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A Detailed Proof of Proposition 1.3

Proof of Proposition 1.3. It remains to argue that Conjecture 1.1 implies Conjecture 1.2. We prove
the contraposition, that is, assuming that Conjecture 1.2 is violated, we show that Conjecture 1.1
is violated, as well. To this end, suppose there is a k ∈ N, n = 2k, such that fn is representable
with k hidden layers. We argue that under this hypothesis, any (n + 1)-term max function can be
represented with k hidden layers. To see this, observe that

max{`1(x), . . . , `n+1(x)} = max{0, `1(x)− `n+1(x), . . . , `n(x)− `n+1(x)}+ `n+1(x).

Modifying the first-layer weights of the NN computing fn such that input xi is replaced by
the affine expression `i(x) − `n+1(x), one obtains a k-hidden-layer NN computing the func-
tion max{0, `1(x)− `n+1(x), . . . , `n(x)− `n+1(x)}. Moreover, since affine functions, in particular
also `n+1(x), can easily be represented by k-hidden-layer NNs, we obtain that any (n + 1)-term
maximum is in ReLUn(k). Using that any function in CPWLn can be represented as linear combi-
nation of (n+ 1)-term maximums [Wang and Sun, 2005], it follows that ReLUn(k) = CPWLn. In
particular, since k∗ := dlog2(n + 1)e = k + 1, we obtain that Conjecture 1.1 must be violated as
well. This concludes the proof of equivalence of Conjecture 1.1 and Conjecture 1.2.

B Detailed Proof of Theorem 2.5

Let us start with investigating the structure of the hyperplane arrangement H . For readers familiar
with the interplay between hyperplane arrangements and polytopes, it is worth noting that H is dual
to a combinatorial equivalent of the 4-dimensional permutahedron. Hence, what we are studying in
the following are some combinatorial properties of the permutahedron.

Recall that the regions of H are given by the 120 polyhedra

Cπ := {x ∈ R4 | xπ(0) ≤ xπ(1) ≤ xπ(2) ≤ xπ(3) ≤ xπ(4)}

for each permutation π of [4]0. With this representation, one can see that Cπ is a pointed polyhedral
cone (with the origin as its only vertex) spanned by the four half-lines (a.k.a. rays)

R{π(0)} := {x ∈ R4 | xπ(0) ≤ xπ(1) = xπ(2) = xπ(3) = xπ(4)},
R{π(0),π(1)} := {x ∈ R4 | xπ(0) = xπ(1) ≤ xπ(2) = xπ(3) = xπ(4)},

R{π(0),π(1),π(2)} := {x ∈ R4 | xπ(0) = xπ(1) = xπ(2) ≤ xπ(3) = xπ(4)},
R{π(0),π(1),π(2),π(3)} := {x ∈ R4 | xπ(0) = xπ(1) = xπ(2) = xπ(3) ≤ xπ(4)}.

With that notation, we see that each of the 120 cells of H is a simplicial cone spanned by four out of
the 30 rays RS with ∅ ( S ( [4]0. For each such set S, denote its complement by S̄ := [4]0 \ S. Let
us use a generating vector rS ∈ R4 for each of these rays such thatRS = cone rS as follows: If 0 ∈ S,
then rS := 1S̄ ∈ R4, otherwise rS := −1S ∈ R4, where for each S ⊆ [4], the vector 1S ∈ R4

contains entries 1 at precisely those index positions that are contained in S and entries 0 elsewhere. For
example, r{0,2,3} = (1, 0, 0, 1) ∈ R4 and r{1,4} = (−1, 0, 0,−1) ∈ R4. Then, the set R containing
conic generators of all the 30 rays of H consists of the 30 vectors R = ({0, 1}4 ∪ {0,−1}4) \ {0}4.

Let S30 be the space of all H-conforming CPWL functions of type R4 → R. We show that S30 is a
30-dimensional vector space.
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Lemma B.1. The map g 7→ (g(r))r∈R that evaluates a function g ∈ S30 at the 30 rays in R is an
isomorphism between S30 and R30. In particular, S30 is a 30-dimensional vector space.

Proof. First note that S30 is closed under addition and scalar multiplication. Therefore, it is a
subspace of the vector space of continuous functions of type R4 → R, and thus, in particular, a vector
space. We show that the map g 7→ (g(r))r∈R is in fact a vector space isomorphism. The map is
obviously linear, so we only need to show that it is a bijection. In order to do so, remember that R4

is the union of the 5! = 120 simplicial cones Cπ. In particular, given the function values on the
extreme rays of these cones, there is a unique positively homogeneous, continuous continuation that
is linear within each of the 120 cones. This implies that the considered map is a bijection between S30

and R30.

The previous lemma also provides a canonical basis of the vector space S30: the one consisting
of all CPWL functions attaining value 1 at one ray r ∈ R and value 0 at all other rays. However,
it turns out that for our purposes it is more convenient to work with a different basis. To this end,
let gM (x) = maxi∈M xi for each {∅, {0}} 63 M ⊆ [4]0. These 30 functions contain, for example,
the four (linear) coordinate projections g{i}(x) = xi, i ∈ [4], and the function f(x) = g[4]0(x) =
max{0, x1, x2, x3, x4}.
Lemma B.2. The 30 functions gM (x) = maxi∈M xi with {∅, {0}} 63M ⊆ [4]0 form a basis of S30.

Proof. Evaluating the 30 functions gM at all 30 rays r ∈ R yields 30 vectors in R30. It can be easily
verified (e.g., using a computer) that these vectors form a basis of R30. Thus, due to the isomorphism
of Lemma B.1, the functions gM form a basis of S30.

Next, we focus on particular subspaces of S30 generated by only some of the 30 functions gM . We
prove that they correspond to the spaces of functions computable by H-conforming 2- and 3-layer
NNs, respectively.

To this end, let B14 be the set of the 14 basis functions gM with {∅, {0}} 63M ⊆ [4]0 and |M | ≤ 2.
Let S14 be the 14-dimensional subspace spanned by B14. Similarly, let B29 be the set of the 29 basis
functions gM with {∅, {0}} 63 M ( [4]0 (all but [4]0). Let S29 be the 29-dimensional subspace
spanned by B29.

Lemma B.3. The space S14 consists of all functions computable by H-conforming 2-layer NNs.

Proof. Each function in B14 is a maximum of at most 2 numbers and can thus be represented by a
2-layer NN; compare Arora et al. [2018, Lemma D.3]. By putting the corresponding networks in
parallel and adding appropriate weights to the connections to the output, also all linear combinations
of these 14 functions, and thus, the full space S14, can be represented by a 2-layer NN.

Conversely, we show that any function representable by a 2-layer NN is indeed contained in S14. It
suffices to show that the output of every neuron in the first (and only) hidden layer of anH-conforming
ReLU NN is in S14 because the output of a 2-layer NN is a linear combination of such outputs. Let
a ∈ R4 be the first-layer weights of such a neuron, computing the function ga(x) := max{aTx, 0},
which has the hyperplane {x ∈ R4 | aTx = 0} as breakpoints (or is constantly zero). Since the NN
must be H-conforming, this must be one of the ten hyperplanes xi = xj , 0 ≤ i < j ≤ 4. Thus,
ga(x) = max{λ(xi − xj), 0} for some λ ∈ R. If λ ≥ 0, it follows that ga = λg{i,j} − λg{j} ∈ S14,
and if λ ≤ 0, we obtain ga = −λg{i,j} + λg{i} ∈ S14. This concludes the proof.

For 3-layer NNs, an analogous statement can be made. However, only one direction can be easily
seen.

Lemma B.4. Any function in S29 can be represented by an H-conforming 3-layer NN.

Proof. Each function in B29 is a maximum of at most 4 numbers and can thus be represented by
a 3-layer NN; compare Arora et al. [2018, Lemma D.3]. As in the previous lemma, also linear
combinations of those can be represented.
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Our goal is to prove the converse as well: any H-conforming function represented by a 3-layer
NN is in S29. Since f(x) = max{0, x1, x2, x3, x4} is the 30-th basis function, which is linearly
independent from B29 and thus not contained in S29, this implies Theorem 2.5. To achieve this goal,
we first provide another characterization of S29, which can be seen as an orthogonal direction to S29

in S30. For a function g ∈ S30, let

φ(g) :=
∑

∅(S([4]0

(−1)|S|g(rS)

be a linear map from S30 to R.

Lemma B.5. A function g ∈ S30 is contained in S29 if and only if φ(g) = 0.

Proof. Any g ∈ S30 can be represented as a unique linear combination of the 30 basis functions gM
and is contained in S29 if and only if the coefficient of f = g[4]0 is zero. One can easily check (with a
computer) that all functions in B29 are mapped to 0 by φ, but the 30-th basis function f is not. Thus,
g is contained in S29 if and only if it satisfies φ(g) = 0.

In order to make use of our Assumption 2.4, we need the following insight about when the property
of being H-conforming is preserved after applying a ReLU activation.

Lemma B.6. Let g ∈ S30. The function h = σ ◦ g is H-conforming (and thus in S30 as well) if and
only if there is no pair of sets ∅ ( S ( S′ ( [4]0 with g(rS) and g(rS′) being nonzero and having
different signs.

Proof. The key observation to prove this lemma is the following: for two rays rS and rS′ , there exists
a cell C of the hyperplane arrangement H for which both rS and rS′ are extreme rays if and only if
S ( S′ or S′ ( S.

Hence, if there exists a pair of sets ∅ ( S ( S′ ( [4]0 with g(rS) and g(rS′) being nonzero and
having different signs, then the function g restricted to C is a linear function with both strictly positive
and strictly negative values. Therefore, after applying the ReLU activation, the resulting function h
has breakpoints within C and is not H-conforming.

Conversely, if for each pair of sets ∅ ( S ( S′ ( [4]0, both g(rS) and g(rS′) are either nonpositive
or nonnegative, then g restricted to any cell C of H is either nonpositive or nonnegative everywhere.
In the first case, h restricted to that cell C is the zero function, while in the second case, h coincides
with g in C. In both cases, h is linear within all cells and, thus, H-conforming.

Having collected all these lemmas, we are finally able to construct a MIP whose solution proves that
any function computed by an H-conforming 3-layer NN is in S29. As in the proof of Lemma B.3, it
suffices to focus on the output of a single neuron in the second hidden layer. Let h = σ ◦ g be the
output of such a neuron with g being its input. Observe that g is by construction a function computed
by a 2-layer NN, and thus, by Lemma B.3, a linear combination of the 14 functions in B14. The MIP
contains three types of variables, which we denote in bold to distinguish them from constants:

• 14 continuous variables aM ∈ [−1, 1], being the coefficients of the linear combination of
the basis of S14 forming g, that is, g =

∑
gM∈B14 aMgM (since multiplying g and h with a

nonzero scalar does not alter containment of h in S29, we may assume unit interval bounds),

• 30 binary variables zS ∈ {0, 1} for ∅ ( S ( [4]0, determining whether the considered
neuron is strictly active at ray rS , that is, whether g(rS) > 0,

• 30 continuous variables yS ∈ R for ∅ ( S ( [4]0, representing the output of the considered
neuron at all rays, that is, yS = h(rS).

To ensure that these variables interact as expected, we need two types of constraints:

• For each of the 30 rays rS , ∅ ( S ( [4]0, the following constraints ensure that zS and
output yS are correctly calculated from the variables aM , that is, zS = 1 if and only
if g(rS) =

∑
gM∈B14 aMgM (rS) is positive, and yS = max{0, g(rS)}. Also compare the

references given in the introduction concerning MIP models for ReLU units. Note that
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the restriction of the coefficients aM to [−1, 1] ensures that the absolute value of g(rS) is
always bounded by 14, allowing us to use 15 as a replacement for +∞:

yS ≥ 0

yS ≥
∑

gM∈B14

aMgM (rS)

yS ≤ 15zS

yS ≤
∑

gM∈B14

aMgM (rS) + 15(1− zS)

(3)

Observe that these constraints ensure that one of the following two cases happens: if zS = 0,
then the first and third line imply yS = 0 and the second line implies that the incoming
activation is in fact nonpositive. The fourth line is always satisfied in that case. Otherwise,
if zS = 1, then the second and fourth line imply that yS equals the incoming activation,
and, in combination with the first line, this has to be nonnegative. The third line is always
satisfied in that case. Hence, the set of constraints (3) correctly models the ReLU activation
function.

• For each of the 150 pairs of sets ∅ ( S ( S′ ( [4]0, the following constraints ensure that
the property in Lemma B.6 is satisfied. More precisely, if one of the variables zS or zS′
equals 1, then the ray of the other set has nonnegative activation, that is, g(rS′) ≥ 0 or
g(rS) ≥ 0, respectively: ∑

gM∈B14

aMgM (rS) ≥ 15(zS′ − 1)

∑
gM∈B14

aMgM (rS′) ≥ 15(zS − 1)
(4)

Observe that these constraints successfully prevent that the two rays rS and rS′ have nonzero
activations with different signs. Conversely, if this is not the case, then we can always satisfy
constraints (4) by setting only those variables zS to value 1 where the activation of ray rS
is strictly positive. (Note that, if the incoming activation is precisely zero, constraints (3)
make it possible to choose both values 0 or 1 for zS .) Hence, these constraints are in fact
appropriate to model H-conformity.

In the light of Lemma B.5, the objective function of our MIP is to maximize φ(h), that is, the
expression ∑

∅(S([4]0

(−1)|S|yS .

The MIP has a total of 30 binary and 44 continuous variables, as well as 420 inequality constraints.
The next proposition formalizes how this MIP can be used to check whether a 3-layer NN function
can exist outside S29.
Proposition B.7. There exists an H-conforming 3-layer NN computing a function not contained
in S29 if and only if the objective value of the MIP defined above is strictly positive.

Proof. For the first direction, assume that such an NN exists. Since its final output is a linear
combination of the outputs of the neurons in the second hidden layer, one of these neurons must
compute a function h̃ = σ ◦ g̃ /∈ S29, with g̃ being the input to that neuron. By Lemma B.5, it
follows that φ(h̃) 6= 0. Moreover, we can even assume without loss of generality that φ(h̃) > 0,
as we argue now. If this is not the case, multiply all first-layer weights of the NN by −1 to obtain
a new NN computing function ĥ instead of h̃. Observing that rS = −r[4]0\S for all rS ∈ R, we
obtain ĥ(rS) = h̃(−rS) = h̃(r[4]0\S) for all rS ∈ R. Plugging this into the definition of φ and
using that the cardinalities of S and [4]0 \ S have different parity, we further obtain φ(ĥ) = −φ(h̃).
Therefore, we can assume that φ(h̃) was already positive in the first place.

Using Lemma B.3, g̃ can be represented as a linear combination g̃ =
∑
gM∈B14 ãMgM of the

functions in B14. Let α := maxM |ãM | > 0. Let us define modified functions g and h from g̃ and h̃
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as follows. Let aM := ãM/α ∈ [−1, 1], g :=
∑
gM∈B14 aMgM , and h := σ ◦ g. Moreover, for all

rays rS ∈ R, let yS := h(rS), as well as zS := 1 if yS > 0, and zS := 0 otherwise.

It is easy to verify that the variables aM , yS , and zS defined that way satisfy (3). Moreover, since
the NN is H-conforming, they also satisfy (4). Finally, they also yield a strictly positive objective
function value since φ(h) = φ(h̃)/α > 0.

For the reverse direction, assume that there exists a MIP solution consisting of aM , yS , and zS ,
satisfying (3) and (4), and having a strictly positive objective function value. Define the func-
tions g :=

∑
gM∈B14 aMgM and h := σ ◦ g. One concludes from (3) that h(rS) = yS for all

rays rS ∈ R. Lemma B.3 implies that g can be represented by a 2-layer NN. Thus, h can be
represented by a 3-layer NN. Moreover, constraints (4) guarantee that this NN is H-conforming.
Finally, since the MIP solution has strictly positive objective function value, we obtain φ(h) > 0,
implying that h /∈ S29.

In order to use the MIP as part of a mathematical proof, we employed a MIP solver that uses exact
rational arithmetics without numerical errors, namely the solver by the Parma Polyhedral Library
(PPL) [Bagnara et al., 2008]. We called the solver from a SageMath [The Sage Developers, 2020]
script on a machine with an Intel Core i7-8700 6-Core 64-bit CPU and 15.5 GB RAM, using the
openSUSE Leap 15.2 Linux distribution. SageMath, which natively includes the PPL solver, is
published under the GPLv3 license. After a total running time of almost 7 days (153 hours), we
obtained optimal objective function value zero. This makes it possible to prove Theorem 2.5.

Proof of Theorem 2.5. Since the MIP has optimal objective function value zero, Proposition B.7
implies that any function computed by an H-conforming 3-layer NN is contained in S29. In
particular, under Assumption 2.4, the function f(x) = max{0, x1, x2, x3, x4} cannot be computed
by a 3-layer NN.

We remark that state-of-the-art MIP solver Gurobi (version 9.1.1) [Gurobi Optimization, LLC, 2021],
which is commercial but offers free academic licenses, is able to solve the same MIP within less than
a second, providing the same result. However, Gurobi does not employ exact arithmetics, making it
impossible to exclude numerical errors and use it as a mathematical proof.

The SageMath code can be found on GitHub.3 Additionally, the MIP can be found there as .mps file,
a standard format to represent MIPs. This allows one to use any solver of choice to reproduce our
result.

C Detailed Proof of Proposition 3.3

Since the proof exploits some properties of the underlying polyhedral complex of the considered
CPWL functions, we will first introduce some terminology, notation and results related to polyhedral
complexes in Rn for any n ≥ 1.

Definition C.1. Given an abelian group (G,+), we define Fn(G) as the family of all functions φ of
type φ : Pn → G, where P is a polyhedral complex that covers Rn. We say that P is the underlying
polyhedral complex, or the polyhedral complex associated with φ.

Just to give an intuition of the reason for this definition, let us mention that later we will choose
(G,+) to be the set of affine linear maps Rn → R with respect to the standard operation of sum
of functions. Moreover, given a convex CPWL function f : Rn → R with underlying polyhedral
complex P , we will consider the following function φ ∈ Fn(G): for every P ∈ Pn, φ(P ) will be
the affine linear map that coincides with f over P . It can be useful, though not necessary, to keep this
in mind when reading the next definitions and observations.

It is useful to observe that the functions in Fn(G) can also be described in a different way. Before
explaining this, we need to define an ordering between the two elements of each pair of opposite
halfspaces. More precisely, let H be a hyperplane in Rn and let H ′, H ′′ be the two closed halfspaces
delimited by H . We choose an arbitrary rule to say that H ′ “precedes” H ′′, which we write as

3https://github.com/ChristophHertrich/relu-mip-depth-bound
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H ′ ≺ H ′′.4 We can then extend this ordering rule to some pairs of n-dimensional polyhedra of a
polyhedral complex in Rn. Specifically, given a polyhedral complex P in Rn, let P ′, P ′′ ∈ Pn be
such that F := P ′ ∩ P ′′ ∈ Pn−1. Further, let H be the unique hyperplane containing F . We say that
P ′ ≺ P ′′ if the halfspace delimited by H and containing P ′ precedes the halfspace delimited by H
and containing P ′′.

We can now explain the alternate description of the functions in Fn(G), which is based on the
following notion.
Definition C.2. Let φ ∈ Fn(G), with associated polyhedral complex P . The facet-function associ-
ated with φ is the function ψ : Pn−1 → G defined as follows: given F ∈ Pn−1, let P ′, P ′′ be the
two polyhedra in Pn such that F = P ′ ∩P ′′, where P ′ ≺ P ′′; then we set ψ(F ) := φ(P ′)− φ(P ′′).

Although it will not be used, we observe that knowing ψ is sufficient to reconstruct φ up to an additive
constant. This means that a function φ′ ∈ Fn(G) associated with the same polyhedral complex P
has the same facet-function ψ if and only if there exists g ∈ G such that φ(P )− φ′(P ) = g for every
P ∈ Pn. (However, it is not true that every function ψ : Pn−1 → G is the facet-function of some
function in Fn(G).)

We now introduce a sum operation over Fn(G).
Definition C.3. Given p functions φ1, . . . , φp ∈ Fn(G) with associated polyhedral complexes
P1, . . . ,Pp, the sum φ := φ1 + · · ·+ φp is the function in Fn(G) defined as follows:

• the polyhedral complex associated with φ is P := {P1 ∩ · · · ∩ Pp | Pi ∈ Pi for every i};

• given P ∈ Pn, P can be uniquely obtained as P1 ∩ · · · ∩ Pp, where Pi ∈ Pni for every i;
we then define

φ(P ) =

p∑
i=1

φi(Pi).

The term “sum” is justified by the fact that when P1 = · · · = Pp (and thus φ1, . . . , φp have the same
domain) we obtain the standard notion of sum of functions.

The next results shows how to compute the facet-function of a sum of functions in Fn(G).
Observation C.4. With the notation of Definition C.3, let ψ1, . . . , ψp be the facet-functions associated
with φ1, . . . , φp, and let ψ be the facet-function associated with φ. Given F ∈ Pn−1, let I be the set
of indices i ∈ {1, . . . , p} such that Pn−1

i contains a (unique) element Fi with F ⊆ Fi. Then

ψ(F ) =
∑
i∈I

ψi(Fi). (5)

Proof. Let P ′, P ′′ be the two polyhedra in Pn such that F = P ′ ∩ P ′′, with P ′ ≺ P ′′. We have
P ′ = P ′1 ∩ · · · ∩P ′p and P ′′ = P ′′1 ∩ · · · ∩P ′′p for a unique choice of P ′i , P

′′
i ∈ Pni for every i. Then

ψ(F ) = φ(P ′)− φ(P ′′) =

p∑
i=1

(φi(P
′
i )− φi(P ′′i )). (6)

Now fix i ∈ [p]. Since F ⊆ P ′i ∩ P ′′i , dim(P ′i ∩ P ′′i ) ≥ n − 1. If dim(P ′i ∩ P ′′i ) = n − 1, then
Fi := P ′i ∩P ′′i ∈ P

n−1
i and φi(P ′i )− φi(P ′′i ) = ψi(Fi). Furthermore, i ∈ I because F ⊆ Fi. If, on

the contrary, dim(P ′i ∩ P ′′i ) = n, the fact that Pi is a polyhedral complex implies that P ′i = P ′′i , and
thus φi(P ′i )−φi(P ′′i ) = 0. Moreover, in this case i /∈ I: this is because P ′∪P ′′ ⊆ P ′i , which implies
that the relative interior of F is contained in the relative interior of P ′i . With these observations, from
(6) we obtain (5).

Definition C.5. Fix φ ∈ Fn(G), with associated polyhedral complex P . Let H be a hyperplane in
Rn, and let H ′, H ′′ be the closed halfspaces delimited by H . Define the polyhedral complex

P̂ = {P ∩H | P ∈ P} ∪ {P ∩H ′ | P ∈ P} ∪ {P ∩H ′′ | P ∈ P}.
4In case one wants to see such a rule explicitly, this is one way. Fix an arbitrary x̄ ∈ H . We can say that

H ′ ≺ H ′′ if and only if x̄ + ei ∈ H ′, where ei is the first vector in the standard basis of Rd that does not lie on
H (i.e., e1, . . . , ei−1 ∈ H and ei /∈ H). Note that this definition does not depend on the choice of x̄.
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The refinement of φ with respect toH is the function φ̂ ∈ Fn(G) with associated polyhedral complex
P̂ defined as follows: given P̂ ∈ P̂n, φ̂(P̂ ) := φ(P ), where P is the unique polyhedron in P that
contains P̂ .

The next results shows how to compute the facet-function of a refinement.

Observation C.6. With the notation of Definition C.5, let ψ be the facet-function associated with φ.
Then the facet-function ψ̂ associated with φ̂ is as follows: for every F̂ ∈ P̂n−1,

ψ̂(F̂ ) =

{
ψ(F ) if there exists a (unique) F ∈ Pn−1 containing F̂
0 otherwise.

Proof. Let P̂ ′, P̂ ′′ be the polyhedra in P̂n such that F̂ = P̂ ′ ∩ P̂ ′′, with P̂ ′ ≺ P̂ ′′. Further, let
P ′, P ′′ be the unique polyhedra in Pn that contain P̂ ′, P̂ ′′ (respectively); note that P ′ ≺ P ′′.

If there exists F ∈ Pn−1 containing F̂ , then the fact that P is a polyhedral complex implies that
F = P ′ ∩ P ′′. Thus ψ̂(F̂ ) = φ̂(P̂ ′)− φ̂(P̂ ′′) = φ(P ′)− φ(P ′′) = ψ(F ).

Assume now that no element of Pn−1 contains F̂ . Then there exists P ∈ Pn such that F̂ = P ∩H
and H intersects the interior of P . Then P̂ ′ = P ∩H ′ and P̂ ′′ = P ∩H ′′ (or vice versa). It follows
that ψ̂(F̂ ) = φ̂(P̂ ′)− φ̂(P̂ ′′) = φ(P )− φ(P ) = 0.

We now prove that the operations of sum and refinement commute: the refinement of a sum is the
sum of the refinements.

Observation C.7. Let p functions φ1, . . . , φp ∈ Fn(G), with associated polyhedral complexes
P1, . . . ,Pp, be given. Define φ := φ1 + · · ·+ φp. Let H be a hyperplane in Rn, and let H ′, H ′′ be
the closed halfspaces delimited by H . Then φ̂ = φ̂1 + · · ·+ φ̂p.

Proof. Define φ̃ := φ̂1 + · · ·+ φ̂p. It can be verified that φ̂ and φ̃ are defined on the same poyhedral
complex, which we denote by P̂ . We now fix P̂ ∈ P̂n and show that φ̂(P̂ ) = φ̃(P̂ ).

Since P̂ ∈ P̂n, we have P̂ = P1 ∩ · · · ∩ Pp ∩H ′, where Pi ∈ Pni for every i. (We ignore the case
P̂ = P1 ∩ · · · ∩ Pp ∩H ′′, which is identical.) Then

φ̂(P̂ ) = φ(P1 ∩ · · · ∩ Pp) =

p∑
i=1

φi(Pi) =

p∑
i=1

φ̂i(Pi ∩H ′) = φ̃(P1 ∩ · · · ∩ Pp ∩H ′) = φ̃(P ),

where the first and third equations follow from the definition of refinement, while the second and
fourth equations follow from the definition of sum.

The lineality space of a (nonempty) polyhedron P = {x ∈ Rn | Ax ≤ b} is the null space of the
constraint matrix A. In other words, it is the set of vectors y ∈ Rn such that for every x ∈ P the
whole line {x + λy | λ ∈ R} is a subset of P . We say that the lineality space of P is trivial, if it
contains only the zero vector, and nontrivial otherwise.

Since, given a polyhedral complex P that covers Rn, all the nonempty polyhedra in P share the same
lineality space L, we will call L the lineality space of P .

Lemma C.8. Given an abelian group (G,+), pick φ1, . . . , φp ∈ Fn(G), with associated polyhedral
complexes P1, . . . ,Pp. Assume that for every i ∈ [p] the lineality space of Pi is nontrivial. Define
φ := φ1 + · · ·+ φp, P as the underlying polyhedral complex, and ψ as the facet-function of φ. Then
for every hyperplane H ⊆ Rn, the set

S :=
⋃{

F ∈ Pn−1 | F ⊆ H, ψ(F ) 6= 0
}

is either empty or contains a line.
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Proof. The proof is by induction on n. For n = 1, the assumptions imply that all Pi are equal to P ,
and each of these polyhedral complexes has R as its only nonempty face. Since Pn−1 is empty, no
hyperplane H such that S 6= ∅ can exist.

Now fix n ≥ 2. Assume by contradiction that there exists a hyperplane H such that S is nonempty
and contains no line. Let φ̂ be the refinement of φ with respect to H , P̂ be the underlying polyhedral
complex, and ψ̂ be the associated facet-function. Further, we define Q := {P ∩H | P ∈ P̂}, which
is a polyhedral complex that covers H . Note that if H is identified with Rn−1 then we can think of
Q as a polyhedral complex that covers Rn−1, and the restriction of ψ̂ to Qn−1, which we denote
by φ′, can be seen as a function in Fn−1(G). We will prove that φ′ does not satisfy the lemma,
contradicting the inductive hypothesis.

Since φ = φ1+· · ·+φp, by Observation C.7 we have φ̂ = φ̂1+· · ·+φ̂p. Note that for every i ∈ [p] the
hyperplane H is covered by the elements of P̂n−1. This implies that for every F̂ ∈ P̂n−1 and i ∈ [p]

there exists F̂i ∈ P̂n−1
i such that F̂ ⊆ F̂i. Then, by Observation C.4, ψ̂(F̂ ) = ψ̂1(F̂1)+· · ·+ψ̂p(F̂p).

Now, additionally suppose that F̂ is contained in H , that is, F̂ ∈ Qn−1. Let i ∈ [p] be such that the
lineality space of Pi is not parallel to H . Then no element of Pn−1

i contains F̂i. By Observation C.6,
ψ̂i(F̂i) = 0. We then conclude that

ψ̂(F̂ ) =
∑
i∈J

ψ̂i(F̂i) for every F̂ ∈ Qn−1,

where J is the set of indices i such that the lineality space of Pi is parallel to H . This means that

φ′ =
∑
i∈J

φ′i,

where φ′i is the restriction of ψ̂i to Qn−1
i , with Qi := {P ∩H | P ∈ P̂i}. Note that for every i ∈ J

the lineality space of Qi is clearly nontrivial, as it coincides with the lineality space of Pi.

Now pick any F̂ ∈ Qn−1. Note that if there exists F ∈ Pn−1 such that F̂ ⊆ F , then F̂ = F . It then
follows from Observation C.6 that⋃{

F̂ ∈ Qn−1
∣∣∣ ψ̂(F̂ ) 6= 0

}
= S.

In other words, ⋃{
F ∈ Qn−1

∣∣ φ′(F ) 6= 0
}

= S. (7)

Since S 6= H (as S contains no line), there exists a polyhedron F ∈ Qn−1 such that F ⊆ S and F
has a facet F0 which does not belong to any other polyhedron in Qn−1 contained in S. Then the
facet-function ψ′ associated with φ′ satisfies ψ′(F0) 6= 0. Let H ′ be the (n− 2)-dimensional affine
space containing F0. Then the set

S′ :=
⋃{

F ∈ Qn−2
∣∣ F ⊆ H ′, ψ′(F ) 6= 0

}
is nonempty, as F0 ⊆ S′. Furthermore, we claim that S′ contains no line. To see why this is true,
take any F ∈ Qn−2 such that F ⊆ H ′ and ψ′(F ) 6= 0, and let F ′, F ′′ be the two polyhedra in
Qn−1 having F as facet. Then φ′(F ′) 6= φ′(F ′′), and thus at least one of these values (say φ′(F ′))
is nonzero. Then, by (7), F ′ ⊆ S, and thus also F ⊆ S. This shows that S′ ⊆ S and therefore S′
contains no line.

We have shown that φ′ does not satisfy the lemma. This contradicts the inductive assumption that the
lemma holds in dimension n− 1.

Finally, we can use this lemma to prove Proposition 3.3.

Proof of Proposition 3.3. Assume for the sake of a contradiction that

f0(x) =

p∑
i=1

λi max{`i1(x), . . . , `in(x)} for every x ∈ Rn,
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where p ∈ N, λ1, . . . , λp ∈ R and `ij : Rn → R is an affine linear function for every i ∈ [p]
and j ∈ [n]. Define fi(x) := λi max{`i1(x), . . . , `in(x)} for every i ∈ [p], which is a CPWL
function.

Fix any i ∈ [p] such that λi ≥ 0. Then fi is convex. Note that its epigraph Ei := {(x, z) ∈ Rn ×R |
z ≥ `ij(x) for j ∈ [n]} is a polyhedron in Rn+1 defined by n inequalities, and thus has nontrivial
lineality space. Furthermore, the line orthogonal to the x-space is not contained in Ei. Since the
underlying polyhedral complex Pi of fi consists of the orthogonal projections of the faces of Ei
(excluding Ei itself) onto the x-space, this implies that Pi has also nontrivial lineality space. (More
precisely, the lineality space of Pi is the projection of the lineality space of Ei.)

If λi < 0, then fi is concave. By arguing as above on the convex function −fi, one obtains that the
underlying polyhedral complex Pi has again nontrivial lineality space. Thus this property holds for
every i ∈ [p].

The set of affine linear functions Rn → R forms an abelian group (with respect to the standard
operation of sum of functions), which we denote by (G,+). For every i ∈ [p]0, let φi be the function
in Fn(G) with underlying polyhedral complex Pi defined as follows: for every P ∈ Pni , φi(P ) is
the affine linear function that coincides with fi over P . Define φ := φ1 + · · ·+ φp and let P be the
underlying polyhedral complex.

Note that for every P ∈ Pn, φ(P ) is precisely the affine linear function that coincides with f0

within P . However, P may not coincide with P0, as there might exist P ′, P ′′ ∈ Pd sharing a facet
such that φ(P ′) = φ(P ′′); when this happens, f0 is affine linear over P ′ ∪ P ′′ and therefore P ′
and P ′′ are merged together in P0. Nonetheless, P is a refinement of P0, i.e., for every P ∈ Pn0
there exist P1, . . . , Pk ∈ Pn (for some k ≥ 1) such that P = P1 ∪ · · · ∪ Pk. Moreover, φ0(P ) =
φ(P1) = · · · = φ(Pk). Denoting by ψ the facet-function associated with φ, this implies for a facet
F ∈ Pn−1 that ψ(F ) = 0 if and only if F is not subset of any facet F ′ ∈ Pn−1

0 .

Let H be a hyperplane as in the statement of the proposition. The above discussion shows that

T =
⋃{

F ∈ Pn−1
0

∣∣ F ⊆ H} =
⋃{

F ∈ Pn−1
∣∣ F ⊆ H, ψ(F ) 6= 0

}
.

Using S := T , we obtain a contradiction to Lemma C.8.

D Detailed Proof of Theorem 4.1

We prove Theorem 4.1 by translating it into the polyhedral world with the help of Proposition 4.5. In
the polyhedral world, the following proposition will be useful. Although its statement is well-known
in the discrete geometry community, we include a proof for the sake of completeness. The proof
makes use of Radon’s theorem (compare Edelsbrunner [1987, Theorem 4.1]), stating that any set of
at least n+ 2 points in Rn can be partitioned into two nonempty subsets such that their convex hulls
intersect.

Proposition D.1. Given p > n+ 1 vectors (ai, bi) ∈ Rn×R, i ∈ [p], there exists a nonempty subset
U ( [p] featuring the following property: there is no c ∈ Rn+1 with cn+1 ≥ 0 and γ ∈ R such that

cT (ai, bi) > γ for all i ∈ U , and

cT (ai, bi) ≤ γ for all i ∈ [p] \ U .
(8)

Proof. Radon’s theorem applied to the at least n+ 2 vectors ai, i ∈ [p], yields a nonempty subset
U ( [p] and coefficients λi ∈ [0, 1] with

∑
i∈U λi =

∑
i∈[p]\U λi = 1 such that

∑
i∈U λiai =∑

i∈[p]\U λiai. Suppose without loss of generality that
∑
i∈U λibi ≤

∑
i∈[p]\U λibi (otherwise

exchange the roles of U and [p] \ U ).

For any c and γ that satisfy (8) and cn+1 ≥ 0 it follows that

γ < cT
∑
i∈U

λi(ai, bi) ≤ cT
∑

i∈[p]\U

λi(ai, bi) ≤ γ,

proving that no such c and γ can exist.
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The idea for proving Theorem 4.1 is the following procedure: we show that any convex CPWL
function with p > n + 1 pieces can be expressed as integer linear combination of convex CPWL
functions with at most p− 1 pieces. Then, this can be applied iteratively until we obtain the desired
representation. A crucial step for realizing one iteration of this procedure is the following proposition.

Proposition D.2. Let f(x) = max{aTi x+ bi | i ∈ [p]} be a convex CPWL function defined on Rn
with p > n+ 1. Then there exist a subset U ⊆ [p] such that∑

W⊆U,
|W | even

max{aTi x+ bi | i ∈ [p] \W} =
∑
W⊆U,
|W | odd

max{aTi x+ bi | i ∈ [p] \W} (9)

Proof. Consider the p > n + 1 vectors (ai, bi) ∈ Rn+1, i ∈ [p]. Choose U according to Proposi-
tion D.1. We show that this choice of U guarantees equation (9).

For W ⊆ U , let fW (x) = max{aTi x + bi | i ∈ [p] \ W} and consider its extended Newton
polyhedron PW = N (fW ) = conv({(ai, bi) | i ∈ [p] \W}) + cone({−en+1}). By Proposition 4.5,
equation (9) is equivalent to

Peven :=
∑
W⊆U,
|W | even

PW =
∑
W⊆U,
|W | odd

PW =: Podd,

where the sums are Minkowski sums.

We show this equation by showing that for all cost vectors c ∈ Rn+1 it holds that

max{cTx | x ∈ Peven} = max{cTx | x ∈ Podd}. (10)

Let c ∈ Rn+1 be an arbitrary cost vector. If cn+1 < 0, both sides of (10) are infinite. Hence, from
now on, assume that cn+1 ≥ 0. Then, both sides of (10) are finite since −en+1 is the only extreme
ray of all involved polyhedra.

Due to our choice of U according to Proposition D.1, there exists an index u ∈ U such that

cT (au, bu) ≤ max
i∈[p]\U

cT (ai, bi). (11)

We define a bijection ϕu between the even and the odd subsets of U as follows:

ϕu(W ) :=

{
W ∪ {u}, if u /∈W,
W \ {u}, if u ∈W.

That is, ϕu changes the parity of W by adding or removing u. Considering the corresponding
polyhedra PW and Pϕu(W ), this means that ϕu adds or removes the extreme point (au, bu) to or
from PW . Due to (11) this does not change the optimal value of maximizing in c-direction over the
polyhedra, that is, max{cTx | x ∈ PW } = max{cTx | x ∈ Pϕu(W )}. Hence, we may conclude

max{cTx | x ∈ Peven} =
∑
W⊆U,
|W | even

max{cTx | x ∈ PW }

=
∑
W⊆U,
|W | even

max{cTx | x ∈ Pϕu(W )}

=
∑
W⊆U,
|W | odd

max{cTx | x ∈ PW }

= max{cTx | x ∈ Podd},

which proves (10). Thus, the claim follows.

With the help of this result, we can now prove Theorem 4.1.

23



Proof of Theorem 4.1. Let f(x) = max{aTi x + bi | i ∈ [p]} be a convex CPWL function defined
on Rn. Having a closer look at the statement of Proposition D.2, observe that only one term at the
left-hand side of (9) contains all p affine combinations aTi x+ bi. Putting all other maximum terms
on the other side, we may write f as an integer linear combination of maxima of at most p − 1
summands. Repeating this procedure until we have eliminated all maximum terms with more than
n+ 1 summands yields the desired representation.
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