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ABSTRACT

We introduce the Generalized Energy Based Model (GEBM) for generative mod-
elling. These models combine two trained components: a base distribution (generally
an implicit model), which can learn the support of data with low intrinsic dimension in
a high dimensional space; and an energy function, to refine the probability mass on the
learned support. Both the energy function and base jointly constitute the final model,
unlike GANs, which retain only the base distribution (the "generator"). GEBMs are
trained by alternating between learning the energy and the base. We show that both
training stages are well-defined: the energy is learned by maximising a generalized
likelihood, and the resulting energy-based loss provides informative gradients for
learning the base. Samples from the posterior on the latent space of the trained model
can be obtained via MCMC, thus finding regions in this space that produce better qual-
ity samples. Empirically, the GEBM samples on image-generation tasks are of much
better quality than those from the learned generator alone, indicating that all else
being equal, the GEBM will outperform a GAN of the same complexity. When using
normalizing flows as base measures, GEBMs succeed on density modelling tasks, re-
turning comparable performance to direct maximum likelihood of the same networks.

1 INTRODUCTION

Energy-based models (EBMs) have a long history in physics, statistics and machine learning (LeCun
et al., 2006). They belong to the class of explicit models and can be described by a family of energies
E which define probability distributions with density proportional to exp(−E). Those models are
often known up to a normalizing constantZ(E), also called the partition function. The learning task
then consists of finding an optimal function that best describes a given system or target distribution
P. This can be achieved using maximum likelihood estimation (MLE); however, the intractability
of the normalizing partition function makes this learning task challenging. Thus, various methods have
been proposed to circumvent this (Hinton, 2002; Hyvärinen, 2005; Gutmann and Hyvärinen, 2012; Dai
et al., 2019a;b). All these methods estimate EBMs that are supported over the whole space. In many
applications, however, P is believed to be supported on an unknown lower dimensional manifold. This
happens in particular when there are strong dependences between variables in the data and suggests
incorporating a low-dimensionality hypothesis in the model.

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) are a particular way to enforce low
dimensional structure in a model. They rely on an implicit model, the generator, to produce samples
supported on a low-dimensional manifold by mapping a pre-defined latent noise to the sample space
using a trained function. GANs have been very successful in generating high-quality samples on
various tasks, especially for unsupervised image generation (Brock et al., 2018). The generator is
trained adversarially against a discriminator network whose goal is to distinguish samples produced by
the generator from the target data. This has inspired further research to extend the training procedure to
more general losses (Nowozin et al., 2016; Arjovsky et al., 2017; Li et al., 2017; Bińkowski et al., 2018;
Arbel et al., 2018) and to improve its stability (Miyato et al., 2018; Gulrajani et al., 2017; Nagarajan
and Kolter, 2017; Kodali et al., 2017). While the generator of a GAN has effectively a low-dimensional
support, it remains challenging to refine the distribution of mass on that support using pre-defined
latent noise. For instance, as shown by Cornish et al. (2020) for normalizing flows, when the latent
distribution is unimodal and the target distribution possesses multiple disconnected low-dimensional
components, the generator, as a continuous map, compensates for this mismatch using steeper slopes.
In practice, this implies the need for more complicated generators.
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In the present work, we propose a new class of models, called Generalized Energy Based Models
(GEBMs), which can represent distributions supported on low-dimensional manifolds while offering
more flexibility in refining the mass on those manifolds. GEBMs combine the strength of both implicit
and explicit models in two separate components: a base distribution (often chosen to be an implicit
model) which learns the low-dimensional support of the data, and an energy function that can refine
the probability mass on that learned support. We propose to train the GEBM by alternating between
learning the energy and the base, analogous to f -GAN training (Goodfellow et al., 2014; Nowozin
et al., 2016). The energy is learned by maximizing a generalized notion of likelihood which we relate to
the Donsker-Varadhan lower-bound (Donsker and Varadhan, 1975) and Fenchel duality, as in (Nguyen
et al., 2010; Nowozin et al., 2016). Although the partition function is intractable in general, we propose
a method to learn it in an amortized fashion without introducing additional surrogate models, as done
in variational inference (Kingma and Welling, 2014; Rezende et al., 2014) or by Dai et al. (2019a;b).
The resulting maximum likelihood estimate, the KL Approximate Lower-bound Estimate (KALE),
is then used as a loss for training the base. When the class of energies is rich and smooth enough, we
show that KALE leads to a meaningful criterion for measuring weak convergence of probabilities.
Following recent work by Chu et al. (2020); Sanjabi et al. (2018), we show that KALE possesses well
defined gradients w.r.t. the parameters of the base, ensuring well-behaved training. We also provide
convergence rates for the empirical estimator of KALE when the variational family is sufficiently
well behaved, which may be of independent interest.

The main advantage of GEBMs becomes clear when sampling from these models: the posterior over
the latents of the base distribution incorporates the learned energy, putting greater mass on regions
in this latent space that lead to better quality samples. Sampling from the GEBM can thus be achieved
by first sampling from the posterior distribution of the latents via MCMC in the low-dimensional
latent space, then mapping those latents to the input space using the implicit map of the base. This is in
contrast to standard GANs, where the latents of the base have a fixed distribution. We focus on a class
of samplers that exploit gradient information, and show that these samplers enjoy fast convergence
properties by leveraging the recent work of Eberle et al. (2017). While there has been recent interest
in using the discriminator to improve the quality of the generator during sampling (Azadi et al., 2019;
Turner et al., 2019; Neklyudov et al., 2019; Grover et al., 2019; Tanaka, 2019; Wu et al., 2019b), our
approach emerges naturally from the model we consider.

We begin in Section 2 by introducing the GEBM model. In Section 3, we describe the learning
procedure using KALE, then derive a method for sampling from the learned model in Section 4. In
Section 5 we discuss related work. Finally, experimental results are presented in Section 6.

2 GENERALIZED ENERGY-BASED MODELS

Figure 1: Data generating distribution supported on a line and with higher density at the extremities.
Learned models using either a GAN, GEBM, or EBM.

In this section, we introduce generalized energy based models (GEBM), that combine the strengths of
both energy-based models and implicit generative models, and admit the first of these as a special case.
An energy-based model (EBM) is defined by a set E of real valued functions called energies, where
eachE∈E specifies a probability density over the data spaceX ⊂Rd up to a normalizing constant,

Q(dx)=exp(−E(x)−A)dx, A=log

Å∫
exp(−E(x))dx

ã
. (1)

While EBMs have been shown recently to be powerful models for representing complex high dimen-
sional data distributions, they still unavoidably lead to a blurred model whenever data are concentrated
on a lower-dimensional manifold. This is the case in Figure 1(a), where the ground truth distribution is
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supported on a 1-D line and embedded in a 2-D space. The EBM in Figure 1(d) learns to give higher den-
sity to a halo surrounding the data, and thus provides a blurred representation. That is a consequence of
EBM having a density defined over the whole space, and can result in blurred samples for image models.

An implicit generative model (IGM) is a family of probability distributions Gθ parametrized by a
learnable generator function G :Z 7→X that maps latent samples z from a fixed latent distribution
η to the data space X . The latent distribution η is required to have a density over the latent space Z
and is often easy to sample from. Thus, Sampling from G is simply achieved by first sampling z from
η then applyingG,

x∼G ⇐⇒ x=G(z), z∼η. (2)

GANs are popular instances of these models, and are trained adversarially (Goodfellow et al., 2014).
When the latent spaceZ has a smaller dimension than the input spaceX , the IGM will be supported
on a lower dimensional manifold of X , and thus will not possess a Lebesgue density on X (Bottou
et al., 2017). IGMs are therefore good candidates for modeling low dimensional distributions. While
GANs can accurately learn the low-dimensional support of the data, they can have limited power for
representing the distribution of mass on the support. This is illustrated in Figure 1(b).

A generalized energy-based model (GEBM) Q is defined by a combination of a base G and an
energyE defined over a subsetX of Rd. The base component can typically be chosen to be an IGM
as in (2). The generalized energy component can refine the mass on the support defined by the base.
It belongs to a class E of real valued functions defined on the input spaceX , and represents the negative
log-density of a sample from the GEBM with respect to the base G,

Q(dx)=exp(−E(x)−AG,E)G(dx), AG,E=log

Å∫
exp(−E(x))G(dx)

ã
,

where AG,E is the logarithm of the normalizing constant of the model w.r.t. G. Thus, a GEBM Q
re-weights samples from the base according to the un-normalized importance weights exp(−E(x)).
Using the latent structure of the base G, this importance weight can be pulled-back to the latent space
to define a posterior latent distribution ν,

ν(z) :=η(z)exp(−E(G(z))−AG,E). (3)

Hence, the posterior latent ν can be used instead of the latent noise η for sampling from Q, as
summarized by Proposition 1, with a proof in Appendix B.1.
Proposition 1. Sampling from Q requires sampling a latent z from ν (3) then applying the mapG,

x∼Q ⇐⇒ x=G(z), z∼ν. (4)

Therefore, the energyE allows to distort the prior noise η on the latent space to put more or less mass in
specific regions of the manifold defined by the base G. Just like IGMs, GEBMs can accurately learn the
low-dimensional support of data. They also benefit from the flexibility of EBMs for representing densi-
ties using an energyE to refine distribution of mass on the support defined by G, as seen in Figure 1(c).
The next proposition shows that EBMs are particular cases of GEBMs, as proved in Appendix B.1.
Proposition 2. Any EBM with energyE (as in (1)) can be expressed as a GEBM with baseG given as a
normalizing flow with density exp(−r(x)) and a generalized energy Ẽ(x)=E(x)−r(x). In this partic-
ular case, the dimension of the latent is necessarily equal to the data dimension, i.e. dim(Z)=dim(X ).

3 LEARNING GEBMS

In this section we describe a general procedure for learning GEBMs. We decompose the learning
procedure into two steps: an energy learning step and a base learning step. The overall learning
procedure alternates between these two steps, as done in GAN training (Goodfellow et al., 2014).

3.1 ENERGY LEARNING

When the base G is fixed, varying the energy E leads to a family of models that all admit a density
exp(−E−AG,E) w.r.t. G. When the base G admits a density exp(−r) defined over the whole space,
it is possible to learn the energyE by maximizing the likelihood of the model−

∫
(E+r)dP−AG,E .
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However, in general G is supported on a lower-dimensional manifold so that r is ill-defined and the
usual notion of likelihood cannot be used. Instead, we introduce a generalized notion of likelihood
which does not require a well defined density exp(−r) for G:
Definition 1 (Generalized Likelihood). The expected G-log-likelihood of the model QG,E under a
target distribution P is defined as:

LP,G(E) :=−
∫
E(x)dP(x)−AG,E (5)

When the Kullback-Leibler divergence between P and G is well defined, (5) corresponds to the
Donsker-Varadhan (DV) lower bound on the KL (Donsker and Varadhan, 1975), meaning that
KL(P||G)≥LP,G(E) for allE, with equality only whenE is the negative log-density ratio of P w.r.t.
G. However, the main purpose for introducing Definition 1 is not to estimate the KL(P||G) which
might be infinite when P and G are mutually singular. Instead, it is used to learn a maximum likelihood
energyE? by maximizingLP,G(E) w.r.t. E. Such an optimal solution is well defined whenever the
set of energies is suitably constrained. This is the case if the energies are parametrized by a compact
set Ψ with ψ 7→Eψ continuous over Ψ.

Estimating the likelihood is achieved using i.i.d. samples (Xn)1:N ,(Ym)1:M from P and G:

L̂P,G(E)=− 1

N

N∑
n=1

E(Xn)−log

(
1

M

M∑
m=1

exp(−E(Ym))

)
. (6)

In the context of mini-batch stochastic gradient methods, however,M typically ranges from 10 to 1000,
which can lead to a poor estimate for the log-partition functionAG,E . Moreover, (6) doesn’t exploit
estimates ofAG,E from previous gradient iterations. Instead, we propose an estimator which introduces
a variational parameter A ∈R meant to estimate AG,E in an amortized fashion. The key idea is to
exploit the convexity of the exponential which directly implies−AG,E≥−A−exp(−A+AG,E)+1
for anyA∈R, with equality only whenA=AG,E . Therefore, (5) admits a lower-bound of the form:

LP,G(E)≥−
∫

(E+A)dP−
∫

exp(−(E+A))dG+1:=FP,G(E+A).

where we introduced the functional FP,G for concision. Maximizing FP,G(E+A) over A recovers
the likelihoodLP,G(E). Moreover, jointly maximizing overE andA yields the maximum likelihood
energyE? and its corresponding log-partition functionA?=AG,E? . This optimization is well-suited
for stochastic gradient methods using the following estimator:

F̂P,G(E+A)=− 1

N

N∑
n=1

(E(Xn)+A)− 1

M

M∑
m=1

exp(−(E(Ym)+A))+1. (7)

3.2 BASE LEARNING

Unlike in Section 3.1, varying the base G does not need to preserve the same support. Thus, it is
generally not possible to use maximum likelihood methods for learning G. Instead, we propose to
use the generalized likelihood (5) evaluated at the optimal energyE? as a meaningful loss for learning
G, and refer to it as the KL Approximate Lower-bound Estimate (KALE),

KALE(P||G)= sup
(E,A)∈E×R

FP,G(E+A). (8)

From Section 3.1, KALE(P||G) is always a lower bound on KL(P,G). The bound becomes tight
whenever the negative log density of P w.r.t. G is well-defined and belongs to E (Appendix A).
Moreover, Proposition 3 shows that KALE is a reliable criterion for measuring convergence and is
a consequence of (Zhang et al., 2017, Theorem B.1) with a proof in Appendix B.2.1:
Proposition 3. Assume all energies in E are L-Lipschitz and that any continuous function can be
well approximated by linear combinations of energies in E (Assumptions (A) and (B) of Appendix B.2),
then KALE(P||G)≥0 with equality only if P=G and KALE(P||Gn)→0 iff Gn→P in distribution.

The universal approximation assumption holds in particular when E contains feedforward networks.
In fact networks with a single neuron are enough, as shown in (Zhang et al., 2017, Theorem 2.3). The
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Lipschitz assumption holds when additional regularization of the energy is enforced during training
by methods such as spectral normalization (Miyato et al., 2018) or additional regularization I(ψ)
on the energyEψ such as the gradient penalty (Gulrajani et al., 2017) as done in Section 6.

Estimating KALE. According to Arora et al. (2017), accurate finite sample estimates of divergences
that result from an optimization procedures (such as in (8)) depend on the richness of the class E ; and
richer energy classes can result in slower convergence. Unlike divergences such as Jensen-Shannon,
KL and the Wasserstein distance, which result from optimizing over a non-parametric and rich class of
functions, KALE is restricted to a class of parametric energiesEψ . Thus, (Arora et al., 2017, Theorem
3.1) applies, and guarantees good finite sample estimates, provided optimization is solved accurately.
In Appendix C, we provide an analysis to the more general case where energies are not necessarily
parametric but satisfy some further smoothness properties; we emphasize that our rates do not require
the strong assumption that the density ratio is bounded above and below as in Nguyen et al. (2010).

Smoothness of KALE. Learning the base is
achieved by minimizingK(θ) := KALE(P||Gθ)
over the set of parameters Θ of the generator
Gθ. This requires K(θ) to be smooth enough
so that gradient methods converge to local min-
ima and avoid instabilities during training (Chu
et al., 2020). Ensuring smoothness of losses that
result from an optimization procedure, as in (8),
can be challenging. Results for the regularized
Wasserstein are provided by Sanjabi et al. (2018),
while more general losses are considered by Chu
et al. (2020), albeit under stronger conditions for
our setting. Theorem 4 shows that when E, Gθ
and their gradients are all lipschitz thenK(θ) is
smooth enough. We provide a proof for Theo-
rem 4 in Appendix B.2.1.

Algorithm 1 Training GEBM

1: Input P,N ,M , nb, ne
2: Output Trained generatorGθ and energyEψ .
3: Initialize θ , ψ andA.
4: for k=1,...,nb do
5: for j=1,...,ne do
6: Sample {Xn}1:N ∼P and {Yn}1:N ∼Gθ
7: gψ←−∇ψF̂P,Gθ (Eψ+A)+I(ψ)

8: Ã← log
Ä

1
M

∑M
m=1exp(−Eψ(Ym))

ä
9: gA←exp(A−Ã)−1

10: Update ψ andA using gψ and gA.
11: end for
12: Set Ê?←Eψ and Â?←A.
13: Sample {Zm}1:M ∼η
14: Update θ using ÷∇K(θ) from (10)
15: end for

Theorem 4. Under Assumptions (I) to (III) of Appendix B.2, sub-gradient methods onK converge
to local optima. Moreover,K is lipschitz and differentiable for almost all θ∈Θ with:

∇K(θ)=exp(−AGθ,E?)

∫
∇xE?(Gθ(z))∇θGθ(z)exp(−E?(Gθ(z)))η(z)dz. (9)

Estimating the gradient in (9) is achieved by first optimizing overEψ andA using (7) with additional
regularization I(ψ). The resulting estimators Ê? and Â? are plugged-in (10) to estimate∇K(θ) using
samples (Zm)1:M from η. Unlike for learning the energyE? which benefits from using the amortized
estimator of the log-partition function, we found that using the empirical log-partition for learning the
base was more stable. We summarize the training procedure in Algorithm 1 which alternates between
learning the energy and the base in a similar fashion to adversarial training.÷∇K(θ)=

exp(−Â?)
M

M∑
m=1

∇xÊ?(Gθ(Zm))∇θGθ(Zm)exp(−Ê?(Gθ(Zm))). (10)

4 SAMPLING FROM GEBMS

Recall from (4) that a sample x from Q is of the form x=G(z) with z sampled from the posterior
latent ν of (3) instead of the prior η. While, sampling from η is often straightforward (for instance if η is
a gaussian), sampling from ν is generally harder due to dependence of its density on complex functions
E and G. However, it is possible to use a MCMC methods to sample from ν since we have access
to its density up to a normalizing constant (3). In particular, we are interested in methods that exploit
the gradient of ν and consider two classes of samplers: Overdamped samplers and Kinetic samplers.

Overdamped samplers are obtained as a time-discretization of the Overdamped Langevin dynamics:

dzt=(∇zlogη(zt)−∇zE(G(zt)))+
√

2dwt, (11)
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wherewt is a standard Brownian motion. The simplest sampler arising from (11) is the Unadjusted
Langevin Algorithm (ULA):

Zk+1 =Zk+λ(∇zlogη(Zk)−∇zE(G(Zk)))+
√

2λWk+1, Z0∼η

where (Wk)k≥0 are i.i.d. standard gaussians and λ is the step-size. For large k,Zk is an approximate
sample from ν (Raginsky et al., 2017, Proposition 3.3). Hence, settingX=G(Zk) for a large enough
k provides an approximate sample from the GEBM Q as summarized in Algorithm 2 of Appendix F.

Kinetic samplers arise from the Kinetic Langevin dynamics which introduce a momentum variable:

dzt=vtdt, dvt=−γvtdt+u(∇logη(zt)−∇E(G(zt)))dt+
√

2γudwt. (12)

with friction coefficient γ≥0, inverse massu≥0, momentum vector vt and standard Brownian motion
wt. When the mass u−1 becomes negligible compared to the friction coefficient γ, i.e.:( uγ−2≈ 0,
standard results show that (12) recovers the Overdamped dynamics (11). Discretization in time of (12)
leads to Kinetic samplers similar to Hamiltonian Monte Carlo (Cheng et al., 2017; Sachs et al., 2017).
We consider a particular algorithm from Sachs et al. (2017) which we call Kinetic Langevin Algorithm
(KLA) (see Algorithm 3 in Appendix F). Kinetic samplers were shown to better explore the modes of
the invariant distribution ν compared to Overdamped ones (see (Neal, 2010; Betancourt et al., 2017)
for empirical results and (Cheng et al., 2017) for theory) and also confirmed empirically in Appendix D
for image generation tasks using GEBMs. We conclude with a convergence result for Kinetic samplers
in the continuous-time limit
Proposition 5. Assume that logη(z) is strongly concave and has a Lipschitz gradient, thatE,G and
their gradients are allL-Lipschitz. Set xt=G(zt), where zt is given by (12) and call Pt the probability
distribution of xt. Then Pt converges to Q in the Wasserstein sense,

W2(Pt,Q)≤LCe−cγt.

where c andC are positive constants independent of t, with c=O(exp(−dim(Z))).

Proposition 5 is proved in Appendix B.1 using (Eberle et al., 2017, Corollary 2.6), and implies that
(xt)t≥0 converges at the same speed as (zt)t≥0. When the dimension q of Z is orders of magnitude
smaller than the input space dimension d, the process (xt)t≥0 converges faster than typical sampling
methods onX , for which the exponent controlling the convergence rate is of orderO(exp(−d)).

5 RELATED WORK

Energy based models. Usually, energy based models are required to have a density w.r.t. to a Lebesgue
measure, and do not use a learnable base measure; in other words, models are supported on the whole
space. Various methods have been proposed in the literature to learn EBMs. Contrastive Divergence
(Hinton, 2002) approximates the gradient of the log-likelihood by sampling from the energy model
with Markov Chain Monte Carlo. More recently, Du and Mordatch (2019) extend the idea using more
sophisticated sampling strategies that lead to higher quality estimators. Score Matching (Hyvärinen,
2005) calculates an alternative objective (the score) to the log-likelihood which is independent of the
partition function, and was recently used in the context non-parametric energy functions to provide
estimators of the energy that are provably consistent (Sriperumbudur et al., 2017; Sutherland et al.,
2018; Arbel and Gretton, 2018; Wenliang et al., 2019). In Noise-Contrastive Estimation (Gutmann
and Hyvärinen, 2012), a classifier is trained to distinguish between samples from a fixed proposal
distribution and the target P. This provides an estimate for the density ratio between the optimal
energy model and the proposal distribution. In a similar spirit, Cranmer et al. (2016) uses a classifier
to learn likelihood ratios. Conversely, Grathwohl et al. (2020) interprets the logits of a classifier as
an energy model obtained after marginalization over the classes. The resulting model is then trained
using Contrastive Divergence. In more recent work, Dai et al. (2019a;b) exploit a dual formulation of
the logarithm of the partition function as a supremum over the set of all probability distributions of
some functional objective. Yu et al. (2020) explore methods for using general f-divergences, such as
Jensen-Shannon, to train EBMs.

Generative Adversarial Networks. Recent work proposes using the discriminator of a trained
GAN to improve the generator quality. Rejection sampling (Azadi et al., 2019) and Metropolis-
Hastings correction (Turner et al., 2019; Neklyudov et al., 2019) perform sampling directly on the
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high-dimensional input space without using gradient information provided by the discriminator.
Moreover, the data distribution is assumed to admit a density w.r.t. the generator. Ding et al. (2019)
perform sampling on the feature space of some auxiliary pre-trained network; while Lawson et al.
(2019) treat the sampling procedure as a model on its own, learned by maximizing the ELBO. In our
case, no auxiliary model is needed. The present work samples from the latent noise according to a
learned energy model, in contrast to recently considered methods to optimize over the latent space. Wu
et al. (2019b;a) optimize the latent noise during training to minimize a measurement error, which is
then used to train the generator. In our case, sampling doesn’t interfere with training. Tanaka (2019)
interpret the discriminator as a deterministic optimal transport map between the generator and the data
distribution, which is then used to compute optimized samples from the latent space. This assumes the
deterministic transport map exists, however this may not be true in general, and is in contrast to the
diffusion-based sampling that we consider.

The closest related approach appears in a study concurrent to the present work (Che et al., 2020),
where the authors propose to use Langevin dynamics on the latent space of a GAN generator, but with
a different discriminator to ours (derived from the Jensen-Shannon divergence or a Wasserstein-based
divergence). Our theory results showing the existence of the loss gradient (Theorem 4), establishing
weak convergence of distributions under KALE (Proposition 3), and demonstrating consistency of
the KALE estimator (Appendix C) should transfer to the JS and Wasserstein criteria used in that work.
Following the appearance of the present work, an alternative approach, based on normalising flows,
has been recently proposed to learn both the low-dimensional support of the data and the density on
this support (Brehmer and Cranmer, 2020). This approach maximises the explicit likelihood of a data
projection onto a learned manifold, and may be considered complementary to our approach.

6 EXPERIMENTS

Figure 2: Samples at different
iterations of the MCMC chain of
Algorithm 3 (left to right).

Image generation. We train a GEBM on unsupervised image
generation tasks, and compare the quality of generated samples with
other methods using the FID score Heusel et al. (2017) computed
on 5×104 generated samples. We consider CIFAR-10Krizhevsky
(2009), LSUN Yu et al. (2015), CelebA Liu et al. (2015) and ImageNet
Russakovsky et al. (2014) all downsampled to 32x32 resolution to
reduce computational cost. We use both versions of the SNGAN
networks from Miyato et al. (2018) for base and energy, and a
100-dimensional Gaussian for the latent noise η. We train the models
for 150000 generator iterations using Algorithm 1. After training is
completed, we rescale the energy by β=100 to get a colder version
of the GEBM and sample from it using either (ULA) Algorithm 2
or (KLA) Algorithm 3 with parameters (γ=100,u=1). This colder
temperature leads to an improved FID score, and needs relatively
few MCMC iterations, as shown in Figure 6 of Appendix D. Sampler
convergence to visually plausible modes at low tempteratures is
demonstrated in Figure 2. We perform 1000 MCMC iterations with
initial step-size of λ = 10−4 decreased by 10 every 200 iterations.
As a baseline of our method we consider samples generated from the
base of the GEBM only (without using information from the energy)
and call it KALE-GAN. More details are found in Appendix G.

Results: Table 1 shows that GEBM outperforms GAN when using the same networks for the
base/generator and energy/critic. KALE-GAN matches the performance of a standard GAN with
Jensen-Shannon critic, showing that the improvement of GEBM cannot be explained by the switch
from Jensen-Shannon to a KALE-based critic. Rather, the improvement is largely due to incorporating
the energy function into the model, and sampling using Algorithm 3.

This finding experimentally validates our claim that incorporating the energy improves the model, and
that all else being equal, a GEBM outperforms a GAN with the same generator and critic architecture.
Indeed, if the critic is not zero at convergence, then by definition it contains information on the
remaining mismatch between the generator and data mass, which the GEBM incorporates, but the
GAN does not. The GEBM also outperforms an EBM even when the latter was trained with supervision
(S) on ImageNet, which is an easier task ( Chen et al. (2019)). More comparisons on Cifar10 and
ImageNet are provided in Table 4 of Appendix D.
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Table 2 shows different sampling methods using the same trained networks (generator and critic)
and with KALE-GAN as a baseline. All energy-exploiting methods outperform the unmodificed
KALE-GAN with the same architecture. That said, our method outperforms both (IHM) Turner et al.
(2019) and (DOT) Tanaka (2019), which both use the energy information.

SNGAN (ConvNet) SNGAN (ResNet)

GEBM KALE-GAN GAN GEBM KALE-GAN GAN EBM

Cifar10 23.02 32.03 29.9? 19.31 20.19 21.7 38.2
ImageNet 13.94 19.37 30.66 17.33 21.00 20.50 14.31 (S)

Table 1: FID scores for two versions of SNGAN from Miyato et al. (2018) on Cifar10 and ImageNet. GEBM:
training using Algorithm 1 and sampling using Algorithm 3 with ConvNet version for the energy network.
KALE-GAN: Only the base of a GEBM is retained for sampling. GAN: training as in Miyato et al. (2018) with
q=128 for the latent dimension as it worked best. EBM: results from Du and Mordatch (2019) with supervised
training on ImageNet (S).

Finally, Figures 3 to 5 of Ap-
pendix D show that, without
decreasing λ and for smaller
γ, (KLA) explores different
modes/images within the same
chain, unlike (ULA). Moving
from one mode to another re-
sults in an increased FID score
while between modes, and can
be avoided by decreasing λ.

Cifar10 LSUN CelebA ImageNet

KALE-GAN 32.03 21.67 6.91 19.37
IHM 30.47 20.63 6.39 18.15
DOT 26.35 20.41 5.93 16.21
GEBM (ULA) 23.02 16.23 5.21 14.00
GEBM (KLA) 24.29 15.25 5.38 13.94

Table 2: FID scores for different sampling methods using the same
trained SNGAN (ConvNet): KALE-GAN as a baseline w/o critic
information.

Density Estimation We next quantify how well Algorithm 1 succeeds in learning maximum like-
lihood solutions, in the particular case that the likelihood is well defined and the model reduces back
to an EBM (Proposition 2). This not only serves as a sanity check on our approach, but also shows
that it results in comparable performance to training methods specific to EBMs. To have a closed-form
reference likelihood to compare against, we consider the case where the dimension of the latent space is
equal to data-dimension and choose the baseG of the GEBM to be a Real NVP (Ding et al. (2019) ) with
density exp(−r(x)) and energy E(x) =h(x)−r(x). Thus, in this particular case, the GEBM has a
well defined likelihood over the whole space, and we are precisely in the setting of Proposition 2, which
shows that this GEBM is equal to an EBM with density proportional to exp(−h). We further require the
EBM to be a second Real NVP so that its density has a closed form expression. Thus the likelihood of
the GEBM can also be evaluated in closed-form. We consider 5 UCI datasets (Dheeru and Taniskidou,
2017) for which we use the same pre-processing as in (Wenliang et al., 2019). For comparaison, we train
the EBM by direct maximum likelihood (ML) and contrastive divergence (CD). To train the GEBM,
we use Algorithm 1, which doesn’t directly exploit the closed-form expression of the likelihood (unlike
direct ML). We thus use either (6) (KALE-DV) or (7) (KALE-F) to estimate the normalizing constant.
More details are given in Appendix G.2. Results: Table 3 reports the Negative Log-Likelihood (NLL)
evaluated on the test set and corresponding to the best performance on the validation set. Training the
GEBM using Algorithm 1 leads to comparable performance as (CD) and (ML). As shown in Figure 7
of Appendix E, (KALE-DV) and (KALE-F) maintain a small error gap between the training and test
NLL and, as discussed in Section 3.1 and Appendix F, (KALE-F) leads to more accurate estimates
of the log-partition function, with a relative error of order 0.1% compared to 10% for (KALE-DV).

RedWine
d=11,N∼103

Whitewine
d=11,N∼103

Parkinsons
d=15,N∼103

Hepmass
d=22,N∼105

Miniboone
d=43,N∼104

NVP w ML 11.98 13.05 14.5 24.89 42.28
NVP w CD 11.88 13.01 14.06 22.89 39.36
NVP w KALE (DV) 11.6 12.77 13.26 26.56 46.48
NVP w KALE (F) 11.19 12.66 13.26 24.66 38.35

Table 3: UCI datasets: Negative log-likelihood computed on the test set and corresponding to the best
performance on the validation set. Best method in boldface.
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A KL APPROXIMATE LOWER-BOUND ESTIMATE

We discuss the relation between KALE (8) and the Kullback-Leibler divergence via Fenchel duality.
Recall that a distribution P is said to admit a density w.r.t. G if there exists a real-valued measurable
function r0 that is integrable w.r.t. G and satisfies dP = r0dG. Such a density is also called the
Radon-Nikodym derivative of P w.r.t. G. In this case, we have:

KL(P||G)=

∫
r0log(r0)dG. (13)

Nguyen et al. (2010); Nowozin et al. (2016) derived a variational formulation for the KL using Fenchel
duality. By the duality theorem (Rockafellar, 1970), the convex and lower semi-continuous function
ζ :u 7→ulog(u) that appears in (13) can be expressed as the supremum of a concave function:

ζ(u)=sup
v
uv−ζ?(v).

The function ζ? is called the Fenchel dual and is defined as ζ?(v) = supuuv−ζ(u). By convention,
the value of the objective is set to −∞ whenever u is outside of the domain of definition of
ζ?. When ζ(u) = u log(u), the Fenchel dual ζ?(v) admits a closed form expression of the form
ζ?(v)=exp(v−1). Using the expression of ζ in terms of its Fenchel dual ζ?, it is possible to express
KL(P||G) as the supremum of the variational objective (14) over all measurable functions h.

F(h) :=−
∫
hdP−

∫
exp(−h)dG+1. (14)

Nguyen et al. (2010) provided the variational formulation for the reverse KL using a different choice
for ζ: (ζ(u) =−log(u)). We refer to (Nowozin et al., 2016) for general f -divergences. Choosing a
smaller set of functionsH in the variational objective (14) will lead to a lower bound on the KL. This
is the KL Approximate Lower-bound Estimate (KALE):

KALE(P||G)= sup
h∈H
F(h) (15)

In general, KL(P||G) ≥ KALE(P||G). The bound is tight whenever the negative log-density
h0 =−logr0 belongs toH; however, we do not require r0 to be well-defined in general. Equation
(15) has the advantage that it can be estimated using samples from P and G. Given i.i.d. samples
(X1, ...,XN ) and (Y1, ...,YM ) from P and G, we denote by P̂ and Ĝ the corresponding empirical
distributions. A simple approach to estimate KALE(P||G) is to use anM -estimator. This is achieved
by optimizing the penalized objective

ĥ :=argmax
h∈H
“F(h)− λ

2
I2(h), (16)

where “F is an empirical version ofF and I2(h) is a penalty term that prevents overfitting due to finite
samples. The penalty I2(h) acts as a regularizer favoring smoother solutions while the parameter
λ determines the strength of the smoothing and is chosen to decrease as the sample size N and M
increase. TheM -estimator of KALE(P||G) is obtained simply by plugging in ĥ into the empirical
objective “F(h): ÷KALE(P||G) := “F(ĥ). (17)

We defer the consistency analysis of (17) to Appendix C where we provide convergence rates in
a setting where the set of functions H is a Reproducing Kernel Hilbert Space and under weaker
assumptions that were not covered by the framework of Nguyen et al. (2010).

B LATENT NOISE SAMPLING AND SMOOTHNESS OF KALE

B.1 LATENT SPACE SAMPLING

Here we prove Proposition 5 for which we make the assumptions more precise:
Assumption 1. We make the following assumption:
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• logη is strongly concave and admits a Lipschitz gradient.

• There exists a non-negative constantL such that for any x,x′∈X and z,z′∈Z:

|E(x)−E(x′)|≤‖x−x′‖, ‖∇xE(x)−∇xE(x′)‖≤‖x−x′‖
|G(z)−G(z′)|≤‖z−z′‖, ‖∇zG(z)−∇zG(z′)‖≤‖z−z′‖

Throughout this section, we introduceU(z) :=−log(η(z))+E(G(z)) for simplicity.

Proof of Proposition 1 . To sample fromQG,E , we first need to identify the posterior latent distribution
νG,E used to produce those samples. We rely on (18) which holds by definition of QG,E for any test
function h onX : ∫

h(x)dQ(x)=

∫
h(G(z))f(G(z))η(z)dz, (18)

Hence, the posterior latent distribution is given by ν(z) = η(z)f(G(z)), and samples from GEBM
are produced by first sampling from νG,E , then applying the implicit mapG,

X∼Q ⇐⇒ X=G(Z), Z∼ν.

Proof of Proposition 2. the base distribution Gθ admits a density on the whole space denoted by
exp(−rθ) and the energy Ẽψ,θ is of the form Ẽψ,θ =Eψ−rθ for some parametric functionEψ, it is
easy to see that Q has a density proportional to exp(−Eψ) and is therefore equivalent to a standard
EBM with energyEψ .

The converse holds as well, meaning that for any EBM with energy Eψ, it is possible to construct
a GEBM using an importance weighting strategy. This is achieved by first choosing a base Gθ, which
is required to have an explicit density exp(−rθ) up to a normalizing constant, then defining the energy
of the GEBM to be Ẽψ,θ=Eψ−rθ so that:

dQ(x)∝exp(−Ẽψ,θ)dGθ(x)∝exp(−Eψ(x))dx (19)

Equation (19) effectively depends only on Eψ and not on Gθ since the factor exp(rθ) exactly
compensates for the density of Gθ. The requirement that the base also admits a tractable implicit map
Gθ can be met by choosing Gθ to be a normalizing flow (Rezende and Mohamed, 2015) and does not
restrict the class of possible EBMs that can be expressed as GEBMs.

Proof of Proposition 5. Let πt be the probability distribution of (zt,vt) at time t of the diffusion in
(12), which we recall that

dzt=vtdt, dvt =−(γvt+u∇U(zt))+
√

2λudwt,

We call π∞ its corresponding invariant distribution given by

π∞(z,v)∝exp

Å
−U(z)− 1

2
‖v‖2
ã

By Lemma 6 we know thatU is dissipative, bounded from below, and has a Lipschitz gradient. This
allows to directly apply (Eberle et al., 2017)(Corollary 2.6.) which implies that

W2(πt,π∞)≤Cexp(−tc),

where c is a positive constant and C only depends on π∞ and the initial distribution π0. Moreover,
the constant c is given explicitly in (Eberle et al., 2017, Theorem 2.3) and is of order 0(e−q) where
q is the dimension of the latent spaceZ .

We now consider an optimal coupling Πt between πt and π0. Given joints samples ((zt,vt),(z,v))
from Πt, we consider the following samples in input space (xt,x) := (G(zt),G(z)). Since zt and z
have marginals πt and π∞, it is easy to see that xt ∼ Pt and x∼Q. Therefore, by definition of the
W2 distance, we have the following bound:
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W 2
2 (Pt,Q)≤E

[
‖xt−x‖2

]
≤
∫
‖G(zt)−G(z)‖2dΠt(zt,z)

≤L2

∫
‖zt−z‖2dΠt(zt,z)

≤L2W 2
2 (πt,π∞)≤C2L2exp(−2tc).

The second line uses the definition of (xt,x) as joint samples obtained by mapping (zt,z). The third
line uses the assumption thatB isL-Lipschitz. Finally, the last line uses that Πt is an optimal coupling
between πt and π∞.

Lemma 6. Under Assumption 1, there existsA>0 and λ∈(0, 14 ] such that

1

2
z>t∇U(z)≥λ

Å
U(z)+

γ2

4u
‖z‖2
ã
−A, ∀z∈Z, (20)

where γ and u are the coefficients appearing in (12). Moreover, U is bounded bellow and has a
Lipschitz gradient.

Proof. For simplicity, let’s call u(z) = − log η(z), w(z) = E? ◦ Bθ?(z), and denote by M an
upper-bound on the Lipschitz constant ofw and∇w which is guaranteed to be finite by assumption.
HenceU(z)=u(z)+w(z). Equation (20) is equivalent to having

z>∇u(z)−2λu(z)− γ
2

2u
‖z‖2≥2λw(z)−z>∇w(z)−2A. (21)

Using that w is Lipschitz, we have that w(z) ≤ w(0) +M‖z‖ and −z>∇w(z) ≤M‖z‖. Hence,
2λw(z)−z>∇w(z)−2A≤2λw(0)+(2λ+1)M‖z‖−2A. Therefore, a sufficient condition for (21)
to hold is

z>∇u(z)−2λu(z)− γ
2

2u
‖z‖2≥+(2λ+1)M‖z‖−2A+2λw(0). (22)

We will now rely on the strong convexity of u,which holds by assumption, and implies the existence
of a positive constantm>0 such that

−u(z)≥−u(0)−z>∇u(z)+
m

2
‖z‖2,

z>∇u(z)≥−‖z‖‖∇u(0)‖+m‖z‖2.
This allows to write the following inequality,

z>∇u(z)−2λu(z)− γ
2

2u
≥(1−2λ)z>∇u(z)+λ(m+

γ2

2u
)‖z‖2−2λu(0)

≥(1−λ(m+
γ2

2u
))‖z‖2−(1−2λ)‖z‖‖∇u(0)‖−2λu(0).

Combining the previous inequality with (22) and denotingM ′=‖∇u(0)‖ , it is sufficient to findA
and λ satisfyingÅ

1−λ
Å
m+

γ2

2u

ãã
‖z‖2−(M+M ′+2λ(M−M ′))‖z‖−2λ(u(0)+w(0))+2A≥0.

The l.h.s. in the above equation is a quadratic function in ‖z‖ and admits a global minimum when

λ<
Ä
m+ γ2

2u

ä−1
. The global minimum is always positive provided thatA is large enough.

To see that U is bounded below, it suffice to note, by Lipschitzness of w, that w(z)≥w(0)−M‖z‖
and by strong convexity of u that

u(z)≥u(0)+M ′‖z‖+m

2
‖z‖2.

Hence,U is lower-bounded by a quadratic function in ‖z‖with positive leading coefficient m2 , hence
it must be lower-bounded by a constant. Finally, by assumption, u and w have Lipschitz gradients,
which directly implies thatU has a Lipschitz gradient.
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B.2 TOPOLOGICAL AND SMOOTHNESS PROPERTIES OF KALE

Topological properties of KALE. Denseness and smoothness of the energy class E are the key to
guarantee that KALE is a reliable criterion for measuring convergence. We thus make the following
assumptions on E :

(A) For all E ∈ E , −E ∈ E and there is CE > 0 such that cE ∈ E for 0 ≤ c ≤ CE . For any
continuous function g, any compact support K in X and any precision ε > 0, there exists
a finite linear combination of energiesG=

∑r
i=1aiEi such that supx∈K |f(x)−G(x)|≤ε.

(B) All energiesE in E are Lipschitz in their input with the same Lipschitz constantL>0.

Assumption (A) holds in particular when E contains feedforward networks with a given number of
parameters. In fact networks with a single neuron are enough, as shown in (Zhang et al., 2017, Theorem
2.3). Assumption (B) holds when additional regularization of the energy is enforced during training
by methods such as spectral normalization Miyato et al. (2018) or gradient penalty Gulrajani
et al. (2017) as done in Section 6. Proposition 3 states the topological properties of KALE ensuring
that it can be used as a criterion for weak convergence. A proof is given in Appendix B.2.1 and is a
consequence of (Zhang et al., 2017, Theorem B.1).
Proposition 7. Under Assumptions (A) and (B) it holds that:

1. KALE(P||G)≥0 with KALE(P||G)=0 if and only if P=G.

2. KALE(P||Gn)→0 if and only if Gn→P under the weak topology.

B.2.1 TOPOLOGICAL PROPERTIES OF KALE

In this section we prove Proposition 3. We first start by recalling the required assumptions and make
them more precise:
Assumption 2. Assume the following holds:

• The setX is compact.

• For all E ∈ E , −E ∈ E and there is CE > 0 such that cE ∈ E for 0 ≤ c ≤ CE . For any
continuous function g, any compact support K in X and any precision ε > 0, there exists
a finite linear combination of energiesG=

∑r
i=1aiEi such that |f(x)−G(x)|≤ε onK.

• All energiesE in E are Lipschitz in their input with the same Lipschitz constantL>0.

For simplicity we consider the setH=E+R, i.e.: H is the set of functions h of the form h=E+c
where E ∈E and c∈R. In all what follows P1 is the set of probability distributions with finite first
order moments. We consider the notion of weak convergence on P1 as defined in (Villani, 2009,
Definition 6.8) which is equivalent to convergence in the Wasserstein-1 distanceW1.

Proof of Proposition 3 . We proceed by proving the separation properties (1st statement), then the
metrization of the weak topology (2nd statement).

Separation. We have by Assumption 2 that 0∈E , hence by definition KALE(PP ||G)≥FP,G(0)=0.
On the other hand, whenever P=G, it holds that:

FP,G(h)=−
∫

(exp(−h)+h−1)dP, ∀h∈H.

Moreover, by convexity of the exponential, we know that exp(−x)+x−1≥0 for all x∈R. Hence,
FP,G(h)≤FP,G(0) = 0 for all h∈H. This directly implies that KALE(P|G) = 0. For the converse,
we will use the same argument as in the proof of (Zhang et al., 2017, Theorem B.1). Assume that
KALE(P|G)=0 and let h be inH. By Assumption 2, there existsCh>0 such that ch∈H and we have:

F(ch)≤KALE(P||G)=0.

Now dividing by c and taking the limit to 0, it is easy to see that−
∫
hdP+

∫
hdG≤0.Again, by Assump-

tion 2, we also know that−h∈H, hence,
∫
hdP−

∫
hdG≤0. This necessarily implies that

∫
hdP−

16
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∫
hdG=0 for allh∈H. By the density ofH in the set continuous functions on compact sets, we can con-

clude that the equality holds for any continuous and bounded function, which in turn implies that P=G.

Metrization of the weak topology. We first show that for any P and G with finite first moment, it
holds that KALE(P|G)≤LW1(P,G), whereW1(P,G) is the Wasserstein-1 distance between P and
G. For any h∈H the following holds:

F(h)=−
∫
hdP−

∫
exp(−h)dG+1

=

∫
h(x)dG(x)−h(x′)dP(x′)

−
∫

(exp(−h)+h−1)︸ ︷︷ ︸
≥0

dG

≤
∫
h(x)dG(x)−h(x′)dP(x′)≤LW1(P,G)

The first inequality results from the convexity of the exponential while the last one is a consequence
of h being L-Lipschitz. This allows to conclude that KALE(P||G) ≤ LW1(P,G) after taking the
supremum over all h∈H. Moreover, sinceW1 metrizes the weak convergence onP1 (Villani, 2009,
Theorem 6.9), it holds that whenever a sequence Gn converges weakly towards P inP1 we also have
W1(P,Gn)→0 and thus KALE(P||Gn)→0. The converse is a direct consequence of (Liu et al., 2017,
Theorem 10) since by assumptionX is compact.

Well-defined learning. Assume that for any ε> 0 and any h and h′ in E there exists f in 2E such
that ‖h+h′−f‖∞≤ε then there exists a constantC such that:

KALE(P,Q)≤CKALE(P,G)

This means that the proposed learning procedure which first finds the optimal energy E? given a
base G by maximum likelihood then minimizes KALE(P,G) ensures ends up minimizing the distance
between the data end the generalized energy-based model Q.

KALE(P,Q)=sup
h∈E
LP,QG(h)

=−KALE(P,G)+sup
h∈E
LP,G(h+E?)

Let’s choose ε=KALE(P,G) and let h∈ 2E such that ‖h+E?−f‖∞≤ ε. We have by concavity
of the function (α,β) 7→LP,G(α(h+E?−f)+βf) we have that:

LP,G(h+E?)≤2LP,G(
1

2
f)−LP,G(h+E?−f)

By assumption, we have that ‖h+E?−f‖∞≤ ε, thus |LP,G(h+E?−f)|≤2ε. Moreover, we have
thatLP,G( 1

2f)≤KALE(P,G) since 1
2f ∈E . This ensures that:

LP,G(h+E?)≤3KALE(P,G).

Finally, we have shown that:

KALE(P,Q)≤2KALE(P,G).

Hence, minimizing KALE(P,G) directly minimizes KALE(P,Q).

B.2.2 SMOOTHNESS PROPERTIES OF KALE

We will now prove Theorem 4. We begin by stating the assumptions that will be used in this section:

(I) E is parametrized by a compact set of parameters Ψ.

17
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(II) Functions in E are jointly continous w.r.t. (ψ,x) and areL-lipschitz andL-smooth w.r.t. the
input x:

‖Eψ(x)−Eψ(x′)‖≤Le‖x−x′‖,
‖∇xEψ(x)−∇xEψ(x′)‖≤Le‖x−x′‖.

(III) (θ,z) 7→Gθ(z) is jointly continuous in θ and z, with z 7→Gθ(z) uniformly Lipschitz w.r.t. z:

‖Gθ(z)−Gθ(z′)‖≤Lb‖z−z′‖, ∀z,z′∈Z,θ∈Θ.

There exists non-negative functions a and b defined from Z to R such that θ 7→Gθ(z) are
a-Lipschitz and b-smooth in the following sense:

‖Gθ(z)−Gθ′(z)‖≤a(z)‖θ−θ′‖,
‖∇θGθ(z)−∇θGθ′(z)‖≤b(z)‖θ−θ′‖.

Moreover, a and b are integrable in the following sense:∫
a(z)2exp(2LeLb‖z‖)dη(z)<∞,

∫
exp(LeLb‖z‖)dη(z)<∞,

∫
b(z)exp(LeLb‖z‖)dη(z)<∞.

To simplify notation, we will denote byLθ(f) the expected Gθ log-likelihood under P. In other words,

Lθ(E) :=LP,Gθ (E)=−
∫
EdP−log

∫
exp(−E)dGθ.

We also denote by pE,θ the density of the model w.r.t. Gθ,

pE,θ=
exp(−E)

ZGθ,E
, ZGθ,E=

∫
exp(−E)dGθ.

We writeK(θ) :=KALE(P||Gθ) to emphasize the dependence on θ.

Proof of Theorem 4. To show that sub-gradient methods converge to local optima, we only need to
show thatK is Lipschitz continuous and weakly convex. This directly implies convergence to local
optima for sub-gradient methods, according to Davis and Drusvyatskiy (2018); Thekumparampil et al.
(2019). Lipschitz continuity ensures thatK is differentiable for almost all θ∈Θ, and weak convexity
simply means that there exits some positive constant C ≥ 0 such that θ 7→K(θ)+C‖θ‖2 is convex.
We now proceed to show these two properties.

We will first prove that θ 7→K(θ) is weakly convex in θ. By Lemma 8, we know that for any E ∈E ,
the function θ 7→ Lθ(E) is M -smooth for the same positive constant M . This directly implies that
it is also weakly convex and the following inequality holds:

Lθt(E)≤ tLθ(E)+(1−t)Lθ′(E)+
M

2
t(1−t)‖θ−θ′‖2.

Taking the supremum w.r.t. E, it follows that

K(θt)≤ tK(θ)+(1−t)K(θ′)+
M

2
t(1−t)‖θ−θ′‖2.

This means precisely thatK is weakly convex in θ.

To prove that K is Lipschitz, we will also use Lemma 8, which states that Lθ(E) is Lipschitz in θ
uniformly on E . Hence, the following holds:

Lθ(E)≤Lθ(E)+LC‖θ−θ′‖.

Again, taking the supremum overE, it follows directly that

K(θ)≤K(θ′)+LC‖θ−θ′‖.
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We conclude that K is Lipschitz by exchanging the roles of θ and θ′ to get the other side of the
inequality. Hence, by the Rademacher theorem,K is differentiable for almost all θ.

We will now provide an expression for the gradient of K. By Lemma 9 we know that ψ 7→Lθ(Eψ)
is continuous and by Assumption (I) Ψ is compact. Therefore, the supremum supE∈E Lθ(E) is
achieved for some function E?θ . Moreover, we know by Lemma 8 that Lθ(E) is smooth uniformly
on E , therefore the family (∂θLθ(E))E∈E is equi-differentiable. We are in position to apply Milgrom
and Segal (2002)(Theorem 3) which ensures thatK(θ) admits left and right partial derivatives given by

∂+
e K(θ)= lim

t>0
t→0

∂θLθ(E?θ+te)>e,

∂−e K(θ)= lim
t<0
t→0

∂θLθ(E?θ+te)>e,
(23)

where e is a given direction in Rr. Moreover, the theorem also states that K(θ) is differentiable iff
t 7→E?θ+te is continuous at t=0. Now, recalling thatK(θ) is actually differentiable for almost all θ, it
must hold thatE?θ+te→t→0E

?
θ and ∂+

e K(θ)=∂−e K(θ) for almost all θ. This implies that the two limits
in (23) are actually equal to ∂θLθ(E?θ )>e. The gradient ofK, whenever defined, in therefore given by

∇θK(θ)=Z−1
Gθ,E?θ

∫
∇xE?θ (Gθ(z))∇θGθ(z)exp(−E?θ (Gθ(z)))η(z)dz.

Lemma 8. Under Assumptions (I) to (III), the functional Lθ(E) is Lipschitz and smooth in θ
uniformly on E:

|Lθ(E)−Lθ′(E)|≤LC‖θ−θ′‖,
‖∂θLθ(E)−∂θLθ′(E))‖≤2CL(1+L)‖θ−θ′‖.

Proof. By Lemma 9, we have thatLθ(E) is differentiable, and that

∂θLθ(E) :=

∫
(∇xE◦Gθ)∇θGθ(pE,θ◦Gθ)dη.

Lemma 9 ensures that ‖∂θLθ(E)‖ is bounded by some positive constantC that is independent from
E and θ. This implies in particular thatLθ(E) is Lipschitz with a constantC. We will now show that
it is also smooth. For this, we need to control the difference

D :=‖∂θLθ(E)−∂θLθ′(E)‖.
We have by triangular inequality:

D≤
∫
‖∇xE◦Gθ−∇xE◦Gθ′‖‖∇θGθ‖(pE,θ◦Gθ)dη︸ ︷︷ ︸

I

+

∫
‖∇xE◦Gθ‖‖∇θGθ−∇θGθ′‖(pE,θ◦Gθ)dη︸ ︷︷ ︸

II

+

∫
‖∇xE◦Gθ∇θGθ‖|pE,θ◦Gθ−pE,θ′ ◦Gθ′ |dη︸ ︷︷ ︸

III

.

The first term can be upper-bounded usingLe-smoothness ofE and the fact thatGθ is Lipschitz in θ:

I≤Le‖θ−θ′‖
∫
|a|2(pE,θ◦Gθ)dη

≤LeC‖θ−θ′‖.
The last inequality was obtained by Lemma 10. Similarly, using that∇θGθ is Lipschitz, it follows
by Lemma 10 that

II≤Le‖θ−θ′‖
∫
|b|(pE,θ◦Gθ)dη

≤LeC‖θ−θ′‖.

19



Under review as a conference paper at ICLR 2021

Finally, for the last term III , we first consider a path θt= tθ+(1−t)θ′ for t∈ [0,1], and introduce the
function s(t) :=pE,θt ◦Gθt . We will now control the difference pE,θ◦Gθ−pE,θ′ ◦Gθ′ , also equal to
s(1)−s(0). Using the fact that st is absolutely continuous we have that s(1)−s(0)=

∫ 1

0
s′(t)dt. The

derivative s′(t) is simply given by s′(t) = (θ−θ′)>(Mt−M̄t)s(t) whereMt= (∇xE◦Bθt)∇θGθt
and M̄t=

∫
MtpE,θt ◦Gθtdη. Hence,

s(1)−s(0)=(θ−θ′)>
∫ 1

0

(Mt−M̄t)s(t)dt.

We also know thatMt is upper-bounded byLa(z),which implies

III≤L2
e‖θ−θ′‖

∫ 1

0

Ç∫
|a(z)|2s(t)(z)dη(z)+

Å∫
a(z)s(t)(z)dη(z)

ã2
å

≤L2
e(C+C2)‖θ−θ′‖,

where the last inequality is obtained using Lemma 10. This allows us to conclude thatLθ(E) is smooth
for anyE∈E and θ∈Θ.

Lemma 9. Under Assumptions (II) and (III), it holds that ψ 7→ Lθ(Eψ) is continuous, and that
θ 7→Lθ(Eψ) is differentiable in θ with gradient given by

∂θLθ(E) :=

∫
(∇xE◦Gθ)∇θGθ(pE,θ◦Gθ)dη.

Moreover, the gradient is bounded uniformly in θ andE:

‖∇θLθ(E)‖≤Le
Å∫

exp(−LeLb‖z‖)dη(z)

ã−1∫
a(z)exp(LeLb‖z‖)dη(z).

Proof. To show that ψ 7→Lθ(Eψ) is continuous, we will use the dominated convergence theorem. We
fixψ0 in the interior of Ψ and consider a compact neighborhoodW ofψ0. By assumption, we have that
(ψ,x) 7→Eψ(x) and (ψ,z) 7→Eψ(Gθ(z)) are jointly continuous. Hence, |Eψ(0)| and |Eψ(Gθ(0))|
are bounded onW by some constantC. Moreover, by Lipschitz continuity of x 7→Eψ , we have

|Eψ(x)|≤|Eψ(0)|+Le‖x‖≤C+Le‖x‖,
exp(−E(Gθ(z)))≤exp(−E(Gθ(0)))exp(LeLb‖z‖)≤exp(C)exp(LeLb‖z‖).

Recalling that P admits a first order moment and that by Assumption (III), exp(LeLb‖z‖) is integrable
w.r.t. η, it follows by the dominated convergence theorem and by composition of continuous functions
that ψ 7→Lθ(Eψ) is continuous in ψ0.

To show that θ 7→ Lθ(Eψ) is differentiable in θ, we will use the differentiation lemma in (Klenke,
2008, Theorem 6.28). We first fix θ0 in the interior of Θ, and consider a compact neighborhood V
of θ0. Since θ 7→ |E(Gθ(0))| is continuous on the compact neighborhood V it admits a maximum
valueC; hence we have using Assumptions (II) and (III) that

exp(−E(Gθ(z)))≤exp(−E(Gθ(0)))exp(LeLb‖z‖)≤exp(C)exp(LeLb‖z‖).
Along with the integrability assumption in Assumption (III), this ensures that z 7→exp(−E(Gθ(z)))
is integrable w.r.t η for all θ in V . We also have that exp(−E(Gθ(z))) is differentiable, with gradient
given by

∇θexp(−E(Gθ(z)))=∇xE(Gθ(z))∇θGθ(z)exp(−E(Gθ(z))).

Using thatE is Lipschitz in its inputs andGθ(z) is Lipschitz in θ, and combining with the previous
inequality, it follows that

‖∇θexp(−E(Gθ(z)))‖≤exp(C)Lea(z)exp(LeLb‖z‖),
where a(z) is the location dependent Lipschitz constant introduced in Assumption (III). The r.h.s.
of the above inequality is integrable by Assumption (III) and is independent of θ on the neighborhood
V . Thus (Klenke, 2008, Theorem 6.28) applies, and it follows that

∇θ
∫

exp(−E(Gθ0(z)))dη(z)=

∫
∇xE(Gθ0(z))∇θGθ0(z)exp(−E(Gθ0(z)))dη(z).
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We can now directly compute the gradient ofLθ(E),

∇θLθ(E)=

Å∫
exp(−E(Gθ0))dη

ã−1∫
∇xE(Gθ0)∇θGθ0exp(−E(Gθ0))dη.

Since E and Gθ are Lipschitz in x and θ respectively, it follows that ‖∇xE(Gθ0(z))‖ ≤ Le and
‖∇θGθ0(z)‖≤a(z). Hence, we have

‖∇θLθ(E)‖≤Le
∫
a(z)(pE,θ◦Gθ(z))dη(z).

Finally, Lemma 10 allows us to conclude that ‖∇θLθ(E)‖ is bounded by a positive constant C
independently from θ andE.

Lemma 10. Under Assumptions (II) and (III), there exists a constantC independent from θ andE
such that ∫

ai(z)(pE,θ◦Gθ(z))dη(z)<C, (24)∫
b(z)(pE,θ◦Gθ(z))dη(z)<C,

for i∈1,2.

Proof. By Lipschitzness of E and Gθ, we have exp(−LeLb‖z‖)≤ exp(E(Gθ(0))−E(Gθ(z))≤
exp(LeLb‖z‖), thus introducing the factor exp(E(Bθ0(0)) in (24) we get∫

ai(z)(pE,θ◦Gθ(z))dη(e)≤Le
Å∫

exp(−LeLb‖z‖)dη(z)

ã−1∫
a(z)iexp(LeLb‖z‖)dη(z),∫

b(z)(pE,θ◦Gθ(z))dη(z)≤Le
Å∫

exp(−LeLb‖z‖)dη(z)

ã−1∫
b(z)exp(LeLb‖z‖)dη(z).

The r.h.s. of both inequalities is independent of θ andE, and finite by the integrability assumptions
in Assumption (III).

C CONVERGENCE RATES OF KALE

In this section, we provide a convergence rate for the estimator in (17) whenH is an RKHS. The theory
remains the same whetherH contains constants or not. With this choice, the Representer Theorem
allows us to reduce the potentially infinite-dimensional optimization problem in (16) to a convex
finite-dimensional one. We further restrict ourselves to the well-specified case where the density r0

of P w.r.t. G is well-defined and belongs toH, so that KALE matches the KL. While Nguyen et al.
(2010) (Theorem 3) provides a convergence rate of 1/

√
N for a related M -estimator, this requires

the density r0 to be lower-bounded by 0 as well as (generally) upper-bounded. This can be quite
restrictive if, for instance, r0 is the density ratio of two gaussians. In Theorem 11, we provide a similar
convergence rate for the estimator defined in (17) without requiring r0 to be bounded. We start by
briefly introducing some notations, the working assumptions and the statement of the convergence
result in Appendix C.1 and provide the proofs in Appendix C.2.

C.1 STATEMENT OF THE RESULT

We recall that an RKHSH of functions defined on a domain X ⊂Rd and with kernel k is a Hilbert
space with dot product 〈.,.〉, such that y 7→k(x,y) belongs toH for any x∈X , and

k(x,y)=〈k(x,.),k(y,.)〉, ∀x,y∈X .

Any function h inH satisfies the reproducing property f(x)=〈f,k(x,.)〉 for any x∈X .

Recall that KALE(P||G) is obtained as an optimization problem

KALE(P||G)= sup
h∈H
F(h) (25)
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whereF is given by:

F(h) :=−
∫
hdP−

∫
exp(−h)dG+1.

Since the negative log density ratio h0 is assumed to belong to H, this directly implies that the
supremum of F is achieved at h0 and F(h0) = KALE(P||G). We are interested in estimating
KALE(P||G) using the empirical distributions P̂ and Ĝ,

P̂ :=
1

N

N∑
n=1

δXn , Ĝ :=
1

N

N∑
n=1

δYn ,

where (Xn)1≤n≤N and (Yn)1≤n≤N are i.i.d. samples from P and G. For this purpose we introduce
the empirical objective functional,“F(h) :=−

∫
hdP̂−

∫
exp(−h)dĜ+1.

The proposed estimator is obtained by solving a regularized empirical problem,

sup
h∈H
“F(h)− λ

2
‖h‖2, (26)

with a corresponding population version,

sup
h∈H
F(h)− λ

2
‖h‖2. (27)

Finally, we introduceD(h,δ) and Γ(h,δ):

D(h,δ)=

∫
δexp(−h)dG−

∫
δdP,

Γ(h,δ)=−
∫ ∫ 1

0

(1−t)δ2exp(−(h+tδ))dG.

The empirical versions of D(h,δ) and Γ(h,δ) are denoted D̂(h,δ) and Γ̂(h,δ). Later, we will show
thatD(h,δ) D̂(h,δ) are in fact the gradients ofF(h) and “F(h) along the direction δ.

We state now the working assumptions:

(i) The supremum ofF overH is attained at h0.
(ii) The following quantities are finite for some positive ε:∫ »

k(x,x) dP(x),∫ »
k(x,x)exp((‖h0‖+ε)

»
k(x,x)) dG(x),∫

k(x,x)exp((‖h0‖+ε)
»
k(x,x)) dG(x).

(iii) For any h∈H, ifD(h,δ)=0 for all δ then h=h0.
Theorem 11. Fix any 1>η>0. Under Assumptions (i) to (iii), and provided that λ= 1√

N
, it holds

with probability at least 1−2η that

|“F(ĥ)−F(h0)|≤M
′(η,h0)√
N

for a constantM ′(η,h0) that depends only on η and h0.

The assumptions in Theorem 11 essentially state that the kernel associated to the RKHSH needs to
satisfy some integrability requirements. That is to guarantee that the gradient δ 7→∇F(h)(δ) and its
empirical version are well-defined and continuous. In addition, the optimality condition∇F(h)=0 is
assumed to characterize the global solutionh0. This will be the case if the kernel is characteristic Simon-
Gabriel and Scholkopf (2018). The proof of Theorem 11, in Appendix C.2, takes advantage of the
Hilbert structure of the setH, the convexity of the functionalF and the optimality condition∇“F(ĥ)=

λĥ of the regularized problem, all of which turn out to be sufficient for controlling the error of (17).
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C.2 PROOFS

We state now the proof of Theorem 11 with subsequent lemmas and propositions.

Proof of Theorem 11. We begin with the following inequalities:

λ

2
(‖ĥ‖2−‖h0‖2)≤ “F(ĥ)−“F(h0)≤〈∇“F(h0),ĥ−h0〉.

The first inequality is by definition of ĥ while the second is obtained by concavity of “F . For
simplicity we write B=‖ĥ−h0‖ and C=‖∇“F(h0)−L(h0)‖. Using Cauchy-Schwarz and triangular
inequalities, it is easy to see that

−λ
2

(
B2+2B‖h0‖

)
≤ “F(ĥ)−“F(h0)≤CB.

Moreover, by triangular inequality, it holds that

B≤‖hλ−h0‖+‖ĥ−hλ‖.

Lemma 15 ensures thatA(λ)=‖hλ−h0‖ converges to 0 as λ→0. Furthermore, by Proposition 16,
we have ‖ĥ−hλ‖≤ 1

λD whereD(λ)=‖∇“F(hλ)−∇L(hλ)‖. Now choosing λ= 1√
N

and applying
Chebychev inequality in Lemma 12, it follows that for any 1>η>0,we have with probability greater
than 1−2η that both

D(λ)≤ C(‖h0‖η)√
N

, C≤ C(‖h0‖,η)√
N

,

where C(‖h0‖,η) is defined in Lemma 12. This allows to conclude that for any η > 0, it holds with
probability at least 1−2η that |“F(ĥ)−“F(h0)|≤ M ′(η,h0)√

N
whereM ′(η,h0) depends only on η and h0.

We proceed using the following lemma, which provides an expression forD(h,δ) and D̂(h,δ) along
with a probabilistic bound:

Lemma 12. Under Assumptions (i) and (ii), for any h∈H such that ‖h‖≤‖h0‖+ε, there existsD(h)
inH satisfying

D(h,δ)=〈δ,D(h)〉,

and for any h∈H, there exists “D(h) satisfying“D(h,δ)=〈δ,“D(h)〉.

Moreover, for any 0<η<1 and any h∈H such that ‖h‖≤‖h0‖+ε :=M , it holds with probability
greater than 1−η that

‖D(h)−“D(h)‖≤ C(M,η)√
N

,

whereC(M,η) depends only onM and η.

Proof. First, we show that δ 7→D(h,δ) is a bounded linear operator. Indeed, Assumption (ii) ensures
that k(x,.) and k(x,.)exp(−h(x)) are Bochner integrable w.r.t. P and G (Retherford (1978)), hence
D(h,δ) is obtained as

D(h,δ) :=〈δ,µexp(−h)G−µP〉,

where µexp(−h)G =
∫
k(x,.)exp(−h(x))dG and µP =

∫
k(x,.)dP. DefiningD(h) to be =µexp(−h)G−

µP leads to the desired result. “D(h) is simply obtained by taking the empirical version ofD(h).

Finally, the probabilistic inequality is a simple consequence of Chebychev’s inequality.
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The next lemma states thatF(h) and “F(h) are Frechet differentiable.
Lemma 13. Under Assumptions (i) and (ii) , h 7→F(h) is Frechet differentiable on the open ball of
radius ‖h0‖+ε while h 7→ “F(h) is Frechet differentiable onH. Their gradients are given by D(h)

and “D(h) as defined in Lemma 12,

∇F(h)=D(h), ∇“F(h)=“D(h)

Proof. The empirical functional “F(h) is differentiable since it is a finite sum of differentiable
functions, and its gradient is simply given by “D(h). For the population functional, we use second
order Taylor expansion of exp with integral remainder, which gives

F(h+δ)=F(h)−D(h,δ)+Γ(h,δ).

By Assumption (ii) we know that Γ(h,δ)
‖δ‖ converges to 0 as soon as ‖δ‖→ 0. This allows to directly

conclude thatF is Frechet differentiable, with differential given by δ 7→D(h,δ). By Lemma 12, we
conclude the existence of a gradient∇F(h) which is in fact given by∇F(h)=D(h).

From now on, we will only use the notation∇F(h) and∇“F(h) to refer to the gradients ofF(h) and“F(h). The following lemma states that (26) and (27) have a unique global optimum, and gives a first
order optimality condition.

Lemma 14. The problems (26) and (27) admit unique global solutions ĥ and hλ inH. Moreover, the
following first order optimality conditions hold:

λĥ=∇“F(ĥ), λhλ=∇F(hλ).

Proof. For (26), existence and uniqueness of a minimizer ĥ is a simple consequence of continuity and
strong concavity of the regularized objective. We now show the existence result for (27). Let’s introduce
Gλ(h)=−F(h)+ λ

2 ‖h‖
2 for simplicity. Uniqueness is a consequence of the strong convexity of Gλ.

For the existence, consider a sequence of elements fk ∈H such that Gλ(fk)→ infh∈HGλ(h). If h0

is not the global solution, then it must hold for k large enough that Gλ(fk)≤Gλ(h0). We also know
that F(fk)≤F(h0), hence, it is easy to see that ‖fk‖≤‖h0‖ for k large enough. This implies that
fk is a bounded sequence, therefore it admits a weakly convergent sub-sequence by weak compactness.
Without loss of generality we assume that fk weakly converges to some element hλ ∈ H and that
‖fk‖≤‖h0‖. Hence, ‖hλ‖≤ liminfk‖fk‖≤‖h0‖. Recall now that by definition of weak convergence,
we have fk(x)→k hλ(x) for all x∈X . By Assumption (ii), we can apply the dominated convergence
theorem to ensure thatF(fk)→F(hλ). Taking the limit of Gλfk, the following inequality holds:

sup
h∈H
Gλ(h)=limsup

k
Gλ(fk)≤Gλ(hλ).

Finally, by Lemma 13 we know thatF is Frechet differentiable, hence we can use Ekeland and Témam
(1999) (Proposition 2.1) to conclude that∇F(hλ) = λhλ. We use exactly the same arguments for
(26).

Next, we show that hλ converges towards h0 inH.
Lemma 15. Under Assumptions (i) to (iii) it holds that:

A(λ) :=‖hλ−h0‖→0.

Proof. We will first prove that hλ converges weakly towards h0, and then conclude that it must also
converge strongly. We start with the following inequalities:

0≥F(hλ)−F(h0)≥ λ
2

(‖hλ‖2−‖h0‖2).

These are simple consequences of the definitions of hλ and h0 as optimal solutions to (25) and (26).
This implies that ‖hλ‖ is always bounded by ‖h0‖. Consider now an arbitrary sequence (λm)m≥0
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converging to 0. Since ‖hλm‖ is bounded by ‖h0‖, it follows by weak-compactness of balls inH that
hλm admits a weakly convergent sub-sequence. Without loss of generality we can assume that hλm
is itself weakly converging towards an element h∗. We will show now that h∗ must be equal to h0.
Indeed, by optimality of hλm , it must hold that

λmhλm =∇F(hm).

This implies that ∇F(hm) converges weakly to 0. On the other hand, by Assumption (ii), we can
conclude that ∇F(hm) must also converge weakly towards ∇F(h∗), hence ∇F(h∗) = 0. Finally
by Assumption (iii) we know that h0 is the unique solution to the equation∇F(h)=0 , hence h∗=h0.
We have shown so far that any subsequence of hλm that converges weakly, must converge weakly
towards h0. This allows to conclude that hλm actually converges weakly towards h0. Moreover, we
also have by definition of weak convergence that:

‖h0‖≤ lim inf
m→∞

‖hλm‖.

Recalling now that ‖hλm‖≤ ‖h0‖ it follows that ‖hλm‖ converges towards ‖h0‖. Hence, we have
the following two properties:

• hλm converges weakly towards h0,

• ‖hλm‖ converges towards ‖h0‖.

This allows to directly conclude that ‖hλm−h0‖ converges to 0.

Proposition 16. We have that:

‖ĥ−hλ‖≤
1

λ
‖∇F̂(hλ)−∇F(hλ)‖

Proof. By definition of ĥ and hλ the following optimality conditions hold:

λĥ=∇“F(ĥ), λhλ=∇F(hλ).

We can then simply write:

λ(ĥ−hλ)−(∇“F(ĥ)−∇“F(hλ))=∇“F(hλ)−∇F(hλ).

Now introducing δ := ĥ−hλ andE :=∇“F(ĥ)−∇“F(hλ) for simplicity and taking the squared norm
of the above equation, it follows that

λ2‖δ‖2+‖E‖2−2λ〈δ,E〉=‖∇“F(hλ)−∇F(hλ)‖2.

By concavity of “F onHwe know that−〈ĥ−hλ,E〉≥0. Therefore:

λ2‖ĥ−hλ‖2≤‖∇“F(hλ)−∇F(hλ)‖2.

C.3 ESTIMATING KALE WITH ENERGIES IN AN RKHS

Recall the expression of the empirical objective:“F (h+c)=−〈h,µ̂P〉−c−
1

N

N∑
i=1

exp(−h(Yi)−c)+1− λ
2
‖h‖2 (28)

The representer theorem allows to express the optimal h? in the following form:

h?=αµ̂P+
N∑
i=1

βik(Yi,.).
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Plugging in the above expression in (28), and introducing the matrix K and vector m with entries
given byK(Yi,Yj) andmi= µ̂P(Yi) it follows:

L(α,β,c)=−α‖µ̂P‖2−β>m−c−
1

N
1
>exp(−(αm+Kβ+c))− λ

2

(
α2‖µ̂P‖2+β>Kβ+2αKβ

)
.

(29)

The optimal values for α and c for a given β are:

α?=− 1

λ
c(β)=log(1>exp(

1

λ
m−Kβ))−logN

Using those optimal solution in (29) gives another concave objective in β:

L(β) :=−log
(
1
>S(β)

)
− λ

2
β>Kβ

with S(β) given by S(β)=exp(mλ −Kβ). This can be optimized iteratively using Newton’s method.
We provide the expression for the gradient:

∇L(β :=−K
Ä
λβ−S̃(β)

ä
HL(β) :=−

Ä
λK+K(diag(S̃(β))−S̃(β)S̃(β)>)K

ä
The matrixK gets simplified when performing newton’s updates:

βk+1 =βk−γ(λI+E(βk)K)
−1
Ä
λβk−S̃(βk)

ä
withE(β)=(diag(S̃(β))−S̃(β)S̃(β)>)

where we introduced the normalized vector S̃(β)= 1
1>S(β)

S(β).

The optimal coefficients α and β are obtained by solving the following maximization problem:

(α?,β?)=argmax
α,β

D IMAGE GENERATION

Figures 3 and 4 show sample trajectories using Algorithm 3 with no friction γ=0 for the 4 datasets.
It is clear that along the same MCMC chain, several image modes are explored. We also notice the
transition from a mode to another happens almost at the same time for all chains and corresponds to
the gray images. This is unlike Langevin or when the friction coefficient γ is large as in Figure 5. In
that case each chain remains within the same mode.

Table 4 shows further comparisons with other methods on Cifar10 and ImageNet 32x32.

E DENSITY ESTIMATION

Figure Figure 7 (left) shows the error in the estimation of the log-partition function using both methods
(KALE-DV and KALE-F). KALE-DV estimates the negative log-likelihood on each batch of size
100 and therefore has much more variance than KALE-F which maintains the amortized estimator
of the log-partition function.

Figure Figure 7 (right) shows the evolution of the negative log-likelihood (NLL) on both training and
test sets per epochs for RedWine and Whitewine datasets. The error decreases steadily in the case
of KALE-DV and KALE-F while the error gap between the training and test set remains controlled.
Larger gaps are observed for both direct maximum likelihood estimation and Contrastive divergence
although the training NLL tends to decrease faster than for KALE.

F ALGORITHMS

Estimating the variational parameter. Optimizing (7) exactly over A yields (6), with the optimal
A equal to Ã= log( 1

M

∑M
m=1exp(−E(Ym))). However, to maintain an amortized estimator of the
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Model FID

Cifar10 Unsupervised
PixelCNN Oord et al. (2016) 65.93
PixelIQN Ostrovski et al. (2018) 49.46
EBM Radford et al. (2015) 38.2
WGAN-GP Gulrajani et al. (2017) 36.4
NCSN Ho and Ermon (2016) 25.32
SNGAN Miyato et al. (2018) 21.7
MoLM Ravuri et al. (2018) 18.9
GEBM -

Cifar10 Supervised
BigGAN Donahue and Simonyan (2019) 14.73
SAGAN Zenke et al. (2017) 13.4

ImageNet Conditional
PixelCNN 33.27
PixelIQN 22.99
EBM 14.31

ImageNet Supervised
SNGAN 20.50
GEBM 13.94

Table 4: FID scores on ImageNet and CIFAR-10.

log-partition we propose to optimize (7) iteratively using second order updates:

Ak+1 =Ak−λ(exp(Ak−Ãk+1)−1), A0 =Ã0 (30)

where λ is a learning rate and Ãk+1 is the empirical log-partition function estimated from a batch
of new samples. By leveraging updates from previous iterations, A can yield much more accurate
estimates of the log-partition function as confirmed empirically in Figure 7 of Appendix E.

Tempered GEBM. It can be preferable to sample from a tempered version of the model by rescaling the
energyE by an inverse temperature parameter β, thus effectively sampling from Q. High temperature
regimes (β→0) recover the base model G while low temperature regimes (β→∞) essentially sample
from minima of the energyE. As shown in Section 6, low temperatures tend to produce better sample
quality for natural image generation tasks.

Training In Algorithm 1, we describe the general algorithm for training a GEBM which alternates
between gradient steps on the energy and the generator. An additional regularization, denoted by I(ψ)
is used to ensure conditions of Proposition 3 and Theorem 4 hold. I(ψ) can includeL2 regularization
over the parameters ψ, a gradient penalty as in Gulrajani et al. (2017) or Spectral normalization Miyato
et al. (2018). The energy can be trained either using the estimator in (6) (KALE-DV) or the one in
(7) (KALE-F) depending on the variable C.

Sampling In Algorithm 3, we describe the MCMC sampler proposed in Sachs et al. (2017) which
is a time discretization of (12).

27



Under review as a conference paper at ICLR 2021

Figure 3: Samples from the GEBM at different stages of sampling using Algorithm 3 and inverse
temperature β= 1, on CelebA (Left), Imagenet (Right). Each row represents a sampling trajectory
from early stages (leftmost images) to later stages (rightmost images).

Algorithm 2 Overdamped Langevin Algorithm

1: Input λ, γ, u,η,E,G
2: OuputXT

3: Z0∼η // Sample Initial latent from η.
4: for t=0,...,T do
5: Yt+1←∇zlogη(Zt)−∇zE◦B(Zt) // Evaluating∇zlog(ν(Zt+1)) using (3).
6: Wt+1∼N (0,I) // Sample standard gaussian noise
7: Zt+1←Zt+λYt+1+

√
2λWt+1

8: end for
9: XT←G(ZT )

28



Under review as a conference paper at ICLR 2021

Figure 4: Samples from the GEBM at different stages of sampling using Algorithm 3 and inverse
temperature β= 1, on Cifar10 and LSUN (Right). Each row represents a sampling trajectory from
early stages (leftmost images) to later stages (rightmost images).

Algorithm 3 Kinetic Langevin Algorithm

1: Input λ, γ, u,η,E,G
2: OuputXT

3: Z0∼η // Sample Initial latent from η.
4: for t=0,...,T do
5: Zt+1←Zt+

λ
2Vt

6: Yt+1←∇zlogη(Zt+1)−∇zE◦B(Zt+1) // Evaluating∇zlog(ν(Zt+1)) using (3).
7: Vt+1←Vt+

uλ
2 Yt+1.

8: Wt+1∼N (0,I) // Sample standard gaussian noise
9: Ṽt+1←exp(−γλ)Vt+ 1

2
+
√
u(1−exp(−2γλ))Wt+1

10: Vt+1← Ṽt+1+ uλ
2 Yt+1

11: Zt+1←Zt+1+ λ
2Vt+1

12: end for
13: XT←G(ZT )

G EXPERIMENTAL DETAILS

In all experiments, we use regularization which is a combination of L2 norm and a variant of the
gradient penalty Gulrajani et al. (2017). For the image generation tasks, we also employ spectral
normalization Miyato et al. (2018). This is to ensure that the conditions in Proposition 3 and Theorem 4
hold. We pre-condition the gradient as proposed in Simsekli et al. (2020) to stabilize training, and
to avoid taking large noisy gradient steps due to the exponential terms in (6) and (7). We also use the
second-order updates in (30) for the variational constant cwhenever it is learned.
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Figure 5: Samples from the tempered GEBM at different stages of sampling using langevin and inverse
temperature β=100, on Cifar10 (Left), Imagenet (Middle-left), CelebA (Middle-Right) and LSUN
(Right). Each row represents a sampling trajectory from early stages (leftmost images) to later stages
(rightmost images).

G.1 IMAGE GENERATION

Training: We train both base and energy by alternating 5 gradient steps to learn the energy vs
1 gradient step to learn the base. For the first two gradient iterations and after every 500 gradient
iterations on base, we train the energy for 100 gradient steps instead of 5. We then train the model
up to 150000 gradient iterations on the base using a batch-size of 128 and Adam optimizer with initial
learning rate of 10−4 and parameters (0.5,.999) for both energy and base.

Scheduler: We decrease the learning rate using a scheduler that monitors the FID score in a similar
way as in Bińkowski et al. (2018); Arbel et al. (2018). More precisely, every 2000 gradient iterations
on the base, we evaluate the FID score on the training set using 50000 generated samples from the
base and check if the current score is larger than the score 20000 iterations before. The learning rate
is decreased by a factor of 0.8 if the FID score fails to decrease for 3 consecutive times.
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Figure 6: Relative FID score: ratio between FID score of the GEBM QG,E and its base G. (Left)
Evolution of the ratio for increasing temperature on the 4 datasets after 1000 iterations of (12). (Right)
Evolution of the same ratio during MCMC iteration using (12).
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Figure 7: (Left): Relative error |ĉ−c
?|

|ĉ|+|c?| on the estimation of the ground truth log-partition function
c∗ by ĉ using either KALE-DV or KALE-F vs training Epochs on RedWine (Top) and WhiteWine
(Bottom) datasets. (Right): Negative log likelihood vs training epochs on both training and test set
for 4 different learning methods (KALE-DV,KALE-F, CD and ML) on RedWine dataset.

Sampling: For (DOT) Tanaka (2019), we use the following objective:

z 7→‖z−zy+ε‖+ 1

keff
E◦G(z) (31)

where zy is sampled from a standard gaussian, ε is a perturbation meant to stabilize sampling and
keff is the estimated Lipschitz constant of E ◦B. Note that (31) uses a flipped sign for the E ◦B
compared to Tanaka (2019). This is becauseE plays the role of−D whereD is the discriminator in
Tanaka (2019). Introducing the minus sign in (31) leads to a degradation in performance. We perform
1000 gradient iterations with a step-size of 0.0001 which is also decreased by a factor of 10 every 200
iterations as done for the proposed method. As suggested by the authors of Tanaka (2019) we perform
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the following projection for the gradient before applying it:

g←g− (g>z)
√
q
z.

We set the perturbation ε to 0.001 and keff to 1 which was also shown in Tanaka (2019) to perform well.
In fact, we found that estimating the Lipschitz constant by taking the maximum value of ‖∇E◦G(z)‖
over 1000 latent samples according to η lead to higher values for keff : ( Cifar10: 9.4, CelebA : 7.2,
ImageNet: 4.9, Lsun: 3.8). However, those higher values did not perform as well as setting keff =1.

For (IHM) Turner et al. (2019) we simply run the MCMC chain for 1000 iterations.

G.2 DENSITY ESTIMATION

Pre-processing We use code and pre-processing steps from Wenliang et al. (2019) which we
describe here for completeness. For RedWine and WhiteWine, we added uniform noise with support
equal to the median distances between two adjacent values. That is to avoid instabilities due to the
quantization of the datasets. For Hepmass and MiniBoone, we removed ill-conditioned dimensions
as also done in Papamakarios et al. (2017). We split all datasets, except HepMass into three splits.
The test split consists of 10% of the total data. For the validation set, we use 10% of the remaining
data with an upper limit of 1000 to reduce the cost of validation at each iteration. For HepMass, we
used the sample splitting as done in Papamakarios et al. (2017). Finally, the data is whitened before
fitting and the whitening matrix was computed on at most 10000 data points.

Regularization: We set the regularization parameter to 0.1 and use a combination ofL2 norm and
a variant of the gradient penalty Gulrajani et al. (2017):

I(ψ)2 =
1

dψ
‖ψ‖2+E

î
‖∇xfψ(‹X)‖2

ó
Network Architecture. For both base and energy, we used an NVP Dinh et al. (2016) with 5 NVP
layers each consisting of a shifting and scaling layer with two hidden layers of 100 neurons. We do
not use Batch-normalization.

Training: In all cases we use Adam optimizer with learning rate of 0.001 and momentum parameters
(0.5,0.9). For both KALE-DV and KALE-F, we used a batch-size of 100 data samples vs 2000
generated samples from the base in order to reduce the variance of the estimation of the energy. We
alternate 50 gradient steps on the energy vs 1 step on the base and further perform 50 additional steps
on the energy for the first two gradient iterations and after every 500 gradient iterations on base. For
Contrastive divergence, each training step is performed by first producing 100 samples from the model
using 100 Langevin iterations with a step-size of 10−2 and starting from a batch of 100 data-samples.
The resulting samples are then used to estimate the gradient of the of the loss.

For (CD), we used 100 Langevin iterations for each learning step to sample from the EBM. This
translates into an improved performance at the expense of increased computational cost compared to
the other methods. All methods are trained for 2000 epochs with batch-size of 100 (1000 on Hepmass
and Miniboone datasets) and fixed learning rate 0.001, which was sufficient for convergence.
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