̂c1,c2 ,∆c1,c2)H

)
< 0
)

=PG∼N (0,1)
H∼N (0,1)

((
SU(∆̂c1,c2 ,∆c1,c2)G2 + CN(∆̂c1,c2 ,∆c1,c2)H G

)
< 0
)

=
1

2
− 1

π
tan−1

(
SU(∆̂c1,c2 ,∆c1,c2)

CN(∆̂c1,c2 ,∆c1,c2)

)
, where (69)

SU(∆̂c1,c2 ,∆c1,c2) :=
Ê
T

c1,c2Ec1,c2

‖Ec1,c2‖2
=

∆̂
>

Σ∆

‖Σ1/2∆‖2
and

CN(∆̂c1,c2 ,∆c1,c2) :=

√√√√√‖Êc1,c2‖22 −

(
Ê
T

c1,c2Ec1,c2

)2
‖Ec1,c2‖22

=

√√√√√∆̂−
∆̂
>
c1,c2Σ∆c1,c2

‖Σ1/2∆c1,c2‖22
∆c1,c2

>Σ

∆̂c1,c2 −
∆̂
>
c1,c2Σ∆c1,c2

‖Σ1/2∆c1,c2‖22
∆c1,c2


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denote the generalized survival and contamination terms respectively. For the equality in Equation
(69), we used the fact that the ratio H/G of two independent standard normals follows the standard
Cauchy distribution as in the proof of Proposition 1 in [MNS+20].

It remains to expand the terms SU(∆̂c1,c2 ,∆c1,c2) and CN(∆̂c1,c2 ,∆c1,c2). First, we observe that

SU(∆̂c1,c2 ,∆c1,c2) =
(ŵc1 − ŵc2)>Σ(µc1 − µc2)

‖Σ1/2(µc1 − µc2)‖2

=
(ŵc1 − ŵc2)>Σ(µc1 − µc2)

√
2

=
√
λH(ŵc1,jc1 + ŵc2,jc2 − ŵc1,jc2 − ŵc2,jc1 )

= SUc1(n) + SUc2(n)−
√
λH · ŵc1,jc2 −

√
λH · ŵc2,jc1

≥ SUc1(n) + SUc2(n)− CNc1(n)− CNc2(n),

where the last inequality follows because we have CNc1(n) :=
√∑

j 6=jc1
λjŵ2

j ≥ |
√
λHŵjc2 |.

Similar reasoning holds for the term CNc2(n). Note that we have critically used the orthogonality
assumption, which implies that jc1 6= jc2 .

Second, we analyze the contamination term CN(∆̂c1,c2 ,∆c1,c2). We denote ∆̂ := ∆̂c1,c2 and
∆ := ∆c1,c2 for shorthand. We have

CN(∆̂c1,c2 ,∆c1,c2) =
√
E[B(x)2] where B(x) :=

(
∆̂− ∆̂

>
Σ∆

‖Σ1/2∆‖22
∆

)>
x.

We characterize the orthogonal term ∆̂− ∆̂
>

Σ∆
‖Σ1/2∆‖22

∆. By simple algebra, we get

(
∆̂− ∆̂

>
Σ∆

‖Σ1/2∆‖22
∆

)
j

=


ŵc1,jc1

−ŵc2,jc2
+ŵc1,jc2

−ŵc2,jc1

2 if j = jc1
ŵc1,jc1

−ŵc2,jc2
+ŵc1,jc2

−ŵc2,jc1

2 if j = jc2
ŵc1,j − ŵc2,j otherwise.

This gives us

Σ1/2

(
∆̂− ∆̂

>
Σ∆

‖Σ1/2∆‖22
∆

)
=

√
λHŵc1,jc1 −

√
λHŵc2,jc2

2
(êjc1 + êjc2 )

+ Σ1/2

 ∑
j 6=jc1 ,jc2

ŵc1,j êj

−Σ1/2

 ∑
j 6=jc1 ,jc2

ŵc2,j êj


+

√
λH(ŵc1,jc2 − ŵc2,jc1 )

2
(êjc1 + êjc2 ).

Since
√
E[B(x)2] = ‖Σ1/2

(
∆̂− ∆̂

>
Σ∆

‖Σ1/2∆‖22
∆
)
‖2, applying the triangle inequality and recalling

the survival and contamination terms in Equations (66), then gives us

CN(∆̂c1,c2 ,∆c1,c2) ≤ 1√
2

(SUc1(n)− SUc2(n)) +

(
1 +

1√
2

)
(CNc1(n) + CNc2(n))

≤ 2(SUc1(n)− SUc2(n) + CNc1(n) + CNc2(n)).

This completes the proof.

Next, we provide characterizations of SUc(n) and CNc(n) in the multiclass case. These constitute
extensions from Lemmas 11 and 13 [MNS+20] to deal with two new aspects of the MLM: the
multiclass setting, and label noise generated by the logistic model (note that [MNS+20] considered
only constant label noise whose magnitude does not depend on the covariate). We start with the
characterization of survivals.
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Lemma 13 (extension of Lemma 11, [MNS+20]). There exist universal positive constants
L1, L2, U1, U2 such that

SUL(n) ≤ SUc(n) ≤ SUU (n), where

SUL(n) :=

{
ck(1 + L1n

q−(1−r))−1, 0 < q < 1− r
ckL2n

(1−r)−q, q > 1− r.

SUU (n) :=

{
ck(1 + U1n

q−(1−r))−1, 0 < q < 1− r
ckU2n

(1−r)−q, q > 1− r.

Above, ck > 0 is a fixed strictly positive constant that depends on k but not on n.

Next, we provide an upper-bound characterization of contamination.
Lemma 14 (extension of Lemma 13, [MNS+20]). There exist universal positive constants U3, U4

such that

CNc(n) ≤ CNU (n) :=

{
U3

√
log n · n−

min{m−1,1−r}
2 , 0 < q < 1− r

U4

√
log n · n−

min{m−1,2q+r−q}
2 , q > 1− r.

Taking Lemmas 13 and 14 as true for the moment, we get

Pe,0 ≤ k2
(

1

2
− tan−1

(
2SUL(n)− 2CNU (n)

2|SUU (n)− SUL(n)|+ 2CNU (n)

))
.

The new term of particular interest is |SUU (n)− SUL(n)|. When 0 < q < 1− r, we have

|SUU (n)− SUL(n)| = ck
1 + L1nq−(1−r)

− ck
1 + U1nq−(1−r)

≤ ck(U1 − L1)nq−(1−r).

Then, the argument within tan−1(·) is lower bounded by

2c(1 + L1n
q−(1−r))−1 − 2U3

√
log nn−

min{m−1,1−r}
2

c(U1 − L1)nq−(1−r) + 2U3

√
log nn−

min{m−1,1−r}
2

≥ L3n
min{m−1,1−r}

2 ,

whereL3 > 0 is some universal positive constant. This completes the proof for the case 0 < q < 1−r.
Further, this term goes to∞ as n→∞, implying that Pe → 0 as n→∞ in this case.

It only remains to prove Lemmas 13 and 14, which we do below.

E.3.1 Proof of Lemma 13

The proof follows similarly to the proof of Theorem 4 in Appendix D.3 and Lemma 11 in Appendix
E of [MNS+20], with two important extensions: one, to the multiclass model, and two, considering
the logistic model for label noise. First, an identical series of steps to the proof of Theorem 4 gives us

SUc(n) =
λjc · u>jcA

−1
−jczc

1 + λjc · u>jcA
−1
−jcujc

.

As with the proof of Theorem 4 in [MNS+20], we can bound the quadratic forms around their
expectations by using the Hanson-Wright inequality [RV+13], thereby getting

SUc(n) ≤ ck ·
λjc

(
(n−s)

cλ̃s+1rs(Σ−jc )
− c3n

3/4

λs+1rs(Σ)

)
1 + λjc

(
cn

λ̃s+1rs(Σ−jc )
+ c4n3/4

λs+1rs(Σ)

) and

SUc(n) ≥ ck ·
λjc

(
cn

λ̃s+1rs(Σ−jc )
+ c3n

3/4

λs+1rs(Σ)

)
1 + λjc

(
(n−s)

cλ̃s+1rs(Σ−jc )
− c4n3/4

λs+1rs(Σ)

) ,
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where we define ck := E[ujc,1zc,1]. Plugging this into an identical argument as in the proof of
Lemma 11 in Appendix E of [MNS+20] gives us the statement of Lemma 13. It remains to show
that ck is strictly positive (clearly, it will not depend on n or p). To do this, we critically utilize the
orthogonality and equal-weight Assumption 5 as well as the details of the MLM. We combine these
to get

P
(
zjc,1 =

k − 1

k

∣∣∣{uj,1}pj=1

)
=

exp(ujc,1)∑
c′∈[k] exp(ujc′,1)

,

where {uj′c,1}c′∈[k] are IID standard Gaussian. Thus, we get

E[ujc,1zc,1] = E

[
ujc,1

(
k − 1

k
· exp(ujc,1)∑

c′∈[k] exp(ujc′,1)

)
− 1

k

(
1− exp(ujc,1)∑

c′∈[k] exp(ujc′,1)

)]

= E

[
ujc,1

(
exp(ujc,1)∑

c′∈[k] exp(ujc′,1)

)]
.

Now, we overload notation and write Uc := ujc,1 for each c ∈ [k]. We also write U :=
[U1 . . . Uk] as shorthand. Note that Uc i.i.d. ∼ N (0, 1). By symmetry, we have

ck = E

[
U1e

U1∑k
c=1 e

Uc

]

=
1

k
E
[
U>g(U)

]
]

= E [U1 · g(U)]

where gi(U) := eUi∑k
i′=1

eU
′
i
. Then, applying Stein’s lemma, we get

E [U1 · g(U)] =

n∑
i=1

E[U1Ui] · E
[
∂g

∂Ui

]
= E

[
∂g

∂U1

]
= E

[∑
i6=1 e

U1+Ui

(
∑k
i=1 e

Ui)2

]
> 0.

The last step follows because the argument inside the expectation can never take value 0 and is always
non-negative. This completes the proof.

E.3.2 Proof of Lemma 14

This proof is a simple extension of the argument in [MNS+20, Theorem 5]. First, we recall that

w̃c := X(XTX)−1zc.

As a direct consequence (following the proof of [MNS+20, Lemma 6]), we get

CNc(n) =
√

z>c Czc, where

C := (XTX)−1

 d∑
j=1,j 6=jc

λ2juju
>
j

 (XTX)−1

where {uj}pj=1 denotes the rows of data matrix X normalized by
√
λj . We now define A := XTX

for shorthand, and A−jc :=
∑d
j=1,j 6=jc λjuju

>
j as the “leave-one-out" matrix. Note that these
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matrices are functionals of the training data covariates, and so are common across all classes. Further,
again following the proof of [MNS+20, Lemma 6], we get

CNc(n) =

√
z̃>c C̃z̃c, where

z̃c := zc − SUc(n)uc and

C̃ := (A−jc)−1

 d∑
j=1,j 6=jc

λ2juju
>
j

 (A−jc)−1

Now, an identical argument to the proof of [MNS+20, Lemma 29] gives us

z̃>c C̃z̃c ≤ 2z>c C̃zc + 2SUc(n)2 · u>jcC̃ujc

≤ 4Tr(C̃)

(
1 +

1

c

)
· log n,

where c is some universal positive constant. The last inequality follows as a critical consequence of
three facts:

1. We have SUc(n) ≤ 1 almost surely.

2. Noting that ujc is isotropic Gaussian, we have u>jcC̃ujc ≤ 2Tr(C̃)
(
1 + 1

c

)
· log n with

high probability from an application of the Hanson-Wright inequality [RV+13].

3. Noting that the Hanson-Wright inequality also applies to sub-Gaussian random vectors with
uncorrelated components [RV+13], we similarly apply it to zc by noting that z2c,j ≤ 1 and
E[zc,jzc,j′ ] = 0 for all j 6= j′). The zc,j’s being uncorrelated is an important consequence
of the orthogonality Assumption 5 and independence of training data.

After this, an analysis identical to that of the binary case (contained in Appendices D.4.2 and Lemma
13 of [MNS+20]) completes the proof of the result.

F Recursive formulas for higher-order quadratic forms

We first show how quadratic forms involving the j-th order Gram matrix A−1j can be expressed using
quadratic forms involving the (j − 1)-th order Gram matrix A−1j−1. For concreteness, we consider
j = 1; identical expressions hold for any j > 1 with the only change being in the superscripts. Recall
from Appendix C that we can write

A1 = A0 +
[
‖µ‖2v1 QTµ1 v1

] ‖µ‖2vT1vT1
µT1 Q

 = QTQ + [‖µ‖2v1 d1 v1]

‖µ‖2vT1vT1
dT1

 .
The first step is to derive an expression for A−11 . By the Woodbury identity [HJ12], we get

A−11 = A−10 −A−10 [‖µ‖2v1 d1 v1]

I +

‖µ‖2vT1vT1
dT1

A−10 [‖µ‖2v1 d1 v1]

−1 ‖µ‖2vT1vT1
dT1

A−10 .

(70)

We first compute the inverse of the 3× 3 matrix B :=

I +

‖µ‖2vT1vT1
dT1

A−10 [‖µ‖2v1 d1 v1]

.

Recalling our definitions of the terms s(c)mj , h
(c)
mj and t(c)mj in Eqn. (28) in Appendix C, we have:

B =

1 + ‖µ‖22s
(0)
11 ‖µ‖2h(0)11 ‖µ‖2s(0)11

‖µ‖2s(0)11 1 + h
(0)
11 s

(0)
11

‖µ‖2h(0)11 t
(0)
11 1 + h

(0)
11

 .
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Recalling B−1 = 1
det0

adj(B), where det0 is the determinant of B and adj(B) is the adjoint of B,
simple algebra gives us

det0 = s
(0)
11 (‖µ‖22 − t

(0)
11 ) + (h

(0)
11 + 1)2,

and

adj(B) =

 (h
(0)
11 + 1)2 − s(0)11 t

(0)
11 ‖µ‖2(s

(0)
11 t

(0)
11 − h

(0)
11 − h

(0)
11

2
) −‖µ‖2s(0)11

−‖µ‖2s(0)11 h
(0)
11 + 1 + ‖µ‖22s

(0)
11 −s(0)11

‖µ‖2(s
(0)
11 t

(0)
11 − h

(0)
11 − h

(0)
11

2
) ‖µ‖22h

(0)
11

2
− t(0)11 (1 + ‖µ‖22s

(0)
11 ) h

(0)
11 + 1 + ‖µ‖22s

(0)
11

 .
We will now use these expressions to derive expressions for the 1-order quadratic forms that are used
in Appendix C.4.

F.1 Expressions for 1-st order quadratic forms

We now show how quadratic forms of order 1 can be expressed as a function of quadratic forms of
order 0. All of the expressions are derived as a consequence of plugging in the expression for B−1

together with elementary matrix algebra.

First, we have

s
(1)
mk = vTmA−11 vk = vTmA−10 vk −

[
‖µ‖2s(0)m1 h

(0)
m1 s

(0)
m1

] adj(B)

det0

‖µ‖2s
(0)
k1

s
(0)
k1

h
(0)
k1


= s

(0)
mk −

1

det0
(?)(0)s , (71)

where we define

(?)(0)s := (‖µ‖22 − t
(0)
11 )s

(0)
1k s

(0)
1m + s

(0)
1mh

(0)
k1 h

(0)
11 + s

(0)
1k h

(0)
m1h

(0)
11 − s

(0)
11 h

(0)
k1 h

(0)
m1 + s

(0)
1mh

(0)
k1 + s

(0)
1k h

(0)
m1.

Thus, for the case m = k we have

s
(1)
kk = vTk A−11 vk = vTk A−10 vk −

[
‖µ‖2s(0)k1 h

(0)
k1 s

(0)
k1

] adj(B)

det0

‖µ‖2s
(0)
k1

s
(0)
k1

h
(0)
k1


= s

(0)
kk −

1

det0

(
(‖µ‖22 − t

(0)
11 )s

(0)
1k

2
+ 2s

(0)
1k h

(0)
k1 h

(0)
11 − s

(0)
11 h

(0)
k1

2
+ 2s

(0)
1k h

(0)
k1

)
.

(72)

Next, we have

h
(1)
mk = vTmA−11 dk = vTmA−10 dk −

[
‖µ‖2s(0)m1 h

(0)
m1 s

(0)
m1

] adj(B)

det0

‖µ‖2h
(0)
1k

h
(0)
1k

t
(0)
1k


= h

(0)
mk −

1

det0
(?)

(0)
h , (73)

where we define

(?)
(0)
h = (‖µ‖22 − t

(0)
11 )s

(0)
1mh

(0)
1k + h

(0)
m1h

(0)
1k h

(0)
11 + h

(0)
m1h

(0)
1k + s

(0)
1mt

(0)
k1 + s

(0)
1mt

(0)
k1 h

(0)
11 − s

(0)
11 t

(0)
k1 h

(0)
m1.

Next, we have

t
(1)
km = dTkA−11 dm = dTkA−10 dm −

[
‖µ‖2h(0)1k t

(0)
1k h

(0)
1k

] adj(B)

det0

‖µ‖2h
(0)
1m

h
(0)
1m

t
(0)
1m


= t

(0)
km −

1

det0
(?)

(0)
t , (74)
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where we define

(?)
(0)
t = (‖µ‖22 − t

(0)
11 )h

(0)
1mh

(0)
1k + t

(0)
m1h

(0)
1k h

(0)
11 + t

(0)
k1 h

(0)
1mh

(0)
11 + t

(0)
1mh

(0)
1k + t

(0)
1k h

(0)
1m − s

(0)
11 t

(0)
1mt

(0)
1k .

Thus, for the case m = k we have

t
(1)
kk = dTkA−11 dk = dTkA−10 dk −

[
‖µ‖2h(0)1k t

(0)
1k h

(0)
1k

] adj(B)

det0

‖µ‖2h
(0)
1k

h
(0)
1k

t
(0)
1k


= t

(0)
kk −

1

det0

(
(‖µ‖22 − t

(0)
11 )h

(0)
1k

2
+ 2t

(0)
1k h

(0)
1k h

(0)
11 − s

(0)
11 t

(0)
1k

2
+ 2t

(0)
1k h

(0)
1k

)
.

(75)

Next, we have

f
(1)
ki = dTkA−11 ei = dTkA−10 ei −

[
‖µ‖2h(0)1k t

(0)
1k h

(0)
1k

] adj(B)

det0

‖µ‖2g
(0)
1i

g
(0)
1i

f
(0)
1i


= f

(0)
ki −

1

det0
(?)

(0)
f , (76)

where we define

(?)
(0)
f = (‖µ‖22 − t

(0)
11 )h

(0)
1k g

(0)
1i + t

(0)
1k g

(0)
1i + t

(0)
1k h

(0)
11 g

(0)
1i + h

(0)
1k f

(0)
1i + h

(0)
1k h

(0)
11 f

(0)
1i − s

(0)
11 t

(0)
1k f

(0)
1i .

Finally, we have

g
(1)
ji = vTj A−11 ei = vTj A−10 ei −

[
‖µ‖2s(0)j1 h

(0)
j1 s

(0)
j1

] adj(B)

det0

‖µ‖2g
(0)
1i

g
(0)
1i

f
(0)
1i


= g

(0)
ji −

1

det0
(?)

(0)
gj , (77)

where we define

(?)
(0)
gj = (‖µ‖22 − t

(0)
11 )s

(0)
1j g

(0)
1i + g

(0)
1i h

(0)
11 h

(0)
j1 + g

(0)
1i h

(0)
j1 + s

(0)
1j f

(0)
1i + s

(0)
1j h

(0)
11 f

(0)
1i − s

(0)
11 h

(0)
j1 f

(0)
1i .

G One-vs-all SVM

In this section, we derive conditions under which the OvA solutions wOvA,c interpolate, i.e, all data
points are support vectors in Eqn. (4).

G.1 Gaussian mixture model

As in the case of the multiclass SVM, we assume equal priors on the class means and equal energy
(Assumption 1).
Theorem 7. Assume that the training set follows a multiclass GMM with noise covariance Σ = Ip
and Assumption 1 holds. Then, there exist constants c1, c2, c3 > 1 and C1, C2 > 1 such that the
solutions of the OvA-SVM and MNI are identical with probability at least 1 − c1

n − c2ke
− n

c3k2

provided that

p > C1kn log(kn) + n− 1 and p > C2n
1.5‖µ‖2. (78)

We can compare Eqn. (78) with the corresponding condition for multiclass SVM in Theorem 2
(Eqn. (16)). Observe that the right-hand-side of Eqn. (78) above does not scale with k, while the
right-hand-side of Eqn. (16) scales with k as k3. Otherwise, the scalings with n and energy of
class means ‖µ‖2 are identical. This discrepancy with respect to k-dependence arises because the
multiclass SVM is equivalent to the OvA-SVM in Eqn. (24) with unequal margins 1/k and (k− 1)/k
(as we showed in Thm. 1).
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Proof sketch. Recall from Appendix C that we derived conditions under which the multiclass SVM
interpolates the training data by studying the related symmetric OvA-type classifier defined in
Eqn. (11). Thus, this proof is similar to the proof of Theorem 2 provided in Appendix C.2. The only
difference is that the margins for the OvA-SVM are not 1/k and (k − 1)/k, but 1 for all classes.
Owing to the similarity between the arguments, we restrict ourselves to a proof sketch here.

Following Appendix C.2 and Eqn. (35), we consider yi = k. We will derive conditions under which
the condition(

(1 + h
(−k)
kk )g

(−k)
ki − s(−k)kk f

(−k)
ki

)
+ C

∑
j 6=k

(
(1 + h

(−j)
jj )g

(−j)
ji − s(−j)jj f

(−j)
ji

)
> 0, (79)

holds with high probability for some C > 1. We define

ε :=
n1.5‖µ‖2

p
≤ τ,

where τ is chosen to be a sufficiently small constant. Applying the same trick as in Lemma 2 (with
the newly defined parameters ε and τ ) gives us with probability at least 1− c1

n − c2ke
− n

c3k2 :

(79) ≥
((

1− C1ε√
k
√
n

)(
1− 1

C2

)
1

p
− C3ε

n
· n
kp

)
− k

C4

((
1 +

C5ε√
k
√
n

)
1

kp
− C6ε

n
· n
kp

)
≥
(

1− 1

C9
− C10ε√

k
√
n
− C11ε

k
− C12ε

)
1

p

≥ 1

p

(
1− 1

C9
− C0τ

)
, (80)

for some constants Ci’s > 1. We used the fact that |g(0)ji | ≤ (1/C)(1/(kp)) for j 6= yi with

probability at least 1− c1
n − c2ke

− n
c3k2 provided that p > C1kn log(kn) + n− 1, which is the first

sufficient condition in the theorem statement.

G.2 Multinomial logistic model

Recall that we defined the data covariance matrix Σ =
∑p
i=1 λiviv

T
i = V ΛV T and its spectrum

λ = [λ1 · · · λp]. We also defined the effective dimensions d2 :=
‖λ‖21
‖λ‖22

and d∞ := ‖λ‖1
‖λ‖∞ .

The following result provides sufficient conditions under which the OvA SVM and MNI classifier
have the same solution with high probability under the MLM.

Theorem 8. Assume that the training set follows a multiclass MLM. There exist constants c and
C1, C2 > 1 such that, if the following conditions hold:

d∞ > C1n log(kn) and d2 > C2(log(kn) + n), (81)

the solutions of the OvA-SVM and MNI are identical with probability at least (1− c
n ). In the special

case of isotropic covariance, the same result holds provided that

p > 10n log(
√
kn) + n− 1, (82)

Comparing this result to the corresponding results in Theorems 3 and 4, we observe that k now only
appears in the log function (as a result of k union bounds). Thus, the unequal 1/k and (k − 1)/k
margins that appear in the multiclass-SVM make interpolation harder than with the OvA-SVM, just
as in the GMM case.

Proof sketch. For the OvA SVM classifier, we need to solve k binary max-margin classification
problems, hence the proof follows directly from [MNS+20, Theorem 1] and [HMX21, Theorem 1]
by applying k union bounds. We omit the details for brevity.
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H One-vs-one SVM

In this section, we first derive conditions under which the OvO solutions interpolate, i.e, all data
points are support vectors. We then provide an upper bound on the classification error of the OvO
solution.

In OvO classification, we solve k(k− 1)/2 binary classification problems, e.g., for classes pair (c, j),
we solve

wOvO,(c,j) := arg min
w
‖w‖2 sub. to wTxi ≥ 1, if yi = c; wTxi ≤ −1 if yi = j, ∀i ∈ [n].

(83)

Then we apply these k(k − 1)/2 classifiers to a fresh sample and the class that got the highest +1
voting gets predicted.

We now present conditions under which every data point becomes a support vector over these k(k −
1)/2 problems. We again assume equal priors on the class means and equal energy (Assumption 1).
Theorem 9. Assume that the training set follows a multiclass GMM with noise covariance Σ = Ip
and Assumption 1 holds. Then, there exist constants c1, c2, c3 > 1 and C1, C2 > 1 such that the
solutions of the OvA-SVM and MNI are identical with probability at least 1 − c1

n − c2ke
− n

c3k2

provided that

p > C1n log(kn) + (2n/k)− 1 and p > C2n
1.5‖µ‖2. (84)

Proof sketch. Note that the margins of OvO SVM are 1 and −1, hence the proof is similar to the
proof of Theorem 7. Recall that in OvO SVM, we solve k(k − 1)/2 binary problems and each
problems has sample size 2n/k with high probability. Therefore, compared to OvA SVM which
solves k problems each with sample size n, OvO SVM needs less overparameterization to achieve
interpolation. Thus the first condition in Eqn. (78) reduces to p > C1n log(kn) + (2n/k)− 1.

We now derive the classification risk for OvO SVM classifiers. Recall that OvO classification solves
k(k − 1)/2 binary subproblems. Specifically, for each pair of classes, say (i, j) ∈ [k] × [k], we
train a classifier wij ∈ Rp and the corresponding decision rule for a fresh sample x ∈ Rp is ŷij =
sign(xT ŵij). Overall, each class i ∈ [k] gets a voting score si =

∑
j 6=i 1ŷij=+1. Thus, the final

decision is given by majority rule that decides the class with the highest score, i.e., arg maxi∈[k] si.
Having described the classification process, the total classification error Pe for balanced classes is
given by the conditional error Pe|c given the fresh sample belongs to class c. Without loss of generality,
we assume c = 1. Formally, Pe = Pe|1 = Pe|1(s1 < s2 or s1 < s3 or · · · or s1 < sk). Under the
equal prior and energy assumption, by symmetry and union bound, the conditional classification risk
given that true class is 1 can be upper bounded as:

Pe|1(s1 < s2 or s1 < s3 or · · · or s1 < sk)

≤Pe|1(s1 < k − 1) = Pe|1(∃j s.t. ŷ1j 6= 1) ≤ (k − 1)Pe|1(ŷ12 6= 1).

Therefore, it suffices to bound Pe|1(y12 6= 1). We can directly apply Theorem 5 with changing k to 2
and n to 2n/k.
Theorem 10. Let Assumption 2 and the condition in Eqn. (84) hold. Further assume constants

C1, C2, C3 > 1 such that
(
1 − C1

√
k
n −

C2n
kp

)
‖µ‖2 > C3. Then, there exist additional constants

c1, c2, c3 and C4 > 1 such that the OvO SVM solutions satisfies:

Pe|c ≤ (k − 1) exp

−‖µ‖22
((

1− C1

√
k
n −

C2n
kp

)
‖µ‖2 − C3

)2

C4

(
‖µ‖22 + kp

n

)
 (85)

with probability at least 1− c1
n − c2ke

− n
c3k2 , for every c ∈ [k]. Moreover, the same bound holds for

the total classification error Pe.
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