Under review as a conference paper at ICLR 2024

A EXPERIMENTS

A.1 EXPERIMENTAL SETUP

For the MNIST dataset: We use the convolution neural network with the structure: n x 32C-(1024)-d.
The output dimension d is 1 or 10, with respect to the loss function MSE loss or cross-entropy. The
parameters of the convolution layer is initialized by the Gaussian (0, 0} ), and the parameters of the

o . . 2
linear layer is Gaussian (0, 03). o7 is given by (M)‘V where c;,, and c,,,; are the number

of in channels and out channels respectively, o5 is given empirically by 0.0001. The data size is n
which is randomly chosen from the MNIST dataset. The training method is GD or Adam with full
batch.

A.2 CIFAR10 EXAMPLES
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Figure 5: The training accuracy of the experiment in Fig:

A.3 MNIST EXAMPLES

When we are training the MNIST dataset, we use MSE loss with one dimension output as the criterion.

We display the initial condensation of the convolution neural network with one convolution layer
on the MNIST dataset whose data size is n = 500. The colors in Fig[§|show the cosine similarity
D(u,v) of different kernel in one convolution layer. Yellow D(u,v) ~ 1(purple D(u,v) ~ —1),
means the kernel weight vectors are at the same(opposite) directions, The activation function of the
convolution layer are Sigmoid(x), ReLU(x) and tanh(x). The Fig[8c|implies that during the initial
stage of the training, the convolutional kernel in each layer will condense at two opposite directions
when the activation function is tanh(x). This phenomenon will also happen when the activation
functions are ReLU(z) and Sigmoid(x) which is shown in Fig[8aand Fig/8b]

Condensation of multi-layer convolution neural network on MNIST dataset is shown in Fig[9] The
activation function between each convolution layer is tanh(x). We have the kernel weight of different
layer are all condensation on two opposite directions, i.e. one line.

In the MNIST example, it has only one input channel, thus we directly project the first eigenvector to
1 and find the inner product is close to 1, i.e. 0.99974 + 0.00003, computed from 50 independent
trials, where each trail randomly selected 500 images.
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Figure 6: Condensation of convolution network with three convolutional kernel training on CIFAR10
dataset with data size= 500. The kernel size m = 3. The colors in the figure show the cosine similarity
of normalized weight vectors of each convolutional kernel. The activation for all convolution layers
are tanh(x). The number of the steps are at epoch = 200, epoch = 200 and epoch = 200. The
convolutional kernels are initialized by v = 2. The learning rate is 5 x 10~¢. We use one dimension
output instead of label and use MSE loss. The optimizer is full batch Adam.
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Figure 7: Condensation of three-convolution-layer CNNs. The activation functions are tanh(x).
The numbers of steps selected in the sub-pictures are epoch= 200, epoch= 300 and epoch= 300,
respectively, while the NN is only trained once. The color indicates D(u, v) of two different kernels,
whose indexes are indicated by the abscissa and the ordinate, respectively. The training data is
CIFAR10 dataset. ReLU is used for linear layer, softmax for output layer, MSE for loss function and
full batch Adam for optimizer. m = 5, Ir =1 X 1079, and v=1.2.
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Figure 8: Condensation of CNNs with different activations (indicated by sub-captions) for convolution
layers. The network has 32 kernels in the convolution layer, followed by 1-dimensional output. The
kernel size is m = 5. The learning rate is 5 x 107, 5 x 1077 and 5 x 10~° separately. The number
of the selected steps are at epoch = 252, epoch = 302, and epoch = 200. The convolution layer is
initialized by v = 2. We use full batch Adam optimizer with MSE loss on MNIST dataset.
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Figure 9: Condensation of tanh CNN with three convolution layer by MSE loss. The kernel size is
m = 5. The color indicates the cosine similarity between kernels. The number of the steps are all at
epoch = 100. The learning rate is 5 x 10~7. The convolution layer is initialized by v = 2. We use
1-dimension output. The optimizer is full batch Adam on MNIST dataset.
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Figure 10: Condensation of two-layer CNN by GD and MSE training on MNIST dataset with data size
n = 500. The network has 32 kernels. (a) consine similarity. (b) left ordinate (red): the amplitude of
each kernel; (b) right ordinate: cosine similarity between each kernel and 1. The activation function
of the convolution part is tanh(z). The kernel size is m = 3. The learning rate is 5 x 10~¢. The
number of the selected steps is epoch = 3600. The convolution layer is initialized by v = 2.
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Figure 11: Condensation of two-layer CNN by GD and MSE training on MNIST dataset with data
size n = 500.The network has 320 kernels. The activation function of the convolution part is tanh(z).
The kernel size is m = 3. The learning rate is 5 x 10~%. The number of the selected steps is epoch
= 7000. The convolution layer is initialized by v = 2.
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Figure 12: The largest 10 eigenvalues of ZT7 Z in tanh(x) CNN on MNIST dataset. A clear spectral
gap (AX := A1 — Ag) could be observed, which satisfies AssumptionE}

The loss at the initial stage is shown as follows:

B PRELIMINARIES

B.1 SOME NOTATIONS

For a matrix A, we use A, ; to denote its (¢, j)-th entry. We also use A; . to denote the i-th row
vector of A and define A, ., := (A, ;, A; j+1, -, A, ) as part of the vector. Similarly A. j is
the k-th column vector and A := (A; x, Ait1k, -+ ,Ajx)" is part of the k-th column vector.

We let [n] = {1,2,...,n}. We set N'(u, X) as the normal distribution with mean g and covariance
3. For a vector v, we use ||v||2 to denote its Euclidean norm, and we use (-, -) to denote the standard
inner product between two vectors. For a matrix A, we use ||A||r to denote its Frobenius norm
and ||A||2—2 to denote its operator norm. Finally, we use O(-) and €(-) for the standard Big-O and
Big-Omega notations.

B.2 PROBLEM SETUP

We focus on the empirical risk minimization problem given by the quadratic loss:

1 n
min Rs(6) = %Zl(f(m,;ﬂ) — ). (16)

In the above, n is the total number of training samples, {x;}? ; are the training inputs, {y; }7 ,
are the labels, f(x;,0) is the prediction function, and @ are the parameters to be optimized, and
their dependence is modeled by a (L + 1)-layer convolution neural network (CNN) with filter size
m x m. We denote x!!l (i) as the output of the I-th layer with respect to the i-th sample for I > 1, and
x[%(i) := x; is the i-th input. For any [ € [0 : L], we denote the size of width, height, channel of
xl!l as Wy, H;, and C) respectively, i.e., {x!!(i)}7_, ¢ RWi*HixCt We introduce a filter operator
x(+,-) , which maps the width and height indices of the output of all layers to a binary variable, i.e.,
for a filter of size m x m, the filter operator reads

_J 1, for 0<p,g<m—1
x(p,q) = { 0, otherwise, "
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Figure 13: Losses of the experiments on MNIST and CIFARI10 dataset. The original figures
corresponding to each sub-picture are written in the sub-captions.
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and the (L 4 1)-layer CNN with filter size m x m is recursively defined for [ € [2 : L],

Co [eS)
Z ( Z Z mE?-]‘rpv—i-qa 'ng(;aﬁ X(p7 ))

a=1 P=—00 q=—00

Cr1
Aowm | (X3 a(ohn) Wi )| 4ol

a=1 \p=—o0g=—c©

.

(1]
Ty 5= +b

B

f(x,0) := foxnn(z,0) = <a,a(w[L]>> Zzza“”ﬁ J( “1’5)

where o (+) is the activation function applied coordinate-w1se1y to its input, and for each layer [ € [L],
all parameters belonging to this layer are initialized by: For p,q € [m — 1], « € [C)_1] and 5 € [(Y],
1 !
Wl s~ N(0,82), b ~N(0, ). (18)
Moreover, for u € [Wp]and v € [Hy],

@y~ N(0,B3), (19)
and for convenience we set 51 = (2 = ¢, where € > 0 is the scaling parameter. Finally, for all
i € [n], we denote hereafter that

e; = ¢;(0) := f(x;,0) — yi,

and
e:=e(0) :=[e1(0),e2(0),...,e,(0)]" € R".

B.3 GD DYNAMICS

In this paper, we train all layers of the neural network with continuous time gradient descent (GD):
For any time t > 0,

de

We remark that details of the dynamics (20) are hard to write out in matrix form, so we turn to the
alternative approach to derive the GD dynamics of each individual parameter. In order for that, it

is natural for us to define a series of auxiliary variables: For each ¢ € [n] and | € [L], we define

U] (4) as the partial derivative of f(x;, ) with respect to mﬁ]ﬂ)ﬁ(i), ie.,

Zu,v,ﬁ
W .o 9f(®:,0)
Zy,p(1) == o2 (i) 1)
we obtain that for [ € [L — 1],
Ciryr Wiy Hiqq
0= 3 3 3 A WL o (sl 0) vl 50—
a=1 s=1 t=1
L . Ll .
zi,l,g(z) =0Qypw,p otV (wq[ll;ﬁ(l)) )
hence we obtain that for [ € [2: L],
1 Hl
af m’u [1] .
1] Z Z u v B : u+p v+q, 04(7“)
8Wp q,a,B u=1v=1
w, H
of (x;,0 U] . [1—1]
[1] Z Z Zu U”B ( Loutputq, a(z)) ,
aWp q,o,3 u=1v=1
(22)
0f(2,0)  <A<n
b[l] Z Z u v ,B
u=1v=1
w, H
of (xi, 0 mo.
ab[l] Z Z Zu v,B
u=1v=1
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With the above notations, for [ € [2 : L], the dynamics (20) reads

awll Lo Wi o
#ﬁ _5267 ZZ uvﬂ Et-]i-pv-i-qa(?’) 9
i=1 u=1v=1
dWl] 1 n
p,q,a, ‘ -1 .
T—_;iﬂ@z ;;ZUUﬁ ( Tutpvtgo (z)) ’
o .
at | ZZ uv,ﬂ (
i=1 u=1v=1
db!! 1 Wi Hi
B
i) DUE DD DEARI)
i=1 u=1v=1
dauﬂ,ﬁ 1 n )
dt - _ﬁ p ¢i -a(wu Uﬁ( ))

C TwO-LAYER CNNS WITH SINGLE CHANNEL

C.1 ACTIVATION FUNCTION

In this part, we shall impose some technical conditions on the activation function and input samples.
We start with a technical condition (Zhou et al.l[2022] Definition 1) on the activation function o (-)

Definition 2 (Multiplicity 7). o(-) : R — R has multiplicity r if there exists an integer r > 1, such
that for all 0 < s < r — 1, the s-th order derivative satisfies O'(S)(O) =0, and O'(T)(O) #0.

We list out some examples of activation functions with different multiplicity.
Remark 2.

* tanh(x) := % is with multiplicity r = 1;

e SiLU(x) := is with multiplicity r = 1;

X
1+exp(—x)

¢ xtanh(x) := % is with multiplicity r = 2.

Assumption 5 (Multiplicity 1). The activation function o € C*(R), and there exists a universal
constant Cp, > 0, such that its first and second derivatives satisfy

[evo|_<cn |l < e (24)

Moreover,

o(0)=0, oM(0)=1. (25)
Remark 3. We remark that o has multiplicity 1. o) (0) = 1 can be replaced by o) (0) # 0, and
we set o1 (0) = 1 for simplicity, and it can be easily satisfied by replacing the original activation

o(-) with (1)() 0y

We note that Assumption ] can be satisfied by using the tanh activation:

) = () expl=)
exp(z) +exp(—x)’

and the scaled SiLU activation 5
T

7= T ()
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In the case of two-layer CNNSs, as L = 2, then we shall set W, ; o g 1= W‘zg,li,a,ﬁ’ bg = b[ﬁl], and

Tt potgall) = acﬂrp v+q.0(1) for simplicity, then reads

n Wi Hi
dw, ,q,,3 1 . ) )
# = 2 €; - <§; Qs oV (wL,]v,ﬁ(l)) : wu+p,v+q,a(’)> )
n Wi Hy
ERrPIE <ZZGW o (@lhs0) ).
i=1 u=1v=1
day, g 1 — [1] .
a  n P “ne <m“=”vﬁ(z)) '

Moreover, since the MNIST |Deng|(2012) images are black and white, therefore we do not need three
different color-channels to represent the final color, and only one channel is enough, i.e., Cy = 1,
hence the above dynamics can be further simplified into

AW, 1 Wi Hi

%qﬁ = _ﬁ;ei- (;;auvﬁ ol ( 5]1; /3()) 'mu+p,v+q(i)>v
db 1 Wi Hi )
i ) o

dag;fﬁ — _fZel ( RETRINCAY ))

We identify the vectorized parameters @ as variables of order 1 by setting @ = €6, and

+o00
L,l]'uﬁ = < Z Z Lutp,v+q ° EWp,q,,B X(p )) +€b[ﬁl] o

p=—00 g=—00

=[1]
- sxuv NoE

where

71
“7“7[3 (Z Z wu+pv+q pqﬁ X(p7 )) +b£3]a

pP=—00 q=—00

is also of order 1, and the rescaled dynamics can be written into

AW 1 & LNl
. _ _[1 . .
Woss LS5 (350 (c0) vipia),

u=1v=1
dby 1 UENRE n .
e —gzez YD auus-ol ( T, 51 ))
i=1 u=1v=1
day . s 1 & U(Eig}vﬁ(i))
& TR T
with the following initialization
Woos~NOD), B ~N(O,1), af,;~N(0,1), (28)

In the following discussion throughout this paper, we always refer to the above rescaled dynamics
and drop all the “bar”’s of o, szq, 8 I_)g, a’rzg}u 3 and a,, , g for notational simplicity. Moreover, we
remark that p € [0:m — 1], ¢ € [0 : m — 1] and 3 € [M], where m is the filter size, and M := C1,
the number of channels in ") (), which can be heuristically understood as the ‘width’ of the hidden
layer in the case of two-layer neural networks (NNs). Before we end this section, we assume hereafter

that
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Assumption 6. The training inputs {:B ', and labels {y;}"_, satisfy that there exists a universal
constant ¢ > 0, such that given any i € [ |, then for each v € [Wy), v € [Hy] and o € [Cy), the
following holds

< ‘wu,v,a(i)lv |yl| <c.

ol

We assume further that
Assumption 7. The following limit exists
log &2
im — .
M—o0 10g M

5= (29)

C.2 EFFECTIVE LINEAR DYNAMICS

As the normalized flow reads

Wy Hp
de’q’ = Zez ( Zauv,b’ U(l)( [] (Z)> 'wu+p,v+q(i)>a

u=1v=1

dbg Wl - (1) .
7——7261 Za“”»ﬁ o ( ’ﬁ(z)) ,

u=1v=1

28
dauﬂ,ﬁ 1 n 0 u U,,B( ))
At n D e €

=1

since e; ~ —y;, and by means of perturbation expansion with respect to € and keep the order 1 term,
we obtain that

n Wy H
dvz%ﬁ ~ %Zyz : (Z Zau,v,ﬁ ' $u+p7v+q(i)> '
i=1

u=1v=1
dby 1 gn A&
ditﬁ ~ ﬁ Zyz : Zzau,v,ﬁv
i=1 u=1v=1 (30)

dau,v,ﬁ’ 1 - 1] .
G a2t sl

n m—1m—1
- izlyz ) [(Z Z Lot p,otq(i) - Wp,q,ﬁ) + bs

p=0 ¢=0

Given any u € [W;] and v € [H;], then for all p,q € [0 : m — 1], we set

Zutp,vtg = n § yi$u+p,v+q(i)»

- 31)
1
T
i=1
then the dynamics (30) can be further simplified into: For any § € [M],
Wy, Hy
dw,
pqﬁ ~ Zzauvﬁ Zu+tp,o+qs
u=1lv=1
1 Hl
db
TP I BLIRE ()
u=1v=1
m—1m—1
day,,y,
dt o < Zutpvtq Wpa.s >+bﬁ'z-
p=0 ¢q=0
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We observe that (32)) reveals that the training dynamics of two-layer CNNs at initial stage has a
close relationship to power iteration of a matrix A that only depends on the input samples, i.e., the
dynamics (32)) takes the form

% = Ab3g, (33)

where

05 := (Wo,o,ﬁ,Wo,l,ﬁ,"' Wom-1,8Wiop, s Wim-18"""" Win—1,m-1,8; bg;
ai1,5,a123," °,Q1,H,,3;802,1,8, " A2 H B} """ * awl,Hl,/i)T,
and if we would like to simplify our notations
95 = (Wo,o:(m—l),ﬁ; W1,0:(m—1),ﬂ; """ Wm—l,O:(m—l),,B; bﬁ;
Qa11:H,,8,A21:H;,85 """ " aw,,1 H1,B>T7
A= { Omerix(mesyy A7 ] (34)

Z Ow, vy xwiHy |7

where Z € RW1H1x(m*+1) and Z depends sorely on the input samples {x;}7; and {y; }}_,, whose
entries read

21,1 Z12 s Z1,m; 22,1 s Z2m; Zm,m;
21,2 21,3 o Z1,mA1s 22,2 ce Z2,m+1; Zm,m+1;
Z1,H, Z1,H,+1 T Z1,Hy> 22 H, e Z2,Hos "ot Zm,Hos
o , , ,m,; , o ,m,; ...... m- 7"'/;
. 22,1 22,2 22 23,1 23 Zm+1
Z2,H; Z2,H;+1 ce Z2,Hy s Z3,H; ce Z3,Hpy "t Zm+1,Hos
L 2Wi,H1  2Wy,Hi+1 " 2Wi,Hoy 2EWi+1,Hy " 2Wi+1,Hos =~ """ ZWo,Hos
(35)
If we would like to simplify our notations,
Z1,1:m; 22 1:my Zm,1:m3 <
Z1,2:(m+1)3 22,2:(m+1); T Zm,2:(m+1)s  #
Z17H12H0; z2,H12H0; """ Zm7H1:H0; z
7 = 22,1:m; 23, 1m; Zm+1,1:m; 2
ZQ,HliHo; Z3,H1:Ho; """ zm+1,H1:Ho; z
L ZW1,H1:H0; ZW1+17H1ZH0; """ ZW07H12H0; z i

In order to solve out the simplified dynamics (32)), we need to perform Singular value decomposi-
tion (SVD)on Z,i.e.,
Z =UAVT, (36)

where
U:[Uhug,"',quHl], V:[’l)17'l)2,"','l)m2+1],

and as we denote 7 := rank(Z), naturally, < min{Wj Hy, m? + 1} we have r singular values,
AM>A 2> -2 A >0,

and WLOG, we assume that
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Assumption 8 (Spectral Gap of Z). The singular values {\}},_, of Z satisfy that

AL >A > 2> A >0, (37)
and we denote the spectral gap between \1 and Ao by
AN = A — )Xo
Moreover, as we denote further that
Ow 3 := Wi Wois, -, Wom-18Wi08 s Wim—18;- " Wi—1,m-1,805)",
0(1,[5 = (a1,1,5, ai2.p, " ,Q1,H,,3021,8, " Q2 H; B5 """ awl,Hl,ﬁ)T ,

hence ;
05 = (%v /379; /3) J
and the linear dynamics (32) read

dOywy,
TB - ZT0a7B7 0W)5(0) = 00W,B7
10 (38)
0= 26w, 6as(0) = 6],
hence can be simplified further into two separate second order differential equations,
d*0w, dOw,
G = 220w 0w p(0) = 0% 5. —20(0) = 276, (39)
and d%e de
B a,p
Ttg = ZZTBG,,B? Baﬁ(o) = 02757 T(O) = Ze(‘)/V,,B (40)
We observe that
Z'Z =) Nupv],
k=1
ZZ7 =) Nupul,
k=1
hence the solutions to and respectively reads
ewwg(t) = (Z [CAMW’,Q exp()\kt) + d)\k-,W,ﬁ exp(f)\k.t)] ’Uk>
k=1
+ P T m 0 0 ’
(r+1):(m2+1) 0w ,5(0) an

0,.5(t) = <Z [ers.a.8 €XP(Ait) + dx, a.8 €XP(—Agt)] uk>
k=1

+ Piri1):wi 1) 0a,(0),
where for each k € [r] and § € [M], the constants cx, w3, dx,,w,3> Cr,,a,8 a0d d, a3 depend on

<0%V’ﬁ, vk> and <0275, uk>, i.e., the constants cy, w g and dy, w g are determined by,

exew s+ dr,wos = (O 5, k),

(42)
MeCx, w8 — Meda, wog = (2705 5,0) = Ar, (0 5, un) ,
thus
1
AW B = 5 (6% 5. vk) + (O 5 ur))

1
d/\kvwaﬁ = 5 (<0%Va5’vk> - <927ﬂ7uk7>> 4
which matches the same constants as the ones in two-layer NNs (Chen et al.| (2023), a special
case where = 1. Then with slight misuse of notations, P1..0w (0) refers to the projec-
tion of @Y, 5 towards span{vi};_;, Prri1):(m2+1)8w 5(0) refers to the projection of 83,

towards span {vk}Zi:}l and P, 41):(w, 1,)0a,5(0) refers to the projection of 02,6 towards

Wy H
span {uy }; 2,
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Proposition 1. The solution to the linear differential equation

de

ﬂ:ZTgaﬁ’ 0w 5(0) = g%vﬁ’

dgt (43)
d‘zﬁ =Z0wyps, 0a500) =063,

reads
Ow 5(t) = (Z [ex,, w8 exp(Akt) + da,, w5 exp(—Akt)] ’Uk>
k=1
+ P(T+l):(m2+l)0W,ﬁ(O)7

Oa”g (t) = (Z [Ckk,a,ﬁ exp()\kt) + d)\k,a,ﬂ exp(—)\kt)] ’U,k>

k=1

(44)

+ Plrg1):(wy Hy)0a,5(0).
Remark 4. It is noteworthy that Ow g shall be understood as two components, one is the projection
of Ow g into span {vy };_,,

PrrOw 5(t) = <Z [exe, w8 exp(Axt) 4 dix, W exp(—Axt)] 'Uk> ;
k=1

which evolves with respect to time t, and the other is the projection of Ow g into (span {vg };_,)

m2+1
span {vk}k:7'+1’
Pr41):m2+1)0w (1) = Pri1):(m2+1)0w,5(0),
which remains frozen as t evolves.

C.3 DIFFERENCE BETWEEN REAL AND LINEAR DYNAMICS

For any 8 € [M], the real dynamics (26) can be written into

Wi, H
de’q’ = Z e; (21: Xl:au v,B" ol (5:”2]1; 5( )) : mu+p,v+q(i)>
u=1v=1
1 Wi Hi
o Zyi ) <Z Zau,v,ﬁ 'wu-&-p,v-&-q(i))
i—=1 u=1v=1
le Hy
+ Z Z QAyv,B ° Zutp,o+qs
u=1v=1
db 1 Wi Hy ]
TP (ZZ“B o (s >)>
1 Wi Hy
TR (ZE“B)
Wi Hi
+ Z Zau,v,ﬁ T2,
u=1v=1

(1]

dauvﬁ——*zel ( uvﬁ > Zyz [1]ﬁ,)
m—1m—1
(Z Zzu+pv+q Pqﬁ>+bﬁ‘z-

p=0 ¢=0

24
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Hence the difference between the real and linear dynamics 1is characterized by
{fp.0.8: f8+ Gu,v,8}p.gel0:m—1],ue(Wn] ve[Hy] se[M]> Where

1 n Wi H;y
foap = e (Z > a0 (eall, 5() -wu+p,v+q<z‘>>
i=1

u=1v=1
1 n Wy, Hy
+5Zyz ( Zauvﬁ mu+pv+q( ))7
i=1 u=1v=1
1 n W1 H1
I ::EZel ( Zauvﬁ o™ (sa:h]vﬁ(i))>
=1 u=1v=1
1 n Wl H1
3 (X3,
n 1=1 u=1v=1
1 o(emle0) mo
Guwp = 1 € - t o 1 Yi Ty 5(0),
= 1=

and for each 5 € [M], we set

fs:=(foo,8 fo1,8 s fom-18; 11,08 fim-18; " Sm—1,m—1,8;18)",
gp ‘= (91,1,5791,2,5, 5 91,H,8392,1,85 0 s 92, Hy By gwl,Hl,B)T7

and we observe further that for any 8 € [M], the real dynamics read

9W76>
‘(
Oap ) _ (fﬁ) T A (QW"*) . (45)

de gs a,pB

Definition 3 (Neuron energy). In real dynamics, we define the energy at time t for each 8 € [M],

N

Es(t) = (10w 53 + 16a,51)13) " (46)
and we denote
Epax(t) := Brrel[aju\zc] Es(t). 47)

For simplicity, we hereafter drop the (t)s for all E5(t) and Ey,ax(t). Then the estimates on
{fs,98} 5L, read

Proposition 2. For any £ > 0 and any time t > 0,

1 £5lly < (MeERux + €Emax) |0a.pll

(48)
lgslly, < (Me’E},, + cEmax) 0w s

5

Moreover, we obtain that
1
2\ 2 2 2 2 2
(1Fsll, + llgsll3) " < (Me®E2 e + Bma) Es < (Me® By + €Pima) Bunas:
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Proof. We obtain that for each i € [n],

M Wi Hi Wi Hi
lei + il = ZZZ“‘%%B'“( uvﬁ ) Z Zzauvvﬁ'”( Et]vﬁ('))|
B=1lu=1v=1 B=1 |lu=1v=1

< ¢g? (7] a
- ZIH @ e e [

’U.G[Wl],’UG[Hl

M
<&®Y |Bapsl,  max
B=1

m—1m—1
(Z Z mu+P,v+q Wp,qﬁ) + bﬁ

p=0 ¢q=0

M
<% |0asll, 10w sl
f=1

M
2C\/m\/ m? +1 Z [0a.sll, 116w 5l ;
B=1

for simplicity we omit the constant /W1 H1v/m? + 1 since it is a universal constant. Hence, we

obtain further that
1 n 1 1 )
Il < ev/m? 41| 23 e+ 1) (ZZGM = (swi]u,w))‘

i=1 u=1v=1
1 n W1 Hl 1
+C\/m2+1 nzyi'(zzaumﬁ ( < L]vﬁ())1)>|
i=1 u=1v=1
C\/TrL2 + ].\/WlHl - M
< - Do 10w sl 18asll; | 16asl,

i=1 B=1
+Vm? + 1V WiH, (|00, €0w s,
(M€2Er2nax + EEmaX) Haa,ﬁHg ’
where we also omit the constant /W1 Hivm?2 + 1, and similarly
1 .
1 o (sall, ()
lgall, < cVWHT _ e 23 (e )

ue[Wl],Ue[Hl] n =1

+ e/ W1 1u€[WnlaaUer1]nzlyz — -z, 5(i)

n M

cvm? + 1vWi H; 219 0 0

< - SIS l8wslly 18aslly | 160w sl
i=1 B=1

+AVm2 1y Wilie 0w )2

S (M€2E12nax + <C:Ejmax) ||9W»B||2 :

C.4 SEVERAL ESTIMATE ON THE INITIAL PARAMETERS

We begin this part by an estimate on standard Gaussian vectors

Lemma 1 (Bounds on initial parameters). Given any § € (0, 1), we have with probability at least
1 — 6 over the choice of 6°,

2
mas {16% 5. 16651 }<\/210g2M(m t 1+ Widh) (49)

BEM 1)
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Proof. If X ~ N(0, 1), then for any n > 0,

1
P(X| > n) < 2exp (—21)2) .
Since given any 8 € [M], foreachu € [W1],v € [H1],p€[0:m —1]andg € [0: m — 1],
W, 5 ~N(0,1), b}~N(0,1), a,z~N©01),
and they are all independent with each other. As we set

2
n= \/QIOg 2M{(m +; +W1Hl),

we obtain that

P (s {108 ol o1} > )

=F (BE[M],uE[Wﬂ,UE[HI?]?;)XE[O:m1]7q€[02m1] {| P9, B| |b | | @y 1)’[3‘} > 77)

1 1
SQNUm?+1ﬁMP<QW)FWWWGHﬁmp<2f>

1
— 2M(m2 + 1+ Wi H,)exp (—2n2> — 5

O

Next we would like to introduce the sub-exponential norm Vershynin|(2010) of a random variable

and Bernstein’s Inequality.

Definition 4 (Sub-exponential norm). The sub-exponential norm of a random variable X is defined

as

X
1 X]| 4, := inf {s >0 Ex {exp (|s>} < 2} )

(50)

In particular, we denote X := x%(d) as a chi-square distribution with d degrees of freedom|Laurent

and Massart| (2000), and its sub-exponential norm by
Cya =Xy, -

Remark 5. As the probability density function of X = x?(d) reads

we note that

E X[ /+°° 1 11 d 1
~ ex T z2exp|l—|=z—-)z)dz= ,
X~x2(1) €XP S o 251“(%) P 9 5 2

Then we obtain that

Moreover, we notice that

X Y
EXNXQ(d) exp <S|) (EY~X2(1) exp <|5|>) 5

as we set

I
[\]
=
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then

B 2

S 1-27d
hence 5

1_2_2 S Cd),d < 3a
and
Cyp,a>Cy,

ford > 1.

Theorem 2 (Bernstein’s inequality). Let {Xy }7, be i.i.d. sub-exponential random variables satisfy-

ing
EX1 = u,

U U
>n] <2exp [ —Commin ) )
X3l " Xl

In order to study the phenomenon of condensation, we need to concatenate the vectors {Ow 5};3”:1
into

then for any n > 0, we have
1 m
Pl|— X —
(EPRs

for some absolute constant Cy.

Ow = vec ({Bw,ﬁ}g/jzl) )

and we obtain that
Proposition 3 (Upper and lower bounds of initial parameters). Given any 6 € (0, 1), if

2
M =Q|log—
(1062).

then with probability at least 1 — § over the choice of 6°,

M(m?+1)

3M(m?+1)
5 _—

< [0 [, < /2

61y

Proof. Since given any 3 € [M], foreachp € [0:m — 1] and g € [0 : m — 1],

W20, (65)° ~x*()

are sub-exponential random variables with

2 2
E(Wz?,q,ﬁ) =1, E(b%) =1

Since Cy,1 > § > 2, then for any 0 < n < 2, it is obvious that

2 2

. n n n
min s = .
(Ci,l CW) Cin

Hence, by application of Theorem 2]

1 M m—1m—1 ) ,
MnE 1) 2 KZ > (Ws) ) + (bs) ] —1|>9

B=1 p=0 ¢q=0

M(m? 4+ 1)n?
< 2exp [~ GoMm T Un7 )
Ciq

as we set

02

2 2
gexp [ CM"+ D"\ _
P,1

28
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and consequently,

_ Coa 2
n= log el
CoM(m? +1) 1)

then with probability at least 1 — & over the choice of 8°,

2 cy 2
] (R e

2 cy 2
] (R e

and by choosing
4C? 2
M>——®l 1962
= Co(m2+1) °%
we obtain that
M(m?2+1)
2

3M(m? +1)

< gy, < /21

C.5 LOWER BOUND ON EFFECTIVE TIME

We denote a useful quantity

¢(t) = sup Emax(s)v
0<s<t

then directly from Lemma we have with probability at least 1 — & over the choice of 6°,

2
|93,ﬁHm}§\/210g 2M (m? + 1+ W1 Hy)

mas {103

BE[M] ) ’
hence
5(0) < \/2(m2 1 WLH) log 2M (m? +51 + WiHy)
We define
T.g := inf {t >0 Me?¢*(t) > M7, 7= 741} ,
then for M large enough,

2M(m? + 1+ W1 Hy) : < M-3
5 <
hence T, > 0. We observe further that as the real dynamics read
d GWﬁ
00'7[3 fg A Ow 8
dt - (gﬁ) + (Ba,ﬁ) ’

then by taking the 2-norm on both sides
Ep(t) < exp (t]|All,5) Ep(0)

Me?¢3(0) < Me? (2(m2 + 1+ Wy H,y)log

+ /0 exp ((t — s) [ All5_,2) (M52E12nax(8) + EEmaX(s)) Eg(s)ds,

by taking supreme over the index ( and time 0 < ¢ < T, on both sides, for M large enough,

t
B(t) < ¢(0) exp(Ait) 4+ 20~ min{h7} / exp(Ai(t — s))ds
0
min{1,7} exp()‘lt) —1
A1

< ¢(0) exp(Agt) + 20 L7 LPA(M) :
1

< 6(0) exp(Ait) +2M

29
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then based on Lemma with probability 1 — & over the choice of 8°, for sufficiently large M,
2 .
6(1) < H(0) exp(Mut) + 1M~ exp(Ayt)
1

< 2¢(0) exp(Ait) (57)
2M(m?2 + 1+ Wi Hy)
)

< 2\/2(m2 + 14+ Wi H;)log exp(A1t),

we set tg as the time satisfying

2M(m2 +1+W H 1 4=
2\/2(m2—|—1+W1H1)10g (m +5+ ! 1)exp()\lt): 5M T (58)
then we obtain that, for any ng > % > 0,
1 1 -1
Tug >to> — |log (=) + [ 152 — 0o ) log(M)] . (59)
A 4 4

Recall that
Ow = vec ({6w.s}), ).,

and we denote further that

Ow v, = P10w = ((Ow 1,v1), (Ow 2,v1), - (Ow ar,v1))T,
where v; is the eigenvector of the largest eigenvalue of ZT Z, or the first column vector of V' in (36).

Theorem 3. Given any ¢ € (0,1), under Assumption Assumption@ Assumption[7]and Assump-
tionES’l if ¥ > 1, then with probability at least 1 — § over the choice of 8°, we have

M—+00 4¢[0,Tu] 0w (0) [,

and

Ow o, (t
lim sup 7H Lig i )”2 =1. (61)

M—+o0 tE[O,Teff] ||0W(t)||2

Proof. Since for each § € [M], the real dynamics read

d <9Wﬁ

9%3> _ Ow s fs 0w 5(0)\ _ (0w
a (9a7ﬂ> " (95) ’ (“’aﬁ(O)) a (9V3V,§> ’

(99‘/:56) = exp (tA) (%%;) + /Ot exp ((t — 5)A) (gg) ds.

. 0 . . . .
As we notice that for any § € [M], ( BW;; ) can be written into two parts, the first one is the linear
a,

and

part, the second one is the residual part. For simplicity of proof, we need to introduce some further
notations, i.e., as we denote

0 69
(0‘;‘/,?) :=exp (tA) (0‘}?‘1’:;) ,

éw,ﬁ L ‘ _ fﬁ
(gaﬁ) .—/0 exp ((t — s)A) (gﬁ) ds,

() ) )
0a,5 ba.5 0ap)’

30
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directly from Proposition[I] we obtain that

éwﬁ(t) = (Z [C)\hwwg exp()\kt) + d)xk.,W,ﬁ exp(f)\kt)] ’Uk>
k=1

+ Piri1):(m2+1) 0 55

” (62)
05(t) = (Z [er.a.8 €XP(Ait) + dx, a8 €XP(—Agt)] uk>
k=1
+ Plri1)(wi ) 0,5
We are hereby to prove (60). Firstly, we observe that
Ow (0) = 0w (0),
hence
6w (t) — w (0)]];
=||6w (1) — 6w (0)]
=[|Pr.r (Bw (t) = Ow (0)) + Prt1)i(m2+1) (Ow (t) — éw )||§
= [Prer (B (&) = Bw (O) [, + [Pers1yeime 1) (Bwr (1) = Bw (0)
= Hm (Ow (0) — 0w (0)) + Pr,bw (6 + HPM — e
by choosing 179 = 251, then for time 0 < t < #; := Al (5 ) log(M) — log(2)] and any 8 € [M],

H(“’a”i’f)

t
_ _ S
2‘/Oexpt s) <g)

< (Me2@3(t) +e¢?(t))

\

exp (M (t—s))ds

t
< on~min{73} / exp(M(t —s))ds
0

a1 exp(A1t)
1
We conclude that for ¢ < £, the following holds

()
Oas /1,

1

< 2M~ <M T exp(Mip) = M~ F .

low )|, < var < VMM,
2

thus the ratio reads

(|ow<t) - 0w<0>||2)2
18w (0)][],

_ HPIZT (6w (t) — Ow (0)) + 7)1:rgw(t)Hz + HP(T‘+1):(m2+1)§W(t)H

2

2
18w (0]
_ _ ~ 2 _~ 2
|Prr (0w () = 0w () + Prcbw (0| ||Pirs1yonz 408w ()]
18w (0)]]5 16w (0)]]3
I 11

For part II, we obtain that

T )
10w (0) [, = 1ow (0)l,’
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then directly from Proposition with probability at least 1 — § over the choice of 8° and large enough
M, forany 0 <t <{y= /\% [(77_1) log(M) — log(2)], the following holds:

“P(T+1)i(m2+1)§w(t)" ng(t)H 5 .
w0, = 1wl <MM =,

by taking the limit, we obtain that

HP(T+1);(m2+1)9~W(t) H2

lim  sup
M =00 4e(0,2] 16w (0)]],

As for part I, we notice that

le;r (6w (t) — Ow (0)) + Pl;TgW(t)H2

[ow )l

[Prr (Ow (8) = O (0) [, = ||Prrw (1),
- 0w (0)]|,

[P (O ()~ Ow)], [P0,
- 10w O)], 1w )],

I v

by similar reasoning as shown in part II, for any time ¢ € [0, £o], part IV tends to zero as M — oo,
ie.,

|Pi-wo], |6w o],
lim sup ——= < lim sup ——F+= =0.
M= cio,i] 18w (0)]l, M—20 4c(0,5,] [[0w (0)]]
For part III, we observe that since
- — 2
[Prr (Bw () — Bw (0)) ]
M r
=>"> lenew s (exp(Aet) = 1) + da, w s (exp(—Aet) — 1),
B=1k=1
where
1
s = 5 (O ,08) + (00 500)
1
d>\k7W,/8 = 5 (<0(\?}V,vak> - <92,”6’7uk>> )

we observe that given uy and vy, Yy g = <02,5,uk> ~ N(0,1) and Xkp ¢ <9‘0;V”@,Uk> ~

N(0,1). Moreover, {ng}gil ~ N(0,1) and {Y]C’B}iy:l ~ N(0,1) are i.i.d. Gaussian variables,
and they are independent with each other. We denote further that r4(t) := exp (3At), and by
application of Theorem with probability 1 — g over the choice of 8°, for M large enough,
(m?+1) 3(m? +1)
2 2 ’
and with probability 1 — g over the choice of 8°, for M large enough,

1 2
< Liow <

11 , _3
PRSP
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and with probability 1 — g over the choice of 8°, for M large enough,
1 M

71 MZXkﬂYkﬁ R
B=1

e

then we obtain that, with probability at least 1 — & over the choice of 6°

% [Prr (B (t) — 0w (0)) ||2

<

M
1
= D> lexnew.s (exp(Aet) — 1) + da, ws (exp(—Axt) — 1))

M
:% Z [Xig (r7(t) + 71 2(t) — 2) + Yeg (ri(t) — 7, 2’(t))f

B=1k=1
M r

= SO () g (0)” [Kes (re0) i (0) + Vi (ra0) + 7t (1))
B=1k=1

2% (r(t) = (0)7 (P (t) + 3r2(8)) zé (re®) — i ()"

k
Hence, with probability at least 1 — § over the choice of ° and large enough M, for any 0 < ¢ <
fo = 5 [(357) log(M) —log(2)],

1
= [Prer (Bw (1) — 0w (0)) 5
IR . . I
>3 (rel) = (00) " = 5 3 (ralfo) = 1)’
k=1 k=1
1 — 40 (v—1 1 LIRS
>_ [N — [
Rg2.e© (2/\ ( 5 >IO(M)> 82 bYt
k=1 k=1
then for part III, we obtain that with probablhty at least 1 — & over the choice of 8° and large enough
M, forany 0 <t <o = 3~ [(” 1) log(M) — log(2)],
2
[P1r (Bw (f0) — Bw (), 57 [|Pror (Bw w ()],
16w (0 )||2 ]%H ( )||2
2 = 2
= 3(m2+1) M HP” (QW( ) = OW(O))HQ
2 1 Ap y—1
> 1 gyt
~ 3(m? 1 1) 8 & M,

by taking the limit, we obtain that
[Prr (Bw (o) — 6w (0)) I,

lim sup = 00.
M—00 4(0,7,] 10w (0)]],
To sum up, since ty < T.g, we have that
Ow (t) — Ow (0
lim sup 16w (1) w (O[5 = 400+ 0 = +o0, (63)

M=+00 4 [0, Teg] 6w (0)]],
which finishes the proof of (60).
In order to prove (61)), firstly we have
Jow o, Ol _ |
16w ()]l
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moreover, we observe that

(‘9W,v1(f)|2)2 _ 10w, ()15 _ 10w v, (£)115

_ ~ 2
Ow s (8) + B, (1)

[P (0w + 8w )]+ [P (8w )+ bw o)

where

éW,vl (t) = P19W (t),

§W,v1 (t) = 7?10W (t)

Then with probability at least 1 — § over the choice of 8° and large enough M, forany 0 < t < #q =

%1 [(251) log(M) — log(2)]. the following holds:

16w 0 (0) + 8w, (8] = || 0w 01 (1) = B0, (0) + Buw 0, (8| = B, O]
> [ 0w 00 (1) = O 0, 0)], = 6w, (1), = |00, 0

> [[6w 0, (1) = Ow ., O)]], |8 (1), = (6w, (O]

> \/g(h(t) _rfl(t))g ~VMM~F - ¥7

hence part V is the term of dominance, and by similar reasoning

[Prr (Bw () + 8w ()] = [Pr (8w (t) — 8w (0)], ~||Bw 1)]| — (P18 )]
k=1

hence part VI is the term of dominance, and finally

HP(TH) (m2+1) (9W )+ O (¢ )H

<[ Pes1yimz+1) (Ow () — Ow (0)) ||, + Héw(t)HzJr 1P(41):(m2+1) 0w (0)]

~ — _ =1 3M m2 + 1
= H(’W(t)‘L + [Pt ma1y 0w (0)[|, < VMM ™5 + (f)
2
which is at most of order v M. Then for M large enough, the majority part of the ratio %
2

is

16w v, (1) = 8w, (0) 5
HPl:r (0W( ) — BW(O))’

29
2
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where
1 -
L w00 O, O
| M
= > lexwos (exp(Ait) — 1) + dx, w s (exp(—Ait) — 1)
p=1
M
_exp(2\;t)
p ! Z e, wop (1 —exp(—=Ait)) + dx, . w s (exp(—2A1t) — exp(—)\lt))]2 ,
and

1 ||731:T (Ow (t) — 6w (0)) H;

M
Z C)\k w5 (@xp(\et) — 1) + dy, w g (exp(=Axt) — 1))

r

( [c,\k, w.g (exp((A — Ap)t) — exp(—A1t))

HMS

s w s (exp(— (A1) — exp(-hit))]

By taking ¢ = to, we observe that as the spectral gap AX > 0, then for any k € [2 : 7],

A

exp((A1 — A\p)to) < exp(—AXtg) S M~ (=5 (64)

)

=

which tends to zero as M — oo, hence

L Héw,vl(to) Ow .o, ( Hi
bl (o=

exp(2)\1t0) Z/[g . )\ 5
LW,

= lim exp(2X\1tp) - 1’
M*)OOAZﬁ 1C>\1W,8+0+0+ -4+0
r—1 zeros
and in combination with ¢y < T, we finish the proof of (61). O
D Two-LAYER CNNS WITH MULTI CHANNELS
In the case of two-layer CNNs with multi channels, as L = 2, then we still set W, ; o 5 := zElc]z 0,

bs = bl and Tutpvtqall) = :cg?lp’wq’a(i) for simplicity, then the GD dynamics reads

AW, UANL
p,q, B _ Z e; - <Z Z Qv p ey (;cﬁ]vﬁ(i)) . mu+p,v+q,a(i)> )
u=1lv=1
db & &
1 .
1S (35 o ().
u=1v=1
day 5 1 n
i n > o (mwﬁ(Z)) '

i=1

35
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since e; ~ —y;, and by means of perturbation expansion with respect to € and keep the order 1 term,
we obtain that

dw, 1 — el
)L V9 SRR

u=1v=1
n W1 H1
T I 9 S
i=1 u=1v=1 (65)

day,v,g —~ l i: ) .xm (i)
dt n = Yo' Fuv,p

n m—1m—1
% Zlyz ' [(Z Z Tutp,v+(t) Wp,q,aﬁ) +bs

p=0 ¢=0

Given any u € [W1],v € [Hy] and a € [Cp), then for all p,q € [0 : m — 1], we set

Zutputga = > UiTutpotaali),

n (66)
1
=13
=1
then the above dynamics can be further simplified into: For any 5 € [M],
W, H,
dwW,
pqaﬁ Zzauvﬁ Zu+p,vtq,os
u=1v=1
W, H,
db
ﬂ Z Z Quw,p % (67)
u=1v=1
da m—1m—1
a=1 p=0 ¢=0
We observe that the training dynamics still takes the form
dfgs
—= = Afjg, 68
dt b (68)
except that in this case,

0 = (Wo,o,1,6,Wo,1,1,ﬁw~ Wom-1,18Wio16 - s Wim—1185 W 1,m—1,1,8;
Wo.0,2.6Wo1,28 s Wom—1258 Wio028 ", Wim-128 """ Wi—1,m—-1,2,8;
Wo.0.00.8: Wo1,00.8, s Wo,m—1,C0.8; Wim—1,00.8;" """ Win—1,m-1,¢0.8; bs;

T
ai,1,8,@1,2,8, ", A1,H,,B,A2,1,8," " s A2,Hy,B5 """ a’WhHl”@) )

or in more simplified notations,

05 = (Wo,o:(m—n,l,ﬂsW1,0:<m—1>,1,/3% """ Win—1,0:(m-1),1,65
Wo,0:m-1),2,8 W1,0:(m—1),2,8; """ """ Wi 1,0:(m—1),2,8;
Wo0.,0:(m—1),Co,85 W1,0:(m—1),C0,85 " """ * W in—1,0:(m—1),Co.8; b8;
T
Qi1.1:H,,8;Q2,1:H, 85 """ " aw, 1 H1,6> )
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and
A = O(Com/2+1)x(com2+1) Al (69)
Z OW1H1><W1H1 ’

where Z € RWiH1x(m*+1) and Z depends sorely on the input samples {a;}"_, and {y;}"_,, whose
entries read

Z1,1:m,15 e Zm,1:m,1; 21,1:m,23 e Zm,1:m,25 Zm,1:m,Co>
21,2:(m+1),15 "7 RFm2:(m41),15 R1,2:(m+1),25 T RFm2:(m41),25 T Zm,2:(m+1),Co»
Z1,Hy:Ho,15 " Zm,H:Ho,15 Z1,H;:Hy,2 e Zm,H:Ho,27 " Zm,H;:Hy,Co s
22,1:m,15 te Zm+1,1:m,15 22.1:m,2; ce Zm+1,1:m,25 Zm+1,1:m,Co >
z2,H1:H0,1; e Zm+1,H1:H0,1; z2,H11H0,2 e szrl,Hl:H(],Q; """" szrl,HlZHo,C[);
|l @W1,Hi:Hg,15 " ZWo,H,:Hp,15 ZW,,H :Hp,2 " ZWo,Hy :Hy,27 " ZWy,H,:Ho,Co s
(70)

We remark that all results in the case of single channel CNNs can be reproduced for multi channel
CNNS, and we state a theorem without proof

Theorem 4. Given any ¢ € (0,1), under Assumption@ Assumption@ Assumption@and Assump-
tion@ if ¥ > 1, then with probability at least 1 — & over the choice of 6°, we have

16w () — Ow (0)l,

lim  sup = 400, (71)

M—+o0 tG[O,Teff] ||0W (0) ||2

and 0 ’
lim  sup 6w .o, ®)lly _ (72)

M—+o00 tE[O,Teff] ||0W(t)||2

To sum up, the weight vectors condense toward the unit eigenvector equipped with the largest singular
value.
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