STEP: Learning N:M Structured Sparsity Masks from Scratch
with Precondition

Yucheng Lu! Shivani Agrawal?> Suvinay Subramanian? Oleg Rybakov >
Christopher De Sa' Amir Yazdanbakhsh*

Abstract

Recent innovations on hardware (e.g. Nvidia
A100) have motivated learning N:M structured
sparsity masks from scratch for fast model infer-
ence. However, state-of-the-art learning recipes in
this regime (e.g. SR-STE) are proposed for non-
adaptive optimizers like momentum SGD, while
incurring non-trivial accuracy drop for Adam-
trained models like attention-based LLMs. In this
paper, we first demonstrate such gap origins from
poorly estimated second moment (i.e. variance)
in Adam states given by the masked weights. We
conjecture that learning N:M masks with Adam
should take the critical regime of variance estima-
tion into account. In light of this, we propose
STEP, an Adam-aware recipe that learns N:M
masks with two phases: first, STEP calculates
areliable variance estimate (precondition phase)
and subsequently, the variance remains fixed and is
used as a precondition to learn N:M masks (mask-
learning phase). STEP automatically identifies
the switching point of two phases by dynamically
sampling variance changes over the training trajec-
tory and testing the sample concentration. Empir-
ically, we evaluate STEP and other baselines such
as ASP and SR-STE on multiple tasks including CI-
FAR classification, machine translation and LLM
fine-tuning (BERT-Base, GPT-2). We show STEP
mitigates the accuracy drop of baseline recipes and
is robust to aggressive structured sparsity ratios.

1. Introduction

Overparameterized Deep Neural Networks (DNNs) have
shown promising performance on various applications,

"Department of Computer Science, Cornell University
2Google *Google DeepMind. Correspondence to: Yucheng Lu
<yl2967@cornell.edu>.

Proceedings of the 40" International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

such as language modeling (Brown et al., 2020), translation
(Vaswani et al., 2017) and image classification (Liu et al.,
2021). However, modern DNNs usually contain millions
of billions of parameters (e.g. BERT (Devlin et al., 2018)
and GPT (Brown et al., 2020)), which hinders the inference
scalability. Recent innovation on hardware architecture
suggests structured sparsity is a promising way of alleviating
this issue by deploying N:M masks during inference (N
out of consecutive M elements in the the weight tensor are
kept while others are pruned). N:M masks accelerate model
inference with regular sparse structures (Pool, 2020; Fang
etal., 2022). Compared to traditional unstructured sparsity
(Frankle and Carbin, 2018; Lee et al., 2018; Evci et al., 2020)
or channel/block structured sparsity algorithms (Wen et al.,
2016; Lietal.,2016; He et al., 2017), adopting N:M masks
has negligible evaluation degradation and progressively
co-design algorithm (sparse matrix multiplication) and
hardware (e.g. Nvidia Ampere Sparse Tensor Core),
reaching a desirable trade-off.

Following this line of research, recent studies indicate it is
critical (and also possible) to learn these N:M masks from
scratch, without additional training or fine-tuning steps. Rep-
resentative methods in this domain include SR-STE (Zhou
etal., 2021), DominoSearch (Sun et al., 2021) and Decaying
Mask (Kao et al., 2022), which sparsify the model weights
during each forward pass in training to compute gradients,
and update them to models. While these methods demon-
strate promising results with momentum SGD, their perfor-
mance over adaptive optimizers, such as Adam, is less satis-
factory (Section 3). This implies the benefits of sparsity are
largely traded-off by adaptivity in training, leading to slow
convergence on many state-of-the-art models (Zhang et al.,
2020). In light of this, in this paper we answer the question:

Can we learn N:M structured
sparsity masks with Adam, without model degradation?

Motivated by the insights from recent studies on critical
learning regime of Adam in a distributed learning environ-
ment (Tang et al., 2021; Lu et al., 2022), we first hypothesize
that with masked weights, the back propagation leads
to noisy gradients and gives a poorly estimated variance
(running average of second moment gradients) in the

STEP: Learning N:M Structured Sparsity Masks from Scratch with Precondition

Adam states. It essentially breaks the proper scaling of the
coordinate-wise learning rate.

To alleviate this, we propose STEP that learns N:M masks
with two phases: 1) in the first phase, no mask is applied
and STEP explores the gradient space to obtain a reliable
variance estimate (precondition phase); 2) in the second
phase, such estimate remains fixed and is used to learn N:M
masks (mask-learning phase). While previous works have
had similar ideas on two-phase training paradigm under the
context of low-precision training (Tang et al., 2020; 2021;
Lu et al., 2022), the switching point of two phases is still
decided by heuristics or redundant hyperparameter tuning.
In contrast, STEP leverages a novel AutoSwitch subroutine
that samples the variance update along the training trajectory
and tests their concentration.

Our contributions in this paper can be summarized as follows:

e We introduce STEP, a recipe for learning N:M structured
sparsity masks from scratch with Adam. STEP addresses
the accuracy drop of state-of-the-art recipes (e.g. SR-
STE) with Adam. STEP involves a novel subroutine
named AutoSwitch, which automatically separates the
training into precondition and mask learning phases by
dynamically testing variance concentration.

e We provide in-depth analysis on why using precondi-
tioning in Adam is justifiable, and prove in theory that
under the same conditions given in original Adam paper
(Kingma and Ba, 2014), the precondition error from
STEP remains bounded and the averaged accumulated
approximation error is decreasing over time.

e We perform extensive experiments on CIFAR image
classification, WMT machine translation, fine-tuning
BERT on GLUE and GPT-2 on WikiText-2/-103 that
STEP mitigates the accuracy drop of baseline algorithms,
and is robust to aggressive structured sparsity ratios.

2. Related Work

Recipes for Learning N:M Structured Sparsity Masks
from Scratch. With the proposition of Sparse Tensor
Cores introduced in the NVIDIA Ampere GPU architecture
(Mishra et al., 2021), there has been an increasing interest of
learning N:M structured sparsity masks from scratch. Zhou
et al. (2021) initiatively proposes SR-STE that leverages
sparse refinement when evaluating gradients via masked
weights (termed Straight Through Estimator). Subsequently,
Sun et al. (2021) and Kao et al. (2022) extend SR-STE
towards using adaptive N:M ratios across layers and steps.
While these works focus on learning the N:M masks from
scratch, other works have separate discussions. For instance,
Holmes et al. (2021) proposes a general framework to
learn the structured sparsity mask on a pre-trained model
specifically. Hubara et al. (2021) aims to find N:M masks to

speed up training rather than inference. Pool and Yu (2021)
advocates a pre-permutation yields better results for N:M
sparsity and Chmiel et al. (2022) discusses the structured
sparsity on activations.

Critical Learning Regime for Adam Variance. The
existence of a critical learning regime during neural network
training has been observed by various studies (Achille
et al., 2018; Frankle and Carbin, 2018; Gur-Ari et al.,
2018). Many prior works including (Jastrzebski et al., 2018;
Jastrzebski et al., 2020) highlight that the early phase of
training with SGD determines the difficulty of entire training.
Lately, studies including (Agarwal et al., 2021; Tang et al.,
2020; 2021) suggest the critical learning regime also exists
for Adam-type optimizers (Kingma and Ba, 2014) in a
distributed learning environment. More specifically, it has
been pointed out that if quantized communication is used
in distributed Adam, then we must run dense Adam for the
first few iterations to obtain a reliable variance, followed by
iterations where quantization is actually applied (Tang et al.,
2020; 2021; Li et al., 2021; Lu et al., 2022). Despite the
similarity in heuristics to our works, accurately identifying
the critical learning regime (i.e. precondition phase) is
much more crucial in learning N:M masks: early exiting
the precondition phase could lead to unreliable variance
estimate while late exit could result in poorly-trained N:M
masks. This makes the previous methods on hand-picking
the phase length for preconditioning highly unreliable.

3. Preliminary

In this section, we give a full description on the problem
formulation. We first provide an overview on the Adam
updates and fundamentals to learn N:M masks from
scratch with Straight Through Estimator (STE). We also
introduce our main baseline SR-STE (Zhou et al., 2021), the
state-of-the-art recipe to learn N:M masks. We conclude this
section by showing naively applying SR-STE over Adam
incurs non-trivial accuracy drop when training ResNet18 on
CIFAR10 (He et al., 2016) and DenseNet121 on CIFAR100
(Huang et al., 2017).

Overview of Adam Updates. Model training in general
can be formulated as an optimization problem, i.e., finding
a set of target model weights w* € R? that minimizes the
loss function:

w" =arg min [f(w) =E¢.p f(w;)]. (D
where D denotes the training set and f(w;() is the loss in-
curred over sample ¢ given d-dimensional model parameters
w. The Adam optimizer (Kingma and Ba, 2014) solves this
problem iteratively with an adaptive learning rate schedule.
Concretely, with some initialized value w1, for any ¢t > 1,

STEP: Learning N:M Structured Sparsity Masks from Scratch with Precondition

o) o)

©90.0 ©90.0

]]

0 87. 0 87.

2875 2875

S8s.0 S8s5.0

® ®

E 82.5 —— Dense w/ Momen-SGD E 82.5 —— Dense w/ Adam

g —— SR-STE w/ Momen-SGD & —— SR-STE w/ Adam
80.0 0 80.0 0

20 40 20 40
Steps (1e3) Steps (1e3)

(a) ResNet18 on CIFAR10

o
(=]
o
=]

u
o
u
o

—— Dense w/ Adam
—— SR-STE w/ Adam

—— Dense w/ Momen-SGD
—— SR-STE w/ Momen-SGD

Validation Accuracy
Validation Accuracy

N
o
B
o

o
o

10 20 30 40 50
Steps (1e3)

(b) DenseNet121 on CIFAR100

10 20 30 40 50
Steps (1e3)

Figure 1: Figures demonstrating the state-of-the-art N:M masks learning recipe SR-STE (Zhou et al., 2021) works
with momentum SGD but fails to reach target accuracy when trained with Adam on CIFAR classification tasks. In this
demonstration, 1:4 (N=1, M=4) sparsity is applied on all the model weights using the exact implementation from (Zhou
etal., 2021). Note that here we are not comparing the performance between momentum SGD and Adam, but rather focus
on the accuracy gap between dense and SR-STE under two different optimizers.

the update formula of Adam' can be summarized as:

(Sample Gradient) g, =V f(wy;(), ¢~D, 2)
(Update m) my 41 = S1my+(1—51)g;, 3)
(Update v) vy 1 = Bov+(1—B2)(g,)?, 4
(Correct Bias) 1441 = %, o)
1-5%
(Correct Bias) 0,41 = Utﬂt , (6)
1-55
(Update Model) w; 41 =w;— L OMy41,

VOip1+e€
——
adaptive learning rate

(N
where 7, is the learning rate at step ¢, € is a small constant to
prevent zero division, 3, and (32 are tunable decaying factors.
The running average of first and second gradient moments
m and v are usually referred to as momentum and variance,
respectively. The Adam optimizer (and its variants) has been
adopted as the folklore method to train many models since its
proposition. In recent studies like (Zhang et al., 2020), it has
been found that Adam is critical for many attention-based
foundation models to achieve state-of-the-art model quality.

Overview of SR-STE. Learning N:M structured sparsity
masks from scratch refers to generating a set of N:M masks
at the end of model training, without any additional training
steps, and applying these masks during inference. STE
(Bengio et al., 2013) is a basic method to solve this problem
by directly masking the model weights during forward
passes, making the gradients mask-aware. This can be
formally expressed as: Vi > 1

9, =V (1L Ow;), (®)
where II, € R? is an N:M mask obtained based on the
magnitude of w;. Comparing Equation (2) and Equation (8),
the main difference in STE is that the gradient is now

'Note that in Adam, operations like division should act
element-wise.

computed on the masked weights, while the mask is wy
specific at any training step ¢.

Based on STE, SR-STE (Zhou et al., 2021) advocates a
regularized version of gradients with masking. Specifically,
with a given regularizing coefficient A, SR-STE estimates
the gradient as:

9:=V (i Ow;G) +A(1-11) Owy,)
where 1 denotes all-one vector in R, It has been shown in
(Zhou et al., 2021) that proper refinement and a well-tuned
A mitigates the accuracy drop of momentum SGD over plain
STE.

Issue on SR-STE with Adam. While the majority of re-
sults shown in (Zhou et al., 2021) demonstrates the effective-
ness of SR-STE over momentum SGD, here we identify even
on simple CIFAR tasks, SR-STE could lead to unsatisfactory
sparse models when trained with Adam. We plot the results in
Figure 1, which compares the performance of dense training
and SR-STE on two models (ResNet18 and DenseNet121)
on CIFAR10/100 datasets. We observe that when training
a model with Adam, the masks learned by SR-STE incur
non-trivial accuracy drop during model inference.

4. STEP: STE with Precondition

We proceed to introduce the approach of addressing the
aforementioned issue of SR-STE with Adam. The intuition
of our method is based on the observation on variance change
during model training. We justify our approach with theory
under the same condition in (Kingma and Ba, 2014), and
illustrate its practicality.

A Closer Look at Variance Change. Motivated by the re-
cent studies on distributed Adam (Li et al., 2021; Tang et al.,
2021; Luetal., 2022), we take a closer look at the variance
change in the previous tasks and plot them in Figure 2. We
observe that while in both dense training and SR-STE, the
variance norm first increases and then decreases, the norm in

STEP: Learning N:M Structured Sparsity Masks from Scratch with Precondition

Algorithm 1 Proposed STEP Algorithm

Require: Initial time step ¢t = 0, initialized model weights wo,
Adam-related hyperparameters: {(81,082), € for preventing zero
division, initialized momentum and variance mo =0, vo=0}.

1: while True do
2: Sample the data batch (;.

3: Compute stochastic gradient g, =V f (w¢;(t).

4: Update the momentum: ;1 =S31m¢+(1—[1)g,.

5: Update the variance: v;41 = Bav; +(1—52)(g,)%.

6.

7

8

Correct momentum bias: 141 =m+1/(1—).
Correct variance bias: 9441 =vs11/(1—55).
: Update the weights: w¢+1 =w¢ —veMet1//Ve41+¢€.
9: Update the time t =t+1.
10: if ¢ is the switching point then
11: Set the preconditioned variance v* = v+ and break.
12: endif
13: end while
14: whilet <7 do
15: Sample the data batch ;.
16: Compute N:M mask II; based on the current weights w;.
17: Compute stochastic gradient g, =V f (IL, ©w¢;(y).
18: Update the momentum: myy1 =B1m:+(1—51)g,.
19: Correct momentum bias: 141 =m+1/(1—0}).
20: Update the weights: w1 =ws—Y:M41//V* +e.
21: Update the time t=t+-1.
22: end while
23: Compute N:M mask II7 based on the current weights wr.
24: return II+ ©wr for inference.

—— Dense
—— SR-STE

10 20 30 40 50 0 10
Steps t (1e3)

(a) ResNet18 on CIFAR10 (b) DenseNet121 on CIFAR100

20 30 40 50
Steps t (1e3)

Figure 2: Figure showing variance v; (running average of
second moment) change in the Adam states, in the CIFAR
tasks shown in Figure 1. In dense training, the variance
gradually becomes small in magnitude, which suggests the
model converges. In contrast, in SR-STE, the variance norm
remains large, which suggests the gradients are noisy even
in later stage of the training, and thus it scales down the
adaptive learning rates.

SR-STE remains large at later stage of learning. This implies
the noise obtained in the gradients remains large and essen-
tially scales down the learning rate (Kingma and Ba, 2014).

This motivates us to think extensively on the previous
success in distributed learning: can we first run dense Adam
to obtain a reliable variance, and then learn the N:M masks
over the preconditioned variance? While this is mainly
based on heuristics in previous works, we next illustrate it
is well-justified in theory.

Theoretical Motivation. To motivate preconditioned
variance, we start from the original objective of having a
variance scaler on the learning rate. In the original Adam
paper (Kingma and Ba, 2014), it is shown that v, is advocated
to capture the expectation of the gradient magnitude at step
t. In fact, Kingma and Ba (2014) provably shows that if
the gradient square g7 is stationary, i.e. E[g?] = E[g?] for
any i and j, then E[9,] = E[g?] so that ©; can be used as an
estimator for g7. Following this intuition, we next prove
that under the same condition, the averaged approximation
error of leveraging a preconditioned variance estimate is
decreasing over time.

Theorem 1. Suppose g? is stationary and has bounded
norm ||g?|lec < G for some constant G > 0. Given a

sufficient precondition step to such that to >logg, (1 — %)

then for any step t >t it holds with probability at least 1 -6,

ool < 10201 s)

Theorem 1 provides the worst-case accumulated error of
using preconditioned v;, to estimate v; (Vt >tp). Observing
the bound given in Theorem 1, conditioned on ¢y, the
maximal accumulated change to a variance coordinate is
sublinear to time ¢ —t(. This suggests when we use vy, to
estimate v, for any ¢ > 0, the average error obtained in each
step is decreasing over time with rate O(1/v/t—tp).

On the other hand, the coefficient (1 — 32)? is a very small
number both theoretically and empirically. In theory, it is
provably shown that to ensure Adam convergence, 1 — 5o
has to be small enough such that 1 — 8 = O(N~3), where
N is the size of the training dataset (Zhang et al., 2022), and
having a larger 1 — 35 could lead to divergence. In practice
(32 is often set to a value such that (1 — 35)? reduces t —tg
by orders of magnitude: For instance, the default setting of
B2 is 0.999 given in the original Adam paper (Kingma and
Ba, 2014) and most of the deep learning libraries (Paszke
etal., 2019; Heek et al., 2020), leading to (1—32)?=10"5;
on foundation models like GPT-3 and Megatron, (1 — 33)?
is around 10~* (Brown et al., 2020; Smith et al., 2022).

Building upon this, the overall structure of STEP algorithm
is shown in Algorithm 1 that separates the training into two
phases. In the first phase (the first while loop), the normal
Adam is used and the variance estimate is actively updated;
in the second phase (the second while loop), the variance
estimate obtained from phase I is then used as a precondition
to learn the mask with Straight Through Estimator (STE).

5. Auto Switch Between two Phases

In the previous section, we’ve discussed the theoretical
motivation of using preconditioned variance on learning N:M
masks with Adam. However, the central question is still left

STEP: Learning N:M Structured Sparsity Masks from Scratch with Precondition

Algorithm 2 Proposed AutoSwitch subroutine for STEP

Require: Sample size T\, = | (1 — 32) "] given by STEP, the
current step ¢, (Optional: lower bound 71in and upper bound
Tmax for clipping).

1: Compute the current sample on the variance change:

A lve—veall;

OptionI: Z; =

Option II: Z; =exp(d ™" ||log(vi —v¢—1)|1).

2: Estimate mean over the sliding window:

Z=T," Z;.

Jj=t—Tyw+1
: if (Optional) Use Clipping then
return ¢ > Tinax Or Z <eand t > Tyin.
else

return Z < e.
. end if

AR A

g
=)

= 1“1 (19 8)
v: 1/l1 (1e-8)
-
5

o

‘HV:
‘HVz

Mﬁ,_m

10 10 40 50
Steps t(1e3) Steps t (1e3)

(a) ResNet18 on CIFAR10 (b) DenseNet121 on CIFAR100

Figure 3: Figure showing per-coordinated variance differ-
ence d~!||v; — v;_1]|1 over steps (in blue curves), in the
CIFAR tasks shown in Figure 1. We also plot the € (in the
red line). We observe the update to each coordinate of the
variance is quickly dominated by the e.

open: how should we set the switching point ¢y in Theorem 1?
As partially discussed in Section 1, while identifying reliable
Adam variance during training is an established problem,
most of the existing methods solve this via heuristics or
hyperparameter tuning (Tang et al., 2021; Li et al., 2021;
Lu et al., 2022). In this section, we introduce AutoSwitch, a
subroutine that automatically decides the switching point be-
tween precondition and mask learning phases by testing the
variance change concentration along the training trajectory.

Baseline Methods and Their Limitations. We start with
the methods in the literature on identifying the switching
point. A straightforward way to do this is leveraging
standard hyperparameter tuning protocol such as grid
search or random search (Bergstra and Bengio, 2012):
setting a few candidate steps and iterate over them and
choose the one yielding best performance. However, adding
hyperparameters heavily relies on heuristics and requires
certain domain knowledge for practitioners.

There have been a few efforts on identifying a good switching

point by monitoring the variance metrics. The first is to mon-
itor the relative error as proposed in (Agarwal et al., 2021),
which identifies step ¢ as the end of the critical regime if:
vl =llve-1ll]
or1]
where the bound 0.5 is given by (Agarwal et al., 2021).
The intuition is to use the tensor norm difference to
approximate the tensor difference (note that storing v; and
vy_ directly could incur non-trival memory overhead due
to the high-dimensionality). Another similar method is
proposed in (Tang et al., 2021), which suggests a staleness
comparison on the variance norm. Concretely, Tang et al.
(2021) identifies step ¢ as the end of the critical regime if:

[velly

[ve-1a-p)-11 14
where the criteria 0.96 is provided by (Tang et al., 2021).

<0.5, (10)

>0.96, (11)

The baseline methods (Equation (10) and (11)) are limited in
practice in three-fold: (i) when evaluating the switching point
t, it can be easily affected by the noise at step ¢; (ii) Although
both of the methods require relative metrics, the thresholds
are still hand-picked, and thus introducing additional noise
to the criterion; (iii) Both of the methods use the tensor norm
over all the coordinates. On one hand, norm can be a good in-
dicator for status of variance but not for variance changes. On
the other hand, the switching point can easily be mistakenly
missed due to the outliers among the coordinates, especially
on large models, where the order of variance magnitude
varies significantly (Xiong et al., 2020; Liu et al., 2020).

AutoSwitch. The main procedures of AutoSwitch are
summarized in Algorithm 2. To cope with the gradient noise
and outlier coordinates, AutoSwitch samples over time ¢ the
per-coordinate variance change via arithmetic mean (Option
I) or geometric mean (Option II). While geometric mean is
robust to outliers, in practice we found arithmetic mean is suf-
ficient for deciding the switching point. We set the sampling
window length to be | (1—32)~!]. This quantity is motivated
from the Markov Chain theory: the mixing time of the

Markov Chain defined over v, is asymptotically O (7)

While sampling mitigates the noise from single step eval-
uation, it still remains unclear what metric we should be
applying to decide the phase length. Note that in the base-
line works (Equation (10) and (11)), hand-picking values are
applied. Ideally, we should leverage some metrics from the
Adam optimizer that is adapted to each task. Based on this,
AutoSwitch uses the € from Adam as the signal. The € is
originally used in Adam to prevent zero division. In some
research it has been found that it largely decides the model
convergence (Yuan and Gao, 2020). To justify our motivation,
we plot the per-coordinate variance change and e in Figure 3.
We observe the update to each coordinate of the variance is
quickly dominated by the € as the training proceeds.

STEP: Learning N:M Structured Sparsity Masks from Scratch with Precondition

o
%)

90.0

o
=]

87.5

w
[l

85.0

—— Dense

—— ASP(1:4)

—— SR-STE(1:4)

—— STEP(1:4)

10 20 30 40 50
Steps (1e3)

—— Dense
—— ASP(1:4)
—— SR-STE(1:4)
—— STEP(1:4)
40

ation Accuracy

u
=)

d
oo
N
%)
Validation Accuracy

Vali
IS
w

o

80.0) 20
Steps (1e3)

(a) ResNet18 on CIFAR10 (b) DenseNet121 on CIFAR100

Figure 4: Figure showing how STEP mitigates the gap of
baseline algorithm ASP (Mishra et al., 2021) and SR-STE
(Zhou et al., 2021). In this experiment, 1:4 sparsity is used.
The switching point of STEP is decided by the AutoSwitch
subroutine. Note that during the precondition phase of
STEP, the model does not involve the mask learning while
the model is evaluated with sparsity (for fair comparison to
baseline models). And thus the evaluation accuracy during
that phase is low compared to the mask learning phase.

©
=}

<)

o
o
=]

— Dense — Dense

—— ASP(1:8) —— ASP(1:8)

—— SR-STE(1:8) —— SR-STE(1:8)

—— STEP(1:16) | —— STEP(1:16)

0 10 20 30 40 50 0 10 20 30 40 50
Steps (1e3) Steps (1e3)

(a) ResNet18 on CIFAR10 (b) DenseNet121 on CIFAR100

<
w
Validation Accuracy
w
o

Validation Accuracy
3
IS
o

~
5]

Figure 5: Figure comparing the performance of STEP
under aggressive sparsity ratio. Comparing the results
with Figure 4, it suggests the STEP recipe is robust to
aggressive sparsity ratio up to 1:16, while baselines degrade
the evaluation accuracy at 1:8.

Clipping for Tight Training Budget. While Algorithm 2
provides a statistical way of identifying the switching point,
in practice, varying training budgets (e.g. model fine-tuning)
are usually considered. We can use clipping to clamp a
computed switching point ¢y between given 1y, and T}y x.
The clipping bounds are two optional variables that regu-
larize the AutoSwitch subroutine. By default, we suggest
using Tinin = 0.17 and T, = 0.57, these two values are
motivated by Geweke’s convergence diagnostic in MCMC
theory (Geweke et al., 1991). Recall that the update of v,
forms a markov chain, and so in practice, the concentration
of the first 10% and last 50% of the chain can be used as a
good indicator on the convergence (Geweke et al., 1991).

6. Experiment

In this section we evaluate the effectiveness of proposed
STEP and AutoSwitch on various tasks, comparing it to
other baseline recipes of learning N:M masks. We also
show that STEP can be easily extended to incorporate other

Table 1: Comparing AutoSwitch (Algorithm 2) with two
baseline approaches Equation (10) (Agarwal et al., 2021)
and (11) (Tang et al., 2021). We measure the average
change within 1k steps after the precondition ¢, identified
by different approaches: 1073 Z?:tomoo [|lverr —vell1- A
lower number indicates better estimation for the switching
points. The numbers for each experiment are averaged over

5 different random seeds.

Task Eq. (10) Eq.(11) AS

ResNet18/CF10 1.58e-1 5.58e-2 0.79e-2
DenseNet121/CF100 5.26e-1 1.28e-2 0.46e-2
BERT-Large (PreT) 492e-6 2.71e-7 2.28e-7

techniques such as layer-wise sparsity (Sun et al., 2021). All
of the experiments run on a Google Cloud TPUv3-8 virtual
machine.

Overview of Tasks. Throughout these sections, we adopt
the following tasks for the evaluation: (1) Training various
vision models (ResNet18, Densenet121) on CIFAR10/100
dataset (Krizhevsky et al., 2009). (2) Finetuning BERT-
Base(Devlin et al., 2018) on the GLUE benchmark (Wang
etal., 2018). (3) Training a 6-layer Transformer model on
the WMT17 De-En Translation task following (Vaswani
et al., 2017). (4) Finetuning GPT-2 model (Radford et al.,
2019) on Wikitext-2 and Wikitext-103 (Merity et al., 2016).

Hyperparameters. We apply the grid search over the fol-
lowing hyperparameters on each task. Notice that we only
tune the hyperparameters for the baselines, but not for STEP.
That is, STEP reuses the hyperparameters tuned for SR-STE.
This suggests STEP can provide in-place improvement over
the baseline recipes. For all the Adam-specific hyperparam-
eters we adopt the default values: {1 =0.9, 52 =0.999, e=
le—8}. For the CIFAR tasks, we adopted batch size 128 and
tune the learning rate from {le—4, 5e—5, le—5}; for BERT
and GPT-2 fine-tuning we follow (Tang et al., 2021) and
tune batch size from {8,16,32} and learning rate from {1le—
4,5e—5,1e—>5}; for WMT machine translation we follow the
exact setup2 of (Vaswani et al., 2017) and (Kao et al., 2022).

The Effectiveness of AutoSwitch. We start from eval-
uating the effectiveness of AutoSwitch over baseline
methods as introduced in Section 5. Concretely, we compare
Algorithm 2 with Equation (10) proposed by (Agarwal et al.,
2021) and Equation (11) proposed by (Tang et al., 2021). For
each task, we first profile the ||v¢||2, ||[v¢||1 and ||vsr1 —ve||1
for all the ¢ > 1 since these suffice for running the three
approaches. Then for any ¢, as a precondition step found by
each method, we compute the average variance change in the

2 A more detailed description can be found in Section 4 (Kao
etal., 2022).

STEP: Learning N:M Structured Sparsity Masks from Scratch with Precondition

Table 2: Finetuning BERT-Base on the GLUE development set. The original results are from (Devlin et al., 2018). The Dense
results are reproduced by ours with no sparsity. For different recipes (ASP, SR-STE and STEP), 2:4 sparsity is applied on
all the linear modules (including attention, intermediate and output layer of BERT.) The scores are the median scores over
10 runs with different seeds. We observe compared to baselines, STEP has a negligible drop on the average score compared

to the dense counterpart.

RTE MRPC STS-B CoLA SST-2 QNLI QQP MNLI-m MNLI-mm Avg Score

Original 66.4 84.8 85.8 52.1 93.5 90.5 89.2 84.6 83.4 81.1
Dense 65.0 85.1 85.2 51.0 923 91.1 91.0 84.6 83.6 81.0
ASP 574 79.2 81.7 472 88.5 83.7 8438 80.6 79.5 75.8
SR-STE 55.6 81.3 88.2 47.8 90.2 86.6 90.1 82.1 82.9 78.3
STEP 62.4 84.7 88.7 50.4 91.8 89.2 90.9 84.2 83.9 80.7

Table 3: Training different language modeling tasks on o7 o7

Wikitext-2(-103). For different recipes (ASP, SR-STE and B g

STEP), 2:4 sparsity is applied on all the Conv1D modules ge g

of GPT2. The numbers are averaged evaluation perplexity S S

over 10 runs Wlth different SeedS. § —— Decay Mask (w/o dense) § —— Decay Mask (w/o dense)

§ —— Decay Mask (w/ dense) g —— Decay Mask (w/ dense)

Wikitext-2 ~ Wikitext-103

Dense 21.15 16.57
ASP 37.09 26.29
SR-STE 28.54 18.93
STEP 23.85 17.02

Table 4: Extension of STEP to layer-wise N:M masks
learning. The N:M sparsity ratios are decided in a per-layer
fashion following the strategy given in (Sun et al., 2021).
The numbers in this table are averaged over 5 runs. The
results suggest STEP can provide in-place improvement
when combined with per-layer structured sparsity.

N:M RN-CF10 DN-CF100
Dense / 91.56 65.62
DS Mixed N:8 89.94 64.88
DS+STEP Mixed N:8 91.42 65.71
DS Mixed N:16 87.08 62.13
DS+STEP Mixed N:16 90.93 65.04
DS Mixed N:32 85.37 60.47
DS+STEP Mixed N:32 90.12 64.91

next 1k steps, i.e., 10*32:;‘:;;000 ||lvi41 —v¢|l1 as measur-
ing the reliability of preconditioned variance. Intuitively, a
smaller average variance change implies better precondition-
ing. We summarize the results in Table 1, the results suggest
AutoSwitch is able to identify variance with subtle changes

in the following steps compared to the other two baselines.

Comparing with Baselines. We now evaluate the perfor-
mance of STEP with the following baseline recipes: Dense
(no mask is learnt), ASP (Mishra et al., 2021) and SR-STE
(Zhou et al., 2021). The comparison is carried out on three
tasks: training ResNet18 and Densenet121 from scratch on
CIFAR10/100; finetuning BERT-Base on GLUE; and finetun-

o
<)
o
@

o

5 10
Steps (1e4)
(b) N:M=1:64

5 10
Steps (1e4)
(a) N:M=1:32

Figure 6: Ablation Study on Decaying Mask. We follow the
setting of (Kao et al., 2022) and train the 6-layer Transformer
model on the WMT17 De-En translation task. To shows
the importance of preconditioning with dense updates. We
include the results and compare the Decaying Mask recipe
with and without the dense training phase.

ing GPT2 on Wikitext-2/-103. For all the recipes, we apply
2:4 sparsity (Pool, 2020) to all the modules. More concretely:
for ResNet and DenseNet, the sparsity is applied on all the
Conv2D layers; for BERT-Base, all the Linear modules
in attention, intermediate and output layers are sparsified;
in GPT-2, the sparsity is applied on all the Conv1D modules.
We summarize the results in Figure 4, Table 2 and 3. The
results consistently suggest under the same sparsity ratio,
STEP is able to mitigate the accuracy drop between baseline
recipes (ASP and SR-STE) and dense training. Perhaps
surprisingly, we found in the DenseNet task, STEP achieves
higher validation accuracy compared to the dense training.

Robustness to Aggressive Structured Pruning. We
extend the previous experiments on pre-training ResNet18
and DenseNet121 with different sparsity ratios, using STEP
recipes. We summarize the results in Figure 4, we observe
up to N:M=1:16, STEP recipe has negligible accuracy drop
compared to the dense training, while other recipes have
non-trivial evaluation accuracy gap at 1:8.

Ablation Study I: Layer-wise Pruning. We now demon-
strate that STEP can be trivially extended to layer-wise SR-
STE as considered in DominoSearch (Sun et al., 2021). We

STEP: Learning N:M Structured Sparsity Masks from Scratch with Precondition

©
w
o
~

©
N
o

©
et
o

—— Dense

—— STEP(2:4)

—— STEP(1:4)

—— STEP(1:8)

0.0 0.2 0.4 0.6 0.8 1.0
Precondition Ratio

—— Dense
—— STEP(2:4)
—— STEP(1:4)
—— STEP(1:8)
0.0 0.2 0.4 0.6 0.8 1.0
Precondition Ratio

(a) ResNet18 on CIFAR10 (b) DenseNet121 on CIFAR100

©
o
S

®
©
)

Validation Accuracy
Validation Accuracy
o o o o

88 62

Figure 7: Ablation study on different precondition phase
length. The X-axis denotes the ratio of precondition phase
length over the total number of training steps; while the
Y-axis denotes the evaluation accuracy of the output model
at the end. We observe that the switching point between
precondition and mask learning phase is quite flexible.

now run the STEP and AutoSwitch following a per-module
fashion, with per-layer sparsity ratio determined by the Domi-
noSearch algorithm (Sun et al., 2021). We summarize the
results of using plain DominoSearch (DS) and DS combined
with STEP in Table 4. The results there suggest combined
with STEP, DominoSearch can have more stable results, es-
pecially over aggressive N:M ratios. More concretely, when
the sparsity ratios are increased to N:32, the original Domi-
noSearch already incurs over 5% accuracy drop while with
STEP, the accuracy drop is generally around 1% on both
ResNet and DenseNet. Notice that STEP does not modify the
dynamic sparsity ratio assignment strategy as used in the orig-
inal DominoSearch. This, on the other hand, implies STEP
provides in-place improvement over layer-wise sparsity.

Ablation Study II: Decaying Mask. In this experiment,
we conduct an ablation study on a recently proposed recipe
named Decaying Mask (Kao et al., 2022). The recipe pro-
ceeds as follows: first run dense training for some iterations,
and then start the sparse training phase. At the beginning
of the sparse training phase, it starts with M-1:M structured
sparsity. As training progresses, Decaying Mask increases
the sparsification degree by applying N:M structured sparsity
M

at different decaying intervals, where N = | 22 |.

Note that the original Decaying Mask recipe already includes
the dense training phase. In this ablation study, we follow
the setup of (Kao et al., 2022) and compare how Decaying
Mask behaves with and without its dense training phase.
We summarize the results in Figure 6. It suggests if no
dense training is performed at the beginning of the recipe,
there will be a certain accuracy drop even if the sparsity
ratio is gradually decreased. This, again, substantiates the
motivation of STEP recipe.

Ablation Study III: Varying Preconditioning Phase
Length. We continue investigating the effect of precondi-
tioning phase length on the final model accuracy. We repeat

©
N

©
=}
o
=)

%
=)

©
=)}

—— STEP(1:8) w/o freeze —— STEP(1:8) w/o freeze

Validation Accuracy
3
Validation Accuracy

—— STEP(1:8) w/ freeze —— STEP(1:8) w/ freeze
20 30 40 50 4o 20 30 40 50
Steps (1e3) Steps (1e3)

(a) ResNet18 on CIFAR10 (b) DenseNet121 on CIFAR100

3
S
S

Figure 8: Ablation study on comparing with and without
updating variance term during the mask learning phase. The
curves suggest freezing (fixing) the preconditioned variance
during the mask learning phase is crucial.

the CIFAR experiments on two vision models and rerun the
STEP algorithm with different precondition phase length.
We summarize the results in Figure 7. We observe that
STEP is able to achieve dense accuracy when the ratio of
preconditioning phase is between 10% and 80% (despite the
fact that AutoSwitch decides the ending point to be around
20%). This suggests the switching point in STEP is quite
flexible over the entire training trajectory, and is robust to
the potential noise in the AutoSwitch subroutine.

Ablation Study I'V: Why Fixing the Variance. Note that
in the original STEP Algorithm, the variance remains fixed
during the masking learning phase. A natural question to this
would be: does it help if we keep updating the variance using
the gradients computed on the sparsified model? In practice,
we observe this in fact has negative impact. We rerun the
ResNet/DenseNet experiments with two variants: original
STEP and STEP where variance is updated in the second
phase. We summarize the results in Figure 8. It suggests
keeping updating the variance with gradients computed on
masked weights reduces the final evaluation accuracy, which
implies the noise level in gradients remains high during mask
learning, even in the later stage of training.

7. Conclusion

In this paper, we identify the state-of-the-art recipe SR-STE
incurs non-trivial model degradation when applied in
Adam-based model training. We propose an algorithm
named STEP that separates the training into two phases,
where in the first phase, the Adam optimizer computes a
reliable second moment (variance) estimate; while in the
second phase, such variance remains fixed and is used as
a precondition to learn the N:M structured sparsity masks.
We also propose a subroutine named AutoSwitch that
automatically determines the switching point of two phases.
Compared to other approaches, AutoSwitch shows stable
and reliable estimation. Empirically we evaluate STEP
on various benchmarks including text classification, image

STEP: Learning N:M Structured Sparsity Masks from Scratch with Precondition

classification and language modeling. We demonstrate
STEP mitigates the accuracy drop compared to other recipes
and is robust to aggressive sparsity ratios.

Acknowledgements

CDS gratefully acknowledges the support from NSF-
2046760 CAREER. YL gratefully acknowledges the support
of the Meta PhD Fellowship. We extend our gratitude to-
wards James Laudon, Cliff Young, Google Research Cerebra
Team and extended Google Research, Brain Team for their
feedback and comments. We also would like to thank Google
Cerebra Team for hosting this research and proving TPU
Research Cloud; and Google University Relations Team
for the conference funding. We further would like to thank
Blaise Aguera-Arcas, Jihwan Lee and anonymous reviewers
from ICML 2023 for feedback on the early draft of this work.

References

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah,
Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan,
Pranav Shyam, Girish Sastry, Amanda Askell, et al. Lan-
guage models are few-shot learners. Advances in neural
information processing systems, 33:1877-1901, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems, 30,2017.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 10012-10022, 2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805,2018.

Jeff Pool. Accelerating sparsity in the nvidia ampere
architecture. GTC 2020, 2020.

Chao Fang, Aojun Zhou, and Zhongfeng Wang. An
Algorithm—Hardware Co-Optimized Framework for Ac-
celerating N: M Sparse Transformers. IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, 30(11):
1573-1586, 2022.

Jonathan Frankle and Michael Carbin. The lottery ticket
hypothesis: Finding sparse, trainable neural networks.
arXiv preprint arXiv:1803.03635, 2018.

Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr.
Snip: Single-shot network pruning based on connection
sensitivity. arXiv preprint arXiv:1810.02340, 2018.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel
Castro, and Erich Elsen. Rigging the lottery: Making all
tickets winners. In International Conference on Machine
Learning, pages 2943-2952. PMLR, 2020.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and
Hai Li. Learning structured sparsity in deep neural
networks. Advances in neural information processing
systems, 29, 2016.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and
Hans Peter Graf. Pruning filters for efficient convnets.
arXiv preprint arXiv:1608.08710, 2016.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for
accelerating very deep neural networks. In Proceedings
of the IEEE international conference on computer vision,
pages 1389-1397,2017.

Aojun Zhou, Yukun Ma, Junnan Zhu, Jianbo Liu, Zhijie
Zhang, Kun Yuan, Wenxiu Sun, and Hongsheng Li. Learn-
ing n: m fine-grained structured sparse neural networks
from scratch. arXiv preprint arXiv:2102.04010, 2021.

Wei Sun, Aojun Zhou, Sander Stuijk, Rob Wijnhoven,
Andrew O Nelson, Henk Corporaal, et al. DominoSearch:
Find layer-wise fine-grained N: M sparse schemes from
dense neural networks. Advances in Neural Information
Processing Systems, 34:20721-20732, 2021.

Sheng-Chun Kao, Amir Yazdanbakhsh, Suvinay Subrama-
nian, Shivani Agrawal, Utku Evci, and Tushar Krishna.
Training Recipe for N: M Structured Sparsity with De-
caying Pruning Mask. arXiv preprint arXiv:2209.07617,
2022.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit,
Seungyeon Kim, Sashank Reddi, Sanjiv Kumar, and
Suvrit Sra. Why are adaptive methods good for attention
models? Advances in Neural Information Processing
Systems, 33:15383-15393, 2020.

Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan,
Samyam Rajbhandari, Conglong Li, Xiangru Lian, Ji Liu,
Ce Zhang, and Yuxiong He. 1-bit adam: Communication
efficient large-scale training with adam’s convergence
speed. In International Conference on Machine Learning,
pages 10118-10129. PMLR, 2021.

Yucheng Lu, Conglong Li, Minjia Zhang, Christopher De Sa,
and Yuxiong He. Maximizing Communication Efficiency
for Large-scale Training via 0/1 Adam. arXiv preprint
arXiv:2202.06009, 2022.

STEP: Learning N:M Structured Sparsity Masks from Scratch with Precondition

Hanlin Tang, Shaoduo Gan, Samyam Rajbhandari, Xiangru
Lian, Ji Liu, Yuxiong He, and Ce Zhang. APMSqueeze: A
Communication Efficient Adam-Preconditioned Momen-
tum SGD Algorithm. arXiv preprint arXiv:2008.11343,
2020.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic,
Dusan Stosic, Ganesh Venkatesh, Chong Yu, and Paulius
Micikevicius. Accelerating sparse deep neural networks.
arXiv preprint arXiv:2104.08378, 2021.

Connor Holmes, Minjia Zhang, Yuxiong He, and Bo Wu.
NxMTransformer: Semi-Structured Sparsification for
Natural Language Understanding via ADMM. Advances
in Neural Information Processing Systems, 34:1818-1830,
2021.

Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner,
Joseph Naor, and Daniel Soudry. Accelerated sparse
neural training: A provable and efficient method to find n:
m transposable masks. Advances in Neural Information
Processing Systems, 34:21099-21111, 2021.

Jeff Pool and Chong Yu. Channel permutations for n: m
sparsity. Advances in Neural Information Processing
Systems, 34:13316-13327, 2021.

Brian Chmiel, Itay Hubara, Ron Banner, and Daniel Soudry.
Optimal Fine-Grained N: M sparsity for Activations and
Neural Gradients. arXiv preprint arXiv:2203.10991, 2022.

Alessandro Achille, Matteo Rovere, and Stefano Soatto. Crit-
ical learning periods in deep networks. In International
Conference on Learning Representations, 2018.

Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient
descent happens in a tiny subspace. arXiv preprint
arXiv:1812.04754,2018.

Stanistaw Jastrzebski, Zachary Kenton, Nicolas Ballas, Asja
Fischer, Yoshua Bengio, and Amos Storkey. On the rela-
tion between the sharpest directions of DNN loss and the
SGD step length. arXiv preprint arXiv:1807.05031,2018.

Stanislaw Jastrzebski, Maciej Szymczak, Stanislav Fort,
Devansh Arpit, Jacek Tabor, Kyunghyun Cho, and
Krzysztof Geras. The break-even point on optimization
trajectories of deep neural networks. arXiv preprint
arXiv:2002.09572, 2020.

Saurabh Agarwal, Hongyi Wang, Kangwook Lee, Shivaram
Venkataraman, and Dimitris Papailiopoulos. Adaptive
Gradient Communication via Critical Learning Regime
Identification. Proceedings of Machine Learning and
Systems, 3:55-80, 2021.

10

Conglong Li, Ammar Ahmad Awan, Hanlin Tang, Samyam
Rajbhandari, and Yuxiong He. 1-bit LAMB: Commu-
nication Efficient Large-Scale Large-Batch Training
with LAMB’s Convergence Speed. arXiv preprint
arXiv:2104.06069,2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770-778, 2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700-4708, 2017.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville.
Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint
arXiv:1308.3432,2013.

Yushun Zhang, Congliang Chen, Naichen Shi, Ruoyu
Sun, and Zhi-Quan Luo. Adam can converge without
any modification on update rules. arXiv preprint
arXiv:2208.09632,2022.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library.
Advances in neural information processing systems, 32,

2019.

Jonathan Heek, Anselm Levskaya, Avital Oliver,
Marvin Ritter, Bertrand Rondepierre, Andreas
Steiner, and Marc van Zee. Flax: A neural net-
work library and ecosystem for JAX, 2020. URL
http://github.com/google/flax.

Shaden Smith, Mostofa Patwary, Brandon Norick, Patrick
LeGresley, Samyam Rajbhandari, Jared Casper, Zhun
Liu, Shrimai Prabhumoye, George Zerveas, Vijay
Korthikanti, et al. Using deepspeed and megatron to
train megatron-turing nlg 530b, a large-scale generative
language model. arXiv preprint arXiv:2201.11990, 2022.

James Bergstra and Yoshua Bengio. Random search for
hyper-parameter optimization. Journal of machine
learning research, 13(2), 2012.

Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin
Zheng, Chen Xing, Huishuai Zhang, Yanyan Lan, Liwei
Wang, and Tieyan Liu. On layer normalization in the
transformer architecture. In International Conference on
Machine Learning, pages 10524—10533. PMLR, 2020.

Liyuan Liu, Xiaodong Liu, Jianfeng Gao, Weizhu Chen,
and Jiawei Han. Understanding the difficulty of training
transformers. arXiv preprint arXiv:2004.08249, 2020.

http://github.com/google/flax

STEP: Learning N:M Structured Sparsity Masks from Scratch with Precondition

Wei Yuan and Kai-Xin Gao. Eadam optimizer: How epsilon
impact adam. arXiv preprint arXiv:2011.02150, 2020.

John F Geweke et al. Evaluating the accuracy of sampling-
based approaches to the calculation of posterior moments.
Technical report, Federal Reserve Bank of Minneapolis,
1991.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill,
Omer Levy, and Samuel R Bowman. GLUE: A multi-task
benchmark and analysis platform for natural language
understanding. arXiv preprint arXiv:1804.07461,2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are un-
supervised multitask learners. OpenAl blog, 1(8):9, 2019.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. Pointer Sentinel Mixture Models, 2016.

Martin J Wainwright. High-dimensional statistics: A
non-asymptotic viewpoint, volume 48. Cambridge
University Press, 2019.

11

STEP: Learning N:M Structured Sparsity Masks from Scratch with Precondition

A. Technical Proof
A.1. Proof to Theorem 1

Proof. We firstdefine the filtration F; over step t € {1,--+, T}, where the randomness come from the sampling of the data point ¢;.
And next we show the update for each coordinate of v, is a martingale difference sequence. From the update of Adam, we get:

Bpp1—Dy= Vit1 (4
t+1 U= -
T
1— Bt-‘rl
e ﬁt“(I)
1— 6t+1
2
1 5t+1 |iﬂ2’l%+(62).915_ 1— /82

1
1 5t+1 [(1—52)' (gf— 11)%5)} .

Take expectation with respect to the filtration, we obtain

“ N 1_ﬂ2 2 (%7
1=/ 2 Uy
:1—/3§+1E[gt_1— é‘ft}

Note that

Elv,] —p2) Zﬁt ‘g3 | =(1-55)Elg7).
Push it back, we know for each i € [d],

Ele] (941—10¢)|F:] =0. (12)

On the other hand, for each i € [d],

| -)| 1-5 2 (0

e; (Drr1— 0 1— Bt-s—l 9i 1-3%

Note thatboth e, g7 and B’ is non-negative. Considering that

.
€; Uy 152 t=5 o T g2 <
Eﬂ el g3 <

-85 1- B3 =
And so 5 5
1— 1—
e (Dy41—9y)| < 2 G< 2 G<V2(1-)G, (13)
| L t+1 t | 1— /8t+1 1— ﬁ2
log(1/2)

where we apply the fact that ¢ >t and tg > oa(fa) " Considering Equation (12) and (13), we know it is a martingale difference
sequence. Now we apply the Azuma- Hoeffdmg Inequality (Wainwright, 2019), and get for any € [d],

t—1 2
e;r Vi1 —0k) >l | <2exp| — ¢ 5
2 o] p(25 (V21— 3)G))

=2exp(-4a2<12§>2<u0>)-
- \/4G2(1/32)2(tt0)1og<§).

196 =1yl < \/4G2(1—62>2(t—to)1og(§>,

Set the R.H.S. as §, we obtain

Finally we get

as desired. That completes the proof

12

STEP: Learning N:M Structured Sparsity Masks from Scratch with Precondition

Table 5: Potential memory savings for different sparsity ratios of two of the large models (BERT-Base, GPT-2). The numbers
are assumed with 2-byte per parameter.

Dense 2:4 1:4 1:16
BERT-Base 216.75MB 131.82MB (1.65x) 89.35MB (2.43x) 57.50MB (3.76x%)
GPT-2 247.06 MB 162.13MB (1.52x) 119.66 MB (2.06x) 87.81 MB (2.81x)

B. Memory Saving

We estimate the potential memory savings for different sparsity ratios of two of the large models (BERT-Base, GPT-2) used
in the experimental section, and summarize the numbers in Table 5. In all cases, we assume 2-byte per parameter and include
the required metadata to represent each sparsity pattern.

13

	Introduction
	Related Work
	Preliminary
	STEP: STE with Precondition
	Auto Switch Between two Phases
	Experiment
	Conclusion
	Technical Proof
	Proof to Theorem 1

	Memory Saving

