
Appendices630

A Data Collection631

In this section, we detail the data collection steps used for creating each of the tasks in design-bench.632

We answer (1) where is the data from, and (2) what pre-processing steps are used?633

A.1 TF Bind 8634

The TF Bind 8 task is a derivative of the transcription factor binding activity survey performed by [5],635

where the binding activity scores of every possible length eight DNA sequence was measured with a636

variety of human transcription factors. We filter the dataset by selecting a particular transcription637

factor SIX6_REF_R1, and defining an optimization problem where the goal is to synthesize a length638

8 DNA sequence with high binding activity with human transcription factor SIX6_REF_R1. This639

particular transcription factor for TF Bind 8 was recently used for optimization in [2, 3]. TF Bind640

8 is a fully characterized dataset containing 65792 samples, representing every possible length 8641

combination of nucleotides xTFBind8 ∈ {0, 1}8×4. The training set given to offline MBO algorithms642

is restricted to the bottom 50%, which results in a visible training set of 32898 samples.643

A.2 GFP644

The GFP task provided is a derivative of the GFP dataset [30]. The dataset we use in practice is645

that provided by [7] at the url https://github.com/dhbrookes/CbAS/tree/master/data. We646

process the dataset such that a single training example consists of a protein represented as a tensor647

xGFP ∈ {0, 1}237×20. This tensor is a sequence of 237 one-hot vectors corresponding to which amino648

acid is present in that location in the protein. We use the dataset format of [7] with no additional649

processing. The data was originally collected by performing laboratory experiments constructing650

proteins similar to the Aequorea victoria green fluorescent protein and measuring fluorescence. We651

employ the full dataset of 56086 proteins when learning approximate oracles for evaluating offline652

MBO methods, but restrict the training set given to offline MBO algorithms to 5000 samples drawn653

from between the 50th percentile and 60th percentile of proteins in the GFP dataset, sorted by654

fluorescence values. This subsampling procedure is consistent with prior work [7].655

A.3 UTR656

The UTR task is derived from work by Sample et al. [29] who trained a CNN model to predict the657

expressive level of a particular gene from a corresponding 5’UTR sequence. Our use of the UTR task658

for model-based optimization follows Angermüller et al. [3], where the goal is to design a length 50659

DNA sequence to maximize expression level. We follow the methodology set by Sample et al. [29]660

to sort all length 50 DNA sequences in the unprocessed UTR dataset by total reads, and then select661

the top 280,000 DNA sequences with the most total reads. The result is a dataset containing 280,000662

samples of length 50 DNA sequences xUTR ∈ {0, 1}50×4 and corresponding ribosome loads. When663

training offline MBO algorithms, we subsequently eliminate the top 50% of sequences ranked by664

their ribosome load, resulting in a visible dataset with only 140,000 samples.665

A.4 ChEMBL666

The ChEMBL task is a derivative of a much larger dataset that is derived from ChEMBL [13], a667

large database of chemicals and their properties. The data, similar to GFP, was originally collected668

by performing physical experiments on a large number of molecules, and measuring their activity669

with a target assay. We have processed the ChEMBL database—available at https://www.ebi.670

ac.uk/chembl/g/#browse/activities—into collections of smaller datasets mapping particular671

molecules to measured values, determined by a target assay that accompanies each set. We choose672

the assay specified by ASSAY_CHEMBL_ID = CHEMBL1964047 and select the standard type of GI50673

as the measurement to maximize with offline model-based optimization. The resulting dataset has674

40516 samples in total. We preprocess the dataset by converting each molecule into a SMILES string675

using RDKit, and then apply the DeepChem SmilesTokenizer to convert each SMILES string into676

14

https://github.com/dhbrookes/CbAS/tree/master/data
https://www.ebi.ac.uk/chembl/g/#browse/activities
https://www.ebi.ac.uk/chembl/g/#browse/activities
https://www.ebi.ac.uk/chembl/g/#browse/activities


a sequence of integer tokens. The resulting processed samples have a maximum sequence length of677

425 and the vocabulary has 591 elements, xChEMBL ∈ {0, 1}425×591. The final step is to remove the678

top 47% of molecules sorted by their GI50 value. This step removes a mode of the dataset that we679

found to hurt the performance of learned oracle models trained on this processed dataset.680

A.5 Superconductor681

The Superconductor task is inspired by recent work [10] that applies offline MBO to optimize the682

properties of superconducting materials for high critical temperature. The data we provide in our683

benchmark is real-world superconductivity data originally collected by [16], and subsequently made684

available to the public at https://archive.ics.uci.edu/ml/datasets/Superconductivty+685

Data#. The original dataset consists of superconductors featurized into vectors containing measured686

physically properties like the number of chemical elements present, or the mean atomic mass of such687

elements. One issue with the original dataset that was used in [10] is that the numerical representation688

of the superconducting materials did not lend itself to recovering a physically realizable material689

that could be synthesized in a lab after performing model-based optimization. In order to create an690

invertible input specification, we deviate from prior work and encode superconductors as vectors691

whose components represent the number of atoms of specific chemical elements present in the692

superconducting material—a serialization of the chemical formula of each superconductor. The result693

is a real-valued design space with 86 components xSuperconductor ∈ R86. The full dataset used to learn694

approximate oracles for evaluating MBO methods has 21263 samples, but we restrict this number to695

17010 (the 80th percentile) for the training set of offline MBO methods to increase difficulty.696

A.6 Hopper Controller697

The HopperController task is one that we provide ourselves. The goal of this task is to design a set of698

weights for as neural network policy, in order to achieve high expected return when evaluating that699

policy. The data collected for HopperController was taken by training a three layer neural network700

policy with 64 hidden units and 5126 total weights on the Hopper-v2 MuJoCo task using Proximal701

Policy Optimization [31]. Specifically, we use the default parameters for PPO provided in stable702

baselines [18]. The dataset we provide with this benchmark has 3200 unique weights. In order to703

collect this many, we run 32 experimental trials of PPO, where we train for one million steps, and704

save the weights of the policy every 10,000 environment steps. The policy weights are represented705

originally as a list of tensors. We first traverse this list and flatten each of the tensors, and we then706

concatenate each of these flattened tensors into a single training example xHopper ∈ R5126. The result707

is an optimization problem over neural network weights. After collecting these weights, we perform708

no additional pre-processing steps. In order to collect scores we perform a single rollout for each x709

using the Hopper-v2 MuJoCo environment. The horizon length for training and evaluation is limited710

to 1000 simulation time steps, which is standard practice for this MuJoCo environment.711

A.7 Ant & D’Kitty Morphology712

Both morphology tasks are collected by us, and share methodology. The goal of these tasks is to713

design the morphology of a quadrupedal robot—an ant or a D’Kitty—such that the agent is able to714

crawl quickly in a particular direction. In order to collect data for this environment, we create variants715

of the MuJoCo Ant and the ROBEL D’Kitty agents that have parametric morphologies. The goal716

is to determine a mapping from the morphology of the agent to the average return of a pre-trained717

morphology conditioned agent. We implement this by pre-training a morphology conditioned neural718

network policy using SAC [15]. For both the Ant and the D’Kitty, we train the agents for more than719

ten million environment steps, and a maximum episode length of 200, with all other settings as default.720

These agents are pre-trained on Gaussian distributions of morphologies. The Gaussian distributions721

are obtained by adding Gaussian noise with standard deviation 0.03 for Ant and 0.01 for D’Kitty the722

design-space range to the default morphologies. After obtaining trained morphology-conditioned723

policies, we create a dataset of morphologies for model-based optimization by sampling initialization724

points randomly, and then using CMA-ES to optimize for morphologies that attain high reward725

using the pretrained morphology-conditioned policy. To obtain initialization points, we add Gaussian726

random noise to the default morphology for the Ant with standard deviation 0.075 and D’Kitty with727

standard deviation 0.1, and then apply CMA-ES with standard deviation 0.02. We ran CMA-ES for728

250 iterations and then restart, until a minimum of 25000 morphologies were collected, resulting in a729

15

https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data#
https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data#
https://archive.ics.uci.edu/ml/datasets/Superconductivty+Data#


final dataset size of 25009 for both the Ant and D’Kitty. The design space for Ant Morphologies is730

xAnt ∈ R60, whereas for D’Kitty morphologies is xD’Kitty ∈ R56. We subsample the dataset to its731

40th percentile when training offline MBO algorithms, resulting in 10004 samples.732

B Oracle Functions733

We detail oracle functions for evaluating ground truth scores for each of the tasks in design-bench. A734

common thread among these is that the oracle, if trained, is fit to a larger static dataset containing735

higher performing designs than observed by a downstream MBO algorithm.736

B.1 TF Bind 8737

TF Bind 8 is a fully characterized discrete offline MBO task, which means that all possible designs738

have been evaluated [5] and are contained in the full hidden TF Bind 8 dataset. The oracle for TF739

Bind 8 is therefore implemented as a lookup table that returns the score corresponding to a particular740

length 8 DNA sequence from the dataset. By restricting the size of the training set visible to an offline741

MBO algorithm, it is possible for the algorithm to propose a design that achieves a higher score than742

any other DNA sequence visible to the offline MBO algorithm during training.743

B.2 GFP744

GFP uses the oracle function derived from Rao et al. [27]. This oracle is a Transformer regression745

model with 4 attention blocks and a hidden size of 64. The Transformer is fit to the entire hidden746

GFP dataset, making it possible to sample a protein design that achieves a higher score than any other747

protein visible to an offline MBO algorithm. Our Transformer has a Spearman’s rank correlation748

coefficient of 0.8497 with a held-out validation set derived from the GFP dataset.749

B.3 UTR750

UTR uses a Transformer as the oracle function, which differs from the CNN that was originally751

used by [3]. Our reasoning for making this change is that the Transformer is a newer and possibly752

higher capacity model that may be less prone to mistakes than the shallower CNN model proposed by753

Sample et al. [29]. This Transformer has 4 attention blocks and a hidden size of 64. The Transformer754

is fit to the entire hidden UTR dataset, making it possible to sample a DNA sequence that achieves a755

higher score than any other sequence visible to an offline MBO algorithm. The resulting Transformer756

has a spearman’s rank correlation coefficient of 0.6424 with a held-out validation set.757

B.4 ChEMBL758

We tested several models as candidate oracle functions for ChEMBL [13], including Gaussian Process,759

Random Forest, CNN, and Transformer regression models. We ultimately found the CNN to result in760

the highest validation performance, achieving a spearman’s rank correlation coefficient of 0.3208761

with a held-out validation set. These models were trained on the entire hidden ChEMBL dataset762

encoded into SMILES and tokenized. While this rank correlation is low in comparison to the previous763

tasks, such illustrates the challenge learning of predicting molecule properties directly from SMILES,764

and is a welcome avenue for future work in the design an training of such models. Our CNN consists765

of four residual blocks each with two convolution layers with kernel size 3 and 64 filters.766

B.5 Superconductor767

The Superconductor oracle function is also a random forest regression model. The model we use768

it the model described by [16]. We borrow the hyperparameters described by them, and we use769

the RandomForestRegressor provided in scikit-learn. Similar to the setup for the previous set of770

tasks, this oracle is trained on the entire hidden dataset of superconductors. The random forest has a771

spearman’s rank correlation coefficient with a held-out validation set of 0.9155.772

16



B.6 HopperController773

Unlike the previously described tasks, HopperController and the remaining tasks implement an774

exact oracle function. For HopperController the oracle takes the form of a single rollout using the775

Hopper-v2 MuJoCo environment. The designs for HopperController are neural network weights, and776

during evaluation, a policy with those weights is instantiated—in this case that policy is a three layer777

neural network with 11 input units, two layers with 64 hidden units, and a final layer with 3 output778

units. The intermediate activations between layers are hyperbolic tangents. After building a policy,779

the Hopper-v2 environment is reset and the reward for 1000 time-steps is summed. That summed780

reward constitutes the score returned by the HopperController-v0 oracle. The limit of performance is781

the maximum return that an agent can achieve in Hopper-v2 over 1000 steps.782

B.7 Ant & D’Kitty Morphology783

The final two tasks in design-bench use an exact oracle function, using the MuJoCo simulator. For784

both morphology tasks, the simulator performs a rollout and returns the sum of rewards at every785

timestep in that rollout. Each task is accompanied by a pre-trained morphology-conditioned policy. To786

perform evaluation, a morphology is passed to the Ant or D’Kitty MuJoCo environments respectively,787

and a dynamic-morphology agent is initialized inside these environments. These simulations can be788

time consuming to run, and so we limit the rollout length to 100 steps. The morphology conditioned789

policies were trained using the reinforcement learning algorithm SAC for 10 million steps for each790

task, and are ReLU networks with two hidden layers of size 64.791

C Experimental Details792

In this section we present additional details for the experiments, including the score normalization793

process and 50th percentile performance.794

C.1 Score Normalization795

In order to report performance on the same order of magnitude for each offline model-based opti-796

mization task in Design-Bench, we normalize the performance reported in Table 2 by calculating797

the minimum objective value ymin and the the maximum objective value ymax in the full unobserved798

dataset associated with each offline model-based optimization problem. Crucially, note that this is799

not the same as normalizing with respect to the best and worst samples in the training dataset used800

by the offline MBO algorithm, but rather a bigger dataset of designs and objective values. We then801

report performance by calculating what fraction of the distance between ymin and ymax is attained by802

a particular offline MBO baseline.803

ynormalized(y) =
y − ymin

ymax − ymin
(3)

The final performance ynormalized is the normalized performance of an offline MBO method that804

achieved an unprocessed objective value of y. The result is larger than one when the offline MBO805

method finds a solution more performance than all solutions in the full unobserved dataset associated806

with the corresponding task. The result is less than zero when the offline MBO method finds a807

solution attaining less performance than all samples in the full unobserved dataset.808

C.2 50th Percentile Experiment Results809

In this section, we present the 50th percentile performance of the runs presented in main paper810

in Table 2. Similar to the 100th percentile performance reported in the main text, performance is811

calculated by evaluating solutions to each task found by an optimization method, subtracting the812

minimum objective value present in the corresponding task dataset, and dividing by the range of813

objective values present in the corresponding task dataset. The result is a performance of greater than814

one if optimization converges to a solution with a higher objective value that the best observed design815

in the corresponding task dataset.816

17



GFP TF Bind 8 UTR ChEMBL

Autofocus.-CbAS 0.848 ± 0.007 0.419 ± 0.007 0.517 ± 0.010 0.216 ± 0.000
CbAS 0.852 ± 0.004 0.428 ± 0.010 0.515 ± 0.014 0.243 ± 0.006
BO-qEI 0.246 ± 0.341 0.439 ± 0.000 0.574 ± 0.000 0.298 ± 0.034
CMA-ES 0.047 ± 0.000 0.537 ± 0.014 0.385 ± 0.019 0.316 ± 0.031
Gradient Ascent 0.838 ± 0.004 0.609 ± 0.019 0.489 ± 0.009 0.300 ± 0.031
Grad. Min. 0.837 ± 0.001 0.645 ± 0.030 0.514 ± 0.007 0.306 ± 0.023
Grad. Mean 0.838 ± 0.002 0.616 ± 0.023 0.508 ± 0.005 0.326 ± 0.016
MINs 0.820 ± 0.018 0.421 ± 0.015 0.560 ± 0.007 0.347 ± 0.001
REINFORCE 0.844 ± 0.003 0.462 ± 0.021 0.530 ± 0.008 0.246 ± 0.004

Superconductor Ant Morphology D’Kitty Morphology Hopper Controller

Autofocus.-CbAS 0.131 ± 0.010 0.362 ± 0.015 0.736 ± 0.025 0.019 ± 0.008
CbAS 0.111 ± 0.017 0.382 ± 0.016 0.753 ± 0.008 0.015 ± 0.002
BO-qEI 0.300 ± 0.015 0.566 ± 0.000 0.883 ± 0.000 0.343 ± 0.010
CMA-ES 0.379 ± 0.003 -0.050 ± 0.004 0.684 ± 0.016 -0.033 ± 0.005
Gradient Ascent 0.476 ± 0.022 0.130 ± 0.018 0.509 ± 0.200 0.092 ± 0.084
Grad. Min 0.471 ± 0.016 0.182 ± 0.008 0.746 ± 0.034 0.222 ± 0.065
Grad. Mean 0.469 ± 0.022 0.184 ± 0.010 0.748 ± 0.024 0.243 ± 0.064
MINs 0.336 ± 0.016 0.619 ± 0.041 0.887 ± 0.004 0.352 ± 0.058
REINFORCE 0.463 ± 0.016 0.134 ± 0.033 0.356 ± 0.131 -0.064 ± 0.003

Table 3: 50th percentile evaluations for baselines on every task. Results are averaged over 8 trials,
and the ± indicates the standard deviation of the reported performance. This table corresponds to the
normalized performance, using the normalization methodology described in Appendix C.1
.

C.3 Unnormalized Experimental Results817

In this section, we present the raw 100th percentile performance of the runs presented in main paper818

in Table 2. These values, presented in Table 4, represent the mean raw objective values and the819

standard deviation of the objective values attained by various offline MBO methods.820

GFP TF Bind 8 UTR ChEMBL

Autofocus CbAS 3.739 ± 0.001 0.910 ± 0.044 7.794 ± 0.070 42467.285 ± 0.000
CbAS 3.738 ± 0.001 0.927 ± 0.051 7.800 ± 0.023 46681.988 ± 4987.456
BO-qEI 2.005 ± 1.000 0.798 ± 0.083 7.903 ± 0.000 30069.684 ± 3187.300
CMA-ES 1.438 ± 0.005 0.953 ± 0.022 7.993 ± 0.052 31607.031 ± 1578.222
Gradient Ascent 3.737 ± 0.002 0.977 ± 0.025 7.669 ± 0.113 32514.541 ± 2612.903
Grad. Min 3.738 ± 0.000 0.984 ± 0.012 7.758 ± 0.081 32617.006 ± 370.390
Grad. Mean 3.738 ± 0.000 0.986 ± 0.012 7.764 ± 0.058 33715.059 ± 1136.034
MINs 3.741 ± 0.002 0.905 ± 0.052 7.787 ± 0.053 42732.578 ± 5126.862
REINFORCE 3.739 ± 0.001 0.948 ± 0.028 7.747 ± 0.059 41448.012 ± 3220.380

Superconductor Ant Morphology D’Kitty Morphology Hopper Controller

Autofocus CbAS 77.910 ± 8.361 474.888 ± 44.424 226.156 ± 7.043 261.820 ± 6.366
CbAS 93.078 ± 12.695 469.499 ± 30.570 209.412 ± 9.593 267.623 ± 15.833
BO-qEI 74.322 ± 6.347 413.084 ± 0.000 213.816 ± 0.000 788.990 ± 149.878
CMA-ES 86.072 ± 4.508 799.394 ± 715.702 4.290 ± 1.505 857.178 ± 273.980
Grad. 95.789 ± 4.436 -100.265 ± 22.118 187.206 ± 27.274 1406.413 ± 613.631
Grad. Min 93.590 ± 1.719 80.853 ± 62.308 205.639 ± 13.427 1860.192 ± 750.026
Grad. Mean 92.265 ± 3.206 48.064 ± 78.555 209.355 ± 13.928 2108.004 ± 578.350
MINs 86.702 ± 4.171 505.515 ± 34.934 273.479 ± 14.184 628.436 ± 210.953
REINFORCE 88.996 ± 2.389 -127.440 ± 30.831 -194.540 ± 238.857 62.183 ± 84.937

Table 4: Unnormalized 100th percentile unnormalized evaluations for baselines on every task. Re-
sults are averaged over 8 trials, and the± indicates the standard deviation of the reported performance.
This table corresponds to the unnormalized performance.

18



C.4 Computation Resources821

The amount of computation resources required to produce the experiments in this paper is relatively822

modest. We ran our experiments on a single server with 2 Intel Xeon E5-2698 v4 CPUs and 8 Nvidia823

Tesla V100 GPUs. All our experiments can be completed within 96 hours on this single machine.824

D Normalization Of Inputs and Outputs For Gradient Ascent Baseline825

0 25 50 75 100 125 150 175 200

Gradient ascent steps

0

500

1000

1500

2000

2500

A
v
e
ra

g
e

re
tu

rn

HopperController-v0

Gradient ascent (normalized)

Gradient ascent (unnormalized)

An important component for the the good performance of gradient ascent baseline is the normalization826

of design space. We found that the identical gradient-ascent baseline performed a factor 1.4x worse827

on HopperController, when optimizing in the space of unnormalized designs and objective values, as828

seen in Figure D. This indicates that normalization is key in obtaining good performance with a naïve829

gradient ascent baseline.830

For continuous design-space tasks, we normalize both the designs, and the scores to have unit831

Gaussian statistics. For discrete design-space tasks, we normalize only the scores to have unit832

Gaussian statistics. This is a necessary part of the optimization workflow because scores vary by833

several orders of magnitude in the dataset, for example, 0.864 for GFP similar to other methods and834

as high as 1.586 for HopperController. The specific normalization equation for continuous-valued835

designs is given below.836

x̃i,j =
xi,j − µ(x,j)

σ(x,j)
: x ∈ RN×D (4)

We also normalize the objective values in a similar fashion to have unit Gaussian statistics. The result837

in a new set of designs x̃ and objective values ỹ that is optimized over838

ỹi,j =
yi,j − µ(y,j)

σ(y,j)
: y ∈ RN×1 (5)

The gradient ascent procedure is performed in the space of these normalized designs. Suppose T839

steps of gradient ascent have been taken, and a final normalized solution x̃∗T is found. This solution is840

de-normalized using the following transformation.841

(x∗T )ij = (x̃∗T )ij · σ(x,j) + µ(x,j) (6)

This normalization strategy is heavily inspired by data whitening, which is known to reduce the842

variance of machine learning algorithms that learn discriminative mappings on that data. The learned843

model of the objective function is one such discriminative model, and normalization likely improves844

the consistency of Gradient Ascent across independent experimental trials.845

E Hyperparameter Selection Workflow846

Hyperparameter tuning under a restricted computational budget is emerging as an import research847

domain in optimization [34, 9, 19]. Care must be taken when tuning each of the prescribed algorithms848

so that only offline information about the task is used for hyperparameter selection. Formally, this849

means that the hyperparameters, H, are conditionally independent of the particular value of the850

performance metric M, given the offline task dataset D. Examples of hyperparameter selection851

strategies that violate this requirement might, for example, perform a grid search overH and take the852

set that maximizes the performance metric, but this is not offline. An example of a tuning strategy853

19



that is fully offline is tuning the parameters of a learned model such that is is a good fit for the task854

dataset D. One can choose H that minimizes a validation loss, such as negative log likelihood. A855

detailed record of hyperparameters can be found in the experiment scripts located alongside our856

reference implementations: https://github.com/brandontrabucco/design-baselines.857

We now present specific guidelines for hyperparameter selection (i.e. workflow) for some of the858

methods evaluated in our benchmark. These principles are general principles that can be used to859

tune the hyperparameters of these methods on a new task in a completely offline fashion. While we860

only present workflow details for methods we benchmark in Section 7, we expect that these general861

strategies will allow users to devise analogous schemes for tuning hyperparameters of new offline862

MBO methods with shared components.863

E.1 Strategy For Autofocused CbAS864

The main tunable components of Autofocused methods [10] are the learned objective function, and865

the generative model fit to the data distribution. When training the learned objective function, tracking866

a validation performance metric like rank correlation is helpful to ensure that the resulting learned867

model is able to generalize beyond its training dataset. This tracking is especially important for868

Autofocused methods because re-fitting the learned objective model during importance can lead869

to divergence if the importance weights generated by Autofocusing are very large or very small in870

magnitude. The algorithm is tuned well if, for example, the validation rank correlation stays above a871

positive threshold, such as a threshold of 0.9.872

The second component of Autofocused methods is the fit of the generative model used for sampling873

designs. The algorithm has the best chance of success if the generative model can generalize beyond874

the dataset in which it was trained. This can be monitored by holding out a validation set and tracking875

a metric such as negative log likelihood on this held-out set. In the case when the generative model876

is not an exact likelihood-based generative model—for example, a VAE—other validation metrics877

can be used that measure the fit of the generative model on a validation set. The generative model878

is especially impacted by the importance sampling procedure used by Estimation of Distribution879

Algorithms (EDAs), and tracking the effective sample size of the importance weights can help880

diagnose when the generative model is failing to generalize to a validation set.881

E.2 Strategy For CbAS882

The main tunable components of CbAS methods [7] are the learned objective function, and the883

generative model fit to the data distribution. While the learned objective function is not affected884

by the importance sampling weights generated by CbAS, the same tuning strategy described in885

section E.1 that focuses on generalization to a validation set is effective. Generative model tuning can886

also follow an identical strategy to that described in section E.1, which focuses on the ability for the887

generative model to represent samples outside of its training set. In the case of a β-VAE, which is888

used with CbAS in this work, the main parameter for controlling this generalization ability is the β889

parameter. We found that β is task specific, and must be found in order for the CbAS optimizer using890

β-VAE to generate samples that are in the same distribution as its validation set. This value can be891

tuned in practice using a validation metric like that in section E.1.892

E.3 Strategy For MINs893

The main tunable components of MINs [22] are the learned objective function, and the generative894

model fit to the data distribution. The learned objective function is typically trained using a maximum895

likelihood objective, and the validation log-likelihood (or regression error) can be directly tracked.896

The learned objective function should train until a minimum validation loss is reached, which ensured897

that the model will generalize as well as possible beyond its training set. Since only the static task898

dataset is used for this—it may be split into train/validation sets—this tuning strategy is fully offline.899

The generative model for MINs is an inverse mapping x = f−1(y, z), conditioned on the objective900

value y. Training conditional generative models is considerable less stable than unconditional901

generative models, so in addition to monitoring the fit of a validation set recommended in section E.1,902

it is also necessary to track the extent of the dependence of the generative model’s predictions on903

the objective value y. This can be evaluated in practice by comparing the distribution of x from the904

20

https://github.com/brandontrabucco/design-baselines


conditional generative model p(x|y) to an unconditional generative model p(x) with an identical905

initialization, or by comparing if p(x|y) is independent of y by querying the inverse model for906

different values of y and visualizing the similarity in the predictions of x. One metric for more907

formally studying the extent of the dependence of x on z is the mutual information I(x; z). The908

conditional generative model has an appropriate fit if for some positive threshold c we have that909

I(x; z) > c.910

E.4 Strategy For Gradient Ascent911

The main tunable components of Gradient Ascent MBO methods are the learned objective function,912

and the parameters for gradient ascent. The learned objective function is typically trained using a913

maximum likelihood objective under a Gaussian distribution, and the methodology for obtaining a914

high-performing learned objective function is identical to that in section E.3. The second aspect of915

gradient ascent MBO algorithms are the parameters of the gradient-based optimizer for the designs—916

such as its learning rate, and the number of gradient steps it performs. The learning rate should be917

small enough that the gradient steps taken increase the prediction of the learned objective function—if918

the learning rate is too large, gradient steps may not follow the path of steepest ascent of the objective919

function. The number of gradient steps is more difficult to tune. The strategy we used is a fixed920

number of steps, and an offline model-selection criterion to select this parameter is future work.921

E.5 Strategy For REINFORCE922

The main tunable components of REINFORCE-based MBO methods are the learned objective923

function, and the parameters for the policy gradient estimator. The learned objective function is924

typically trained using a maximum likelihood objective, and the methodology for obtaining a high-925

performing learned objective function is identical to that in section E.3. The remaining parameters926

to tune are specific to REINFORCE. The distribution of the policy should be carefully selected to927

be able to model the distribution of designs. For continuous MBO tasks, a Gaussian distribution is928

appropriate, and for discrete MBO tasks, a categorical distribution is appropriate. In addition, the929

learning rate, and optimizer should be selected so that policy updates improve the model-predicted930

score. If the stability of the gradient estimator is suffering, due to high-variance updates, a density931

ratio threshold like in PPO [31] can be applied, and a baseline can be subtracted.932

E.6 Strategy For Bayesian Optimization933

The main tunable components of Bayesian Optimization MBO methods [4] are the learned objective934

function, and the parameters for the bayesian optimization loop. The learned objective function935

is typically trained using a maximum likelihood objective, and the methodology for obtaining a936

high-performing learned objective function is identical to that in section E.3. For a detailed review of937

the strengths and weaknesses of various Bayesian Optimization strategies and their hyperparameters,938

we refer the reader to the BoTorch documentation, available at the BoTorch website https://939

botorch.org/docs/overview. In this work we employ a Gaussian Process as the model, and the940

quasi-Monte Carlo Expected Improvement acquisition function, which has the advantage of scaling941

up to our high-dimensional optimization problems.942

E.7 Strategy For Covariance Matrix Adaptation (CMA-ES)943

The main tunable components of Covariance Matrix Adaptation MBO methods are the learned944

objective function, and the parameters for the evolution strategy. The learned objective function is945

typically trained using a maximum likelihood objective, and the methodology for obtaining a high-946

performing learned objective function is identical to that in Subsection E.3. For a detailed review of the947

strengths and weaknesses of various Bayesian Optimization strategies and their hyperparameters, we948

refer the reader to an open-source implementation of CMA-ES and its corresponding documentation949

https://github.com/CMA-ES/pycma. In this work we employ the default settings for CMA-ES950

reported in this open source implementation, with σ = 0.5.951

21

https://botorch.org/docs/overview
https://botorch.org/docs/overview
https://botorch.org/docs/overview
https://github.com/CMA-ES/pycma


F Fidelity of Expert Model Oracle Functions952

In this section we present additional studies on the quality of expert model oracle functions we953

use in our benchmark, as high fidelity oracles are used for evaluation in this benchmarks on tasks954

where real evaluation using the actual ground truth objective requires running real experiments. We955

first analyze the train-test discrepancy of the oracle, where we use the oracle’s predicted y values956

instead of the dataset values for the MBO algorithm. We measure the correlation of the performance957

ranks of all baseline algorithms in our benchmark, and we also measure of the change of rank of958

different algorithms. High correlation and low rank shift indicate that the use of oracle predicted959

values does not affect the relative performance order of different offline MBO algorithms, suggesting960

the benchmark is robust. We present the results in Table 5. For the majority of MBO tasks where an961

exact oracle is not available, the impact of the train-test discrepancy is minimal. For UTR, the task962

most sensitive to the train-test discrepancy, an option in the Design-Bench code-base allows for the963

training set to be relabelled with the predictions of the oracle model and the train-test discrepancy to964

be removed.965

GFP UTR Superconductor

Rank Correlation 0.895405 0.116667 0.666667
Max Rank Shift 2.000000 7.000000 4.000000
Avg Rank Shift 0.888889 2.666667 1.333333

Table 5: Spearman’s rank correlation coefficient of MBO algorithms when (1) using raw measure-
ments in the training set and a learned oracle during evaluation versus (2) using predictions from a
learned oracle during training and during evaluation.

In addition to the train-test discrepancy, we also measure the oracle agreement between different966

expert oracle models on the same dataset. To quantitatively analyze the agreement on different967

oracles, we use them to evaluate all offline MBO algorithms in this dataset, and measure the changes968

ranks of offline MBO algorithms between oracles. We present the results in Figure 4. The results969

suggest that high quality expert oracle models do agree with each other on the solutions found by970

offline MBO algorithms, indicating that the expert oracles in our benchmark is robust.971

Figure 4: Agreements of the ranks of offline MBO methods using different oracles on the same dataset.
We evaluate all offline MBO algorithms benchmarked in this paper on the same dataset using different oracles,
and compare their performance ranking under different oracles. The rank correlation measures Spearman’s
rank correlation coefficient between the order of the algorithms, and the mean and max rank shift shows the
average and the max rank change of the same algorithm between different oracles. We can see that the rank
correlations are high and rank shifts are low, suggesting that different oracles tend to agree on the relative order
of the performance of offline MBO algorithms. This result indicates that our expert oracle models are robust.

22


	Introduction
	Offline Model-Based Optimization Problem Statement
	Related Work
	Design-Bench Benchmark Tasks
	Task Properties, Challenges, and Considerations
	Algorithm Implementations In Design-Bench
	Benchmarking Prior Methods
	Discussion and Conclusion
	Appendices
	Data Collection
	TF Bind 8
	GFP
	UTR
	ChEMBL
	Superconductor
	Hopper Controller
	Ant & D'Kitty Morphology

	Oracle Functions
	TF Bind 8
	GFP
	UTR
	ChEMBL
	Superconductor
	HopperController
	Ant & D'Kitty Morphology

	Experimental Details
	Score Normalization
	50th Percentile Experiment Results
	Unnormalized Experimental Results
	Computation Resources

	Normalization Of Inputs and Outputs For Gradient Ascent Baseline
	Hyperparameter Selection Workflow
	Strategy For Autofocused CbAS
	Strategy For CbAS
	Strategy For MINs
	Strategy For Gradient Ascent
	Strategy For REINFORCE
	Strategy For Bayesian Optimization
	Strategy For Covariance Matrix Adaptation (CMA-ES)

	Fidelity of Expert Model Oracle Functions



