
Broader Impact498

In this paper, we propose an efficient yet powerful policy class for offline reinforcement learning.499

We show that this method is superior to most existing methods on simulated robotic tasks. However,500

some war robots or weapon robots might employ our EDP to learn strategic agents considering the501

generalization ability of EDP. Depending on the specific application scenarios, it might be harmful to502

domestic privacy and safety.503

A Reinforcement Learning Algorithms504

In this section, we introduce the details of the RL algorithms experimented.505

A.1 TD3+BC506

TD3 [8] is a popular off-policy RL algorithm for continuous control. TD3 improves DDPG [18] by507

addressing the value overestimation issue. Specifically, TD3 adopts a double Q-learning paradigm508

that computes the TD-target Q̂(s,a) as509

Q̂(s,a) = r(s,a) + �min(Q1(s
0,a0), Q2(s

0,a0)), a0 = ⇡(s0), (14)

where ⇡(s0) is a deterministic policy, Q1 and Q2 are two independent value networks. Specifically,510

TD3 takes only Q1 for policy improvement511

⇡⇤ = argmax
⇡

E [Q1(s, â)] , â = ⇡(s). (15)

Built on top of TD3, TD3+BC simply adds an additional behavior cloning term for its policy512

improvement513

⇡⇤ = argmax
⇡

Es,a⇠D
⇥
Q(s, â)� ↵(â� a)2

⇤
, â = ⇡(s), (16)

where ↵ is a hyper-parameter that balances these two terms. However, as the scale of Q-values are514

different from the behavior cloning loss, TD3+BC normalizes it with 1
N

NP
i=1

|Q(si, âi)| for numerical515

stability.516

In the context of EDP, we observe that 1) the behavior cloning term can be naturally achieved as a517

diffusion loss as defined in Eqn. 5; 2) the sampled action â is replaced by action approximation as in518

Eqn. 9 for efficient policy improvement. Different from the original TD3+BC that uses only Q1 for519

policy improvement, we sample from Q1 and Q2 with equal probability for each policy improvement520

step.521

A.2 Critic Regularized Regression522

CRR follows Advantage Weighted Regression (AWR) [27], which is a simple yet effective off-policy523

RL method, for policy improvement. Specifically, AWR considers a constrained policy improvement524

step525

argmax
⇡

Z

s
dµ(s)

Z

a
⇡(a | s)A(s,a)dads, s.t.

Z

s
dµ(s)DKL [⇡(· | s) k µ(· | s)]  ✏, (17)

where A(s,a) is the advantage function, µ is a behavior policy that is used to generate trajectories526

during off-policy RL, dµ(s) is the state distribution induced by µ, DKL is the KL divergence, and ✏ is527

a threshold parameter. This constrained optimization problem can be solved in closed form, which528

gives an optimal policy of529

⇡⇤(a | s) = 1

Z(s)
µ(a | s) exp

✓
1

�
A(s,a)

◆
, (18)

with Z(s) being the partition function and � is a hyper-parameter. For policy improvement, AWR530

simply distills the one-step improved optimal policy to the learning policy ⇡ by minimizing the531
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KL-divergence532

argmin
⇡

Es⇠dµ(s) [DKL [⇡
⇤(· | s) k ⇡(· | s)]]

= argmax
⇡

Es⇠dµ(s),a⇠µ(·|s)


log ⇡(a | s) exp( 1

�
A(s,a))

�
(19)

CRR performs policy improvement in the same way as AWR, which simply replaces the sampling533

distribution with a fixed dataset534

argmax
⇡

Es,a⇠D


log ⇡(a | s) exp( 1

�
A(s,a))

�
. (20)

As a result, this naturally imposes an implicit constraint on its policy improvement step.535

However, as computing the log-likelihood log ⇡(a | s) is intractable in diffusion models, in practical536

implementations, we use Eqn. 13 instead. In addition, we compute the advantage by537

A(s,a) = min(Q1(s,a)�Q2(s,a))�
1

N

NX

i=1

min(Q1(s, âi), Q2(s, âi)), (21)

where âi ⇠ N (â0,�) is a sampled action with the mean of approximated action and an additional538

standard deviation. In our experiment, we found using a fixed standard deviation, an identity matrix539

of � = I, � = 1, and sample size N = 10 generally produce a good performance.540

A.3 Implicit Q Learning541

Similar to CRR, IQL also adopts the AWR-style policy improvement that naturally imposes a542

constraint to encourage the learning policy to stay close to the behavior policy that generates543

the dataset. Different from CRR query novel and potentially out-of-distribution (OOD) actions544

when computing advantages, IQL aims to completely stay in-distribution with only dataset actions,545

while maintaining the ability to perform effective multi-step dynamic programming during policy546

evaluation. IQL achieves this by introducing an additional value function V (s) and performing547

expectile regression. Specifically, the policy evaluation in IQL is implemented as548

min
V

Es,a⇠D [L⌧
2(Q(s,a))� V (s)]

min
Q

Es,a,s0⇠D
⇥
(r(s,a) + �V (s0)�Q(s,a))2

⇤
, (22)

where L⌧
2 is the expectile regression loss defined as L⌧

2(x) = |⌧ � (x < 0)|x2 with hyper-paramter549

⌧ 2 (0, 1). The intuition behind IQL is that with a larger ⌧ , we will be able to better approximate the550

max operator. As a result, IQL approximates the Bellman’s optimality equation without querying551

OOD actions.552

In practical implementations, we also adopt double Q learning for IQL, where we replace the553

Q(s,a) in Eqn. 22 with min(Q1(s,a), Q2(s,a)), and then use the updated value network to554

train both Q value networks. For IQL, we follow the policy improvement steps of CRR, as de-555

scribed in Eqn. 20 and Eqn. 21. The key difference is that instead of sampling actions to compute556

1
N

NP
i=1

min(Q1(s, âi), Q2(s, âi)), IQL replaces it directly with the learned V (s). As for hyper-557

parameters, we use a temperature of � = 1, a fixed standard deviation � = I, and for expectile ratio558

⌧ , we use ⌧ = 0.9 for antmaze-v0 environments and ⌧ = 0.7 for other tasks.559

B Reinforcement Guided Diffusion Policy Details560

The overall algorithm for our Reinforcement Guided Diffusion Policy Learning is given in Alg. 1.561

The detailed algorithm for energy-based action selection is given in Alg. 2.562

C Environmental Details563

C.1 Hyper-Parameters564

We detail our hyperparameters in Tab. ??.565
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Algorithm 1: Reinforcement Guided Diffusion Policy
Input: I , �, ⌘, D, ✏✓(ak, k; s), Q�(s,a)
Output: ✓, �
for i = 0, . . . , I do
// Sample a batch of data
{(s,a, s0)} ⇠ D
// Sample next actions with DPM-Solver
a0 ⇠ ⇡✓(·|s)
� �� ⌘r�LTD(�)
// Action approximation

â0 = 1p
↵̄k

ak �
p

1�↵̄k
p
↵̄k

✏✓(ak, k; s)

✓  ✓ � ⌘r✓(Ldiff(✓) + �L⇡(✓))

Algorithm 2: Energy-based Action Selection
Input: number of actions: N , ⇡✓(a|s), Q�(s,a)
Output: a
ai ⇠ ⇡✓(a|s) i = 1, . . . , N
a = categorical_sample({ai}, {eQ�(s,ai)})

C.2 More Results566

We first expand Tab. 1 by providing detailed numbers for each of the tasks used in Tab. 4.567

We report the performance of EDP trained with TD3, CRR, and IQL in Tab. 5, where we directly568

compare the scores of different evaluation metrics, i.e., OMS and RAT. We can observe that there are569

huge gaps between OMS and RAT for all domains and all algorithms. However, IQL and CRR are570

relatively more stable than TD3. For example, on the antmaze domain, TD3 achieves a best score of571

80.5, while the average score is just 29.8. In comparison, the best and average scores of IQL are 89.2572

and 73.4, respectively.573

C.3 More Results on EAS574

We compare normal TD3+BC, TD3+BC with EAS for evaluation and TD3 + EDP in Tab. ??.575

C.4 More Experiments on Controlled Sampling576

As in Sec. 4.5, we discussed reducing variance with EAS. We now detail another two methods577

experimented as below.578

Policy scaling Instead of sampling from the policy directly, we can sample from a sharper policy579

⇡⌧
✓ (a|s), where ⌧ > 1. The scaled policy ⇡⌧

✓ shares the same distribution modes as ⇡✓ but with580

reduced variance. Since diffusion policies are modeling the scores log ⇡✓(at|s), policy scaling can581

be easily achieved by scaling the output of noise-prediction network by the factor ⌧ . We conduct582

experiments on the gym-locomotion tasks in D4RL by varying ⌧ from 0.5 to 2.0, as shown in Fig. 6,583

the results show the best performance is achieved when ⌧ = 1.0. It means sampling from a scaled584

policy does not work.585

Table 3: Hyperparameters used by EDP.
Task Learning rate Gradient norm clipping Loss weight Epochs Batch size

Locomotion 0.0003 5 1.0 2000 256
Antmaze 0.0003 5 1.0 1000 256
Adroit 0.00003 5 0.1 1000 256

Kitchen 0.0003 5 0.005 1000 256
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Table 4: The performance of Diffusion-QL with efficient diffusion policy. The results for Diffusion-
QL are directly quoted from [35]. EDP is our method. DQL (JAX) is a variant that uses the exact
same configurations as Diffusion-QL. All results are reported based on the OMS metric.

Dataset Diffusion-QL DQL (JAX) EDP

halfcheetah-medium-v2 51.5 52.3 52.8
hopper-medium-v2 96.6 95.3 98.6

walker2d-medium-v2 87.3 86.9 89.6
halfcheetah-medium-replay-v2 48.3 50.3 50.4

hopper-medium-replay-v2 102.0 101.8 102.7
walker2d-medium-replay-v2 98.0 96.3 97.7

halfcheetah-medium-expert-v2 97.2 97.3 97.1
hopper-medium-expert-v2 112.3 113.1 112.0

walker2d-medium-expert-v2 111.2 111.5 112.0
average 89.4 89.4 90.3

antmaze-umaze-v0 96.0 93.4 93.4
antmaze-umaze-diverse-v0 84.0 74.0 66.0
antmaze-medium-play-v0 79.8 96.0 88.0

antmaze-medium-diverse-v0 82.0 82.0 96.0
antmaze-large-play-v0 49.0 66.0 60.0

antmaze-large-diverse-v0 61.7 60.0 64.0
average 75.4 78.6 77.9

pen-human-v1 75.7 74.0 98.3
pen-cloned-v1 60.8 59.1 79.9

average 68.3 66.5 89.1

kitchen-complete-v0 84.5 100.0 97.0
kitchen-partial-v0 63.7 73.0 71.5
kitchen-mixed-v0 66.6 76.0 73.0

average 71.6 83.0 80.5

Figure 6: Performance of EDP + TD3 on gym-locomotion tasks with varying ⌧ .

Deterministic Sampling This method is based on the observation that the sampling process of the586

DPM-Solver is deterministic except for the first step. The first step is to sample from an isotropic587

Gaussian distribution. We modify it to use the mean, thus avoiding stochasticity. Consider a initial588

noise aK ⇠ N (0, I), we rescale aK by a noise scale factor. We show how this factor affects the final589

performance by varying it from 0.0 to 1.0. As illustrated in Fig. 7, the best performance is achieved at590

zero noise in most cases, and a normal aK performs worst. This means reducing the variance of the591

initial noise is able to improve the performance of a diffusion policy. However, the best performance592

achieved in this way still falls behind EAS.593

Figure 7: Performance of EDP + TD3 on gym-locomotion tasks with varying initial noise scale.
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Table 5: Average normalized score on the D4RL benchmark of EDP trained with different algorithms.
“Best” represents the online model selection metric, while “Average” is our runing average at training
metric.

EDP + TD3 EDP + CRR EDP + IQL

Average Best Average Best Average Best

halfcheetah-medium-v2 52.1 52.8 49.2 50.2 48.1 48.7
hopper-medium-v2 81.9 98.6 78.7 95.0 63.1 97.3

walker2d-medium-v2 86.9 89.6 82.5 85.8 85.4 88.7
halfcheetah-medium-replay-v2 49.4 50.4 43.5 47.8 43.8 45.5

hopper-medium-replay-v2 101.0 102.7 99.0 101.7 99.1 100.9
walker2d-medium-replay-v2 94.9 97.7 63.3 89.8 84.0 93.4

halfcheetah-medium-expert-v2 95.5 97.1 85.6 93.5 86.7 80.9
hopper-medium-expert-v2 97.4 112.0 92.9 109.4 99.6 95.7

walker2d-medium-expert-v2 110.2 112.0 110.1 112.3 109.0 111.5
average 85.5 90.3 78.3 87.3 79.9 84.7

kitchen-complete-v0 61.5 93.4 73.9 95.8 75.5 95.0
kitchen-partial-v0 52.8 66.0 40.0 56.7 46.3 72.5
kitchen-mixed-v0 60.8 88.0 46.1 59.2 56.5 70.0

average 58.4 96.0 53.3 70.6 59.4 79.2

pen-human-v0 48.2 60.0 70.2 127.8 72.7 130.3
pen-cloned-v0 15.9 64.0 54.0 106.0 70.0 138.2

average 32.1 77.9 62.1 116.9 71.3 134.3

antmaze-umaze-v0 96.6 98.3 95.9 98.0 94.2 98.0
antmaze-umaze-diverse-v0 69.5 79.9 15.9 80.0 79.0 90.0
antmaze-medium-play-v0 0.0 89.1 33.5 82.0 81.8 89.0

antmaze-medium-diverse-v0 6.4 97.0 32.7 72.0 82.3 88.0
antmaze-large-play-v0 1.6 71.5 26.0 57.0 42.3 52.0

antmaze-large-diverse-v0 4.4 73.0 58.5 71.0 60.6 68.0
average 29.8 80.5 43.8 76.7 73.4 89.2

Table 6: Energy-based Action Selection + Normal TD3
Dataset TD3+Diff TD3+EAS TD3

halfcheetah-medium-v2 52.1 48.7 47.8
hopper-medium-v2 81.9 50.8 54.0

walker2d-medium-v2 86.9 77.7 53.4
halfcheetah-medium-replay-v2 49.4 44.4 44.1

hopper-medium-replay-v2 101.0 59.8 59.1
walker2d-medium-replay-v2 94.9 74.8 71.6

halfcheetah-medium-expert-v2 95.5 85.9 92.3
hopper-medium-expert-v2 97.4 71.9 95.1

walker2d-medium-expert-v2 110.2 108.4 110.0
gym-locomotion-v2 (avg) 85.5 69.2 69.7

C.5 Computational Cost Comparison between EDP and Feed-Forward Policy networks594

We benchmark the training speed of TD3+BC with EDP on walker2d-medium-expert-v2, by training595

each agent for 10,000 iterations of policy updates. The training speed for TD3+BC is 689 iterations-596

per-second (IPS), while EDP is 412 IPS. In other words, it takes around 3 hours to train an agent597

with the feed-forward network, while EDP needs around 5 hours. We also conducted experiments by598

double the network used in TD3+BC; unfortunately, there was no performance gain on the locomotion599

tasks (75.3 to 75.6). Moreover, both feed-forward policy and diffusion policy utilize a 3-layer MLP600

(hidden size 256) as the backbone network. Therefore, the network capacity should be comparable.601

D Negative Societal Impacts602

In this paper, we propose an efficient yet powerful policy class for offline reinforcement learning.603

We show that this method is superior to most existing methods on simulated robotic tasks. However,604

some war robots or weapon robots might employ our EDP to learn strategic agents considering the605

generalization ability of EDP. Depending on the specific application scenarios, it might be harmful to606

domestic privacy and safety.607
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