
Under review as a conference paper at ICLR 2023

DEEP LEARNING MEETS NONPARAMETRIC REGRES-
SION: ARE WEIGHT-DECAYED DNNS LOCALLY
ADAPTIVE?

Anonymous authors
Paper under double-blind review

ABSTRACT

We study the theory of neural network (NN) from the lens of classical nonpara-
metric regression problems with a focus on NN’s ability to adaptively estimate
functions with heterogeneous smoothness — a property of functions in Besov or
Bounded Variation (BV) classes. Existing work on this problem requires tuning
the NN architecture based on the function spaces and sample sizes. We consider a
“Parallel NN” variant of deep ReLU networks and show that the standard weight
decay is equivalent to promoting the ℓp-sparsity (0 < p < 1) of the coefficient
vector of an end-to-end learned function bases, i.e., a dictionary. Using this equiv-
alence, we further establish that by tuning only the weight decay, such parallel
NN achieves an estimation error arbitrarily close to the minimax rates for both the
Besov and BV classes. Notably, it gets exponentially closer to minimax optimal
as the NN gets deeper. Our research sheds new lights on why depth matters and
how NNs are more powerful than kernel methods.

1 INTRODUCTION

Why do deep neural networks (DNNs) work better? They are universal function approximators (Cy-
benko, 1989), but so are splines and kernels. They learn data-driven representations, but so are the
shallower and linear counterparts such as matrix factorization. The theoretical understanding on
why DNNs are superior to these classical alternatives is surprisingly limited.

In this paper, we study DNNs in nonparametric regression problems — a classical branch of sta-
tistical theory and methods with more than half a century of associated literature (Nadaraya, 1964;
De Boor et al., 1978; Wahba, 1990; Donoho et al., 1998; Mallat, 1999; Scholkopf & Smola, 2001;
Rasmussen & Williams, 2006). Nonparametric regression addresses the following fundamental
problem:

• Let yi = f(xi) + Noise for i = 1, ..., n. How can we estimate a function f using data points
(x1, y1), ..., (xn, yn) in conjunction with the knowledge that f belongs to a function class F?

Function class F typically imposes only weak regularity assumptions such as smoothness, which
makes nonparametric regression widely applicable to real-life applications under weak assumptions.

Local adaptivity. We say a nonparametric regression technique is locally adaptive if it can cater to
local differences in smoothness, hence allowing more accurate estimation of functions with varying
smoothness and abrupt changes. A subset of nonparametric regression techniques were shown to
have the property of local adaptivity (Mammen & van de Geer, 1997) in both theory and practice.
These include wavelet smoothing (Donoho et al., 1998), locally adaptive regression splines (Mam-
men & van de Geer, 1997), trend filtering (Tibshirani, 2014; Wang et al., 2014) and adaptive local
polynomials (Baby & Wang, 2019; 2020).

In light of such a distinction, it is natural to consider the following question: Are NNs locally adap-
tive, i.e., optimal in learning functions with heterogeneous smoothness?

This is a timely question to ask, partly because the bulk of recent theory of NN leverages its asymp-
totic Reproducing Kernel Hilbert Space (RKHS) in the overparameterized regime (Jacot et al., 2018;
Belkin et al., 2018; Arora et al., 2019). RKHS-based approaches, e.g., kernel ridge regression with

1

Under review as a conference paper at ICLR 2023

any fixed kernels are suboptimal in estimating functions with heterogeneous smoothness (Donoho
et al., 1990). Therefore, existing deep learning theory based on RKHS does not satisfactorily explain
the advantages of neural networks over kernel methods.

E[y|x] = f(x)
<latexit sha1_base64="ShSFgwb01NVSyV3pK8fFzhq8oNc=">AAACAXicbZDLSsNAFIZPvNZ6i7oR3AwWoW5KIoJuhKIILivYC6ShTKaTdujkwsxEGmLd+CpuXCji1rdw59s4abvQ1h8GPv5zDnPO78WcSWVZ38bC4tLyymphrbi+sbm1be7sNmSUCELrJOKRaHlYUs5CWldMcdqKBcWBx2nTG1zl9eY9FZJF4Z1KY+oGuBcynxGstNUx99sBVn3Py65HTooe0NBFF8gvD487ZsmqWGOhebCnUIKpah3zq92NSBLQUBGOpXRsK1ZuhoVihNNRsZ1IGmMywD3qaAxxQKWbjS8YoSPtdJEfCf1Chcbu74kMB1Kmgac7833lbC03/6s5ifLP3YyFcaJoSCYf+QlHKkJ5HKjLBCWKpxowEUzvikgfC0yUDq2oQ7BnT56HxknF1nx7WqpeTuMowAEcQhlsOIMq3EAN6kDgEZ7hFd6MJ+PFeDc+Jq0LxnRmD/7I+PwBp5yVsw==</latexit><latexit sha1_base64="ShSFgwb01NVSyV3pK8fFzhq8oNc=">AAACAXicbZDLSsNAFIZPvNZ6i7oR3AwWoW5KIoJuhKIILivYC6ShTKaTdujkwsxEGmLd+CpuXCji1rdw59s4abvQ1h8GPv5zDnPO78WcSWVZ38bC4tLyymphrbi+sbm1be7sNmSUCELrJOKRaHlYUs5CWldMcdqKBcWBx2nTG1zl9eY9FZJF4Z1KY+oGuBcynxGstNUx99sBVn3Py65HTooe0NBFF8gvD487ZsmqWGOhebCnUIKpah3zq92NSBLQUBGOpXRsK1ZuhoVihNNRsZ1IGmMywD3qaAxxQKWbjS8YoSPtdJEfCf1Chcbu74kMB1Kmgac7833lbC03/6s5ifLP3YyFcaJoSCYf+QlHKkJ5HKjLBCWKpxowEUzvikgfC0yUDq2oQ7BnT56HxknF1nx7WqpeTuMowAEcQhlsOIMq3EAN6kDgEZ7hFd6MJ+PFeDc+Jq0LxnRmD/7I+PwBp5yVsw==</latexit><latexit sha1_base64="ShSFgwb01NVSyV3pK8fFzhq8oNc=">AAACAXicbZDLSsNAFIZPvNZ6i7oR3AwWoW5KIoJuhKIILivYC6ShTKaTdujkwsxEGmLd+CpuXCji1rdw59s4abvQ1h8GPv5zDnPO78WcSWVZ38bC4tLyymphrbi+sbm1be7sNmSUCELrJOKRaHlYUs5CWldMcdqKBcWBx2nTG1zl9eY9FZJF4Z1KY+oGuBcynxGstNUx99sBVn3Py65HTooe0NBFF8gvD487ZsmqWGOhebCnUIKpah3zq92NSBLQUBGOpXRsK1ZuhoVihNNRsZ1IGmMywD3qaAxxQKWbjS8YoSPtdJEfCf1Chcbu74kMB1Kmgac7833lbC03/6s5ifLP3YyFcaJoSCYf+QlHKkJ5HKjLBCWKpxowEUzvikgfC0yUDq2oQ7BnT56HxknF1nx7WqpeTuMowAEcQhlsOIMq3EAN6kDgEZ7hFd6MJ+PFeDc+Jq0LxnRmD/7I+PwBp5yVsw==</latexit><latexit sha1_base64="ShSFgwb01NVSyV3pK8fFzhq8oNc=">AAACAXicbZDLSsNAFIZPvNZ6i7oR3AwWoW5KIoJuhKIILivYC6ShTKaTdujkwsxEGmLd+CpuXCji1rdw59s4abvQ1h8GPv5zDnPO78WcSWVZ38bC4tLyymphrbi+sbm1be7sNmSUCELrJOKRaHlYUs5CWldMcdqKBcWBx2nTG1zl9eY9FZJF4Z1KY+oGuBcynxGstNUx99sBVn3Py65HTooe0NBFF8gvD487ZsmqWGOhebCnUIKpah3zq92NSBLQUBGOpXRsK1ZuhoVihNNRsZ1IGmMywD3qaAxxQKWbjS8YoSPtdJEfCf1Chcbu74kMB1Kmgac7833lbC03/6s5ifLP3YyFcaJoSCYf+QlHKkJ5HKjLBCWKpxowEUzvikgfC0yUDq2oQ7BnT56HxknF1nx7WqpeTuMowAEcQhlsOIMq3EAN6kDgEZ7hFd6MJ+PFeDc+Jq0LxnRmD/7I+PwBp5yVsw==</latexit>

Free knots Splines with adaptive orders Doppler-like functions

E[y|x] = f(x)
<latexit sha1_base64="ShSFgwb01NVSyV3pK8fFzhq8oNc=">AAACAXicbZDLSsNAFIZPvNZ6i7oR3AwWoW5KIoJuhKIILivYC6ShTKaTdujkwsxEGmLd+CpuXCji1rdw59s4abvQ1h8GPv5zDnPO78WcSWVZ38bC4tLyymphrbi+sbm1be7sNmSUCELrJOKRaHlYUs5CWldMcdqKBcWBx2nTG1zl9eY9FZJF4Z1KY+oGuBcynxGstNUx99sBVn3Py65HTooe0NBFF8gvD487ZsmqWGOhebCnUIKpah3zq92NSBLQUBGOpXRsK1ZuhoVihNNRsZ1IGmMywD3qaAxxQKWbjS8YoSPtdJEfCf1Chcbu74kMB1Kmgac7833lbC03/6s5ifLP3YyFcaJoSCYf+QlHKkJ5HKjLBCWKpxowEUzvikgfC0yUDq2oQ7BnT56HxknF1nx7WqpeTuMowAEcQhlsOIMq3EAN6kDgEZ7hFd6MJ+PFeDc+Jq0LxnRmD/7I+PwBp5yVsw==</latexit><latexit sha1_base64="ShSFgwb01NVSyV3pK8fFzhq8oNc=">AAACAXicbZDLSsNAFIZPvNZ6i7oR3AwWoW5KIoJuhKIILivYC6ShTKaTdujkwsxEGmLd+CpuXCji1rdw59s4abvQ1h8GPv5zDnPO78WcSWVZ38bC4tLyymphrbi+sbm1be7sNmSUCELrJOKRaHlYUs5CWldMcdqKBcWBx2nTG1zl9eY9FZJF4Z1KY+oGuBcynxGstNUx99sBVn3Py65HTooe0NBFF8gvD487ZsmqWGOhebCnUIKpah3zq92NSBLQUBGOpXRsK1ZuhoVihNNRsZ1IGmMywD3qaAxxQKWbjS8YoSPtdJEfCf1Chcbu74kMB1Kmgac7833lbC03/6s5ifLP3YyFcaJoSCYf+QlHKkJ5HKjLBCWKpxowEUzvikgfC0yUDq2oQ7BnT56HxknF1nx7WqpeTuMowAEcQhlsOIMq3EAN6kDgEZ7hFd6MJ+PFeDc+Jq0LxnRmD/7I+PwBp5yVsw==</latexit><latexit sha1_base64="ShSFgwb01NVSyV3pK8fFzhq8oNc=">AAACAXicbZDLSsNAFIZPvNZ6i7oR3AwWoW5KIoJuhKIILivYC6ShTKaTdujkwsxEGmLd+CpuXCji1rdw59s4abvQ1h8GPv5zDnPO78WcSWVZ38bC4tLyymphrbi+sbm1be7sNmSUCELrJOKRaHlYUs5CWldMcdqKBcWBx2nTG1zl9eY9FZJF4Z1KY+oGuBcynxGstNUx99sBVn3Py65HTooe0NBFF8gvD487ZsmqWGOhebCnUIKpah3zq92NSBLQUBGOpXRsK1ZuhoVihNNRsZ1IGmMywD3qaAxxQKWbjS8YoSPtdJEfCf1Chcbu74kMB1Kmgac7833lbC03/6s5ifLP3YyFcaJoSCYf+QlHKkJ5HKjLBCWKpxowEUzvikgfC0yUDq2oQ7BnT56HxknF1nx7WqpeTuMowAEcQhlsOIMq3EAN6kDgEZ7hFd6MJ+PFeDc+Jq0LxnRmD/7I+PwBp5yVsw==</latexit><latexit sha1_base64="ShSFgwb01NVSyV3pK8fFzhq8oNc=">AAACAXicbZDLSsNAFIZPvNZ6i7oR3AwWoW5KIoJuhKIILivYC6ShTKaTdujkwsxEGmLd+CpuXCji1rdw59s4abvQ1h8GPv5zDnPO78WcSWVZ38bC4tLyymphrbi+sbm1be7sNmSUCELrJOKRaHlYUs5CWldMcdqKBcWBx2nTG1zl9eY9FZJF4Z1KY+oGuBcynxGstNUx99sBVn3Py65HTooe0NBFF8gvD487ZsmqWGOhebCnUIKpah3zq92NSBLQUBGOpXRsK1ZuhoVihNNRsZ1IGmMywD3qaAxxQKWbjS8YoSPtdJEfCf1Chcbu74kMB1Kmgac7833lbC03/6s5ifLP3YyFcaJoSCYf+QlHKkJ5HKjLBCWKpxowEUzvikgfC0yUDq2oQ7BnT56HxknF1nx7WqpeTuMowAEcQhlsOIMq3EAN6kDgEZ7hFd6MJ+PFeDc+Jq0LxnRmD/7I+PwBp5yVsw==</latexit>

Can Weight Decayed ReLU DNN estimate such functions with
heterogeneous smoothness optimally (using noisy observations)?

Figure 1: Illustration of a function with hetero-
geneous smoothness and the problem of locally
adaptive nonparametric regression.

We build upon the recent work of Suzuki (2018)
and Parhi & Nowak (2021a) who provided en-
couraging first answers to the question above
about the local adaptivity of NNs. Specifically,
Parhi & Nowak (2021a, Theorem 8) showed
that a two-layer truncated power function ac-
tivated neural network with a non-standard reg-
ularization is equivalent to the locally adap-
tive regression splines (LARS) (Mammen &
van de Geer, 1997). This connection implies
that such non-standard NNs achieve the mini-
max rate for the (higher order) bounded varia-
tion (BV) classes. We provide a detailed dis-
cussion about this work in Section B. Suzuki
(2018) showed that multilayer ReLU DNNs can achieve minimax rate for the Besov class, but re-
quires the width, depth and an artificially imposed sparsity-level of the DNN weights to be carefully
calibrated according to parameters of the Besov class, thus is quite different from how DNNs are
typically trained in practice.

In this paper, we aim at addressing the same locally adaptivity question for a more commonly used
neural network with standard weight decayed training.

Parallel neural networks. We restrict our attention on a special network architecture called par-
allel neural network (Haeffele & Vidal, 2017; Ergen & Pilanci, 2021c) which learns an ensemble
of subnetworks — each being a multilayer ReLU DNNs. Parallel NNs have been shown to be
more well-behaved both theoretically (Haeffele & Vidal, 2017; Zhang et al., 2019; Ergen & Pi-
lanci, 2021b;c;d) and empirically (Zagoruyko & Komodakis, 2016; Veit et al., 2016). On the other
hand, many successful NN architectures such as SqueezeNet, ResNext and Inception (see (Ergen &
Pilanci, 2021c) and the references therein) use the idea similar to a parallel NN.

Weight decay. Weight decay is a common method in deep learning to reduce overfitting. Em-
pirically, the regularizer is not necessarily explicit. Many tricks in deep learning, including early
stopping (Yao et al., 2007), quantization (Hubara et al., 2016), and dropout (Wager et al., 2013)
have similar effect as weight decay. In this paper, we make no assumption on the training method
thus there is no (implicit) regularizers apart from weight decay.

Summary of results. Our main contributions are:

1. We prove that the (standard) weight decay in training an L-layer parallel ReLU-activated
neural network is equivalent to a sparse ℓp penalty term (where p = 2/L) on the linear
coefficients of a learned representation.

2. We show that neural networks can adapt to functions of different order of smoothness, and
even functions with different smoothness in different regions in their domain.

3. We show that the estimation error of weight decayed parallel NN decreases polynomially
with the number of samples up to a constant error for estimating functions with heteroge-
neous smoothness in the both BV and Besov classes, and the exponential term in the error
rate is close to the minimax rate. Notably, the method requires tuning only the weight decay
parameter.

4. We find that deeper models achieve closer to the optimal error rate. This result helps explain
why deep neural networks can achieve better performance than shallow ones empirically.

The above results separate parallel NNs with any linear methods such as kernel ridge regression. To
the best of our knowledge, we are the first to demonstrate that standard techniques (“weight decay”
and ReLU activation) suffice for DNNs in achieving the optimal rates for estimating BV and Besov
functions.

2

Under review as a conference paper at ICLR 2023

Table 1: Symbols used in this paper

symbol Meaning
a/a/A scalars / vectors / matrices. [a, b] {x ∈ R : a ≤ x ≤ b}
Bα

p,q Besov space. [n] {x ∈ N : 1 ≤ x ≤ n}.
| · |Bα

p,q
Besov quasi-norm . ∥ · ∥F Frobenius norm.

∥ · ∥Bα
p,q

Besov norm. ∥ · ∥p ℓp-norm.
Mm(·) mth order Cardinal B-spline bases. d Dimension of input.

Mm,k,s(·) mth order Cardinal B-spline basis M # subnetworks in a parallel NN.
function of resolution k at L # layers in a (parallel) NN.
position s. w Width of a subnetwork.

σ(·) ReLU activation function. n # samples.
W

(ℓ)
j , b

(ℓ)
j Weight and bias in the ℓ-th layer in

the j-th subnetwork.
R,Z,N Set of real numbers, integers, and

nonnegative integers.

2 PRELIMINARY

2.1 NOTATION AND PROBLEM SETUP.

We denote regular font letters as scalars, bold lower case letters as vectors and bold upper case letters
as matrices. a ≲ b means a ≤ Cb for some constant C that does not depend on a or b, and a ≂ b
denotes a ≲ b and b ≲ a. See Table 1 for the full list of symbols used.

Let f0 be the target function to be estimated. The training dataset is Dn := {(xi, yi), yi = f0(xi)+
ϵi, i ∈ [n]}, where xi are fixed and ϵi are zero-mean, independent Gaussian noises with variance σ2.
In the following discussion, we assume xi ∈ [0, 1]d, f0(xi) ∈ [−1, 1],∀i.
We will be comparing estimators under the mean square error (MSE), defined as MSE(f̂) :=

EDn

1
n

∑n
i=1(f̂(xi) − f0(xi))

2. The optimal worst-case MSE is described by R(F) :=

minf̂ maxf0∈F MSE(f̂). We say that f̂ is optimal if MSE(f̂) ≲ R(F). The empirical (square er-

ror) loss is defined as L̂(f̂) := 1
n

∑n
i=1(f̂(xi)−yi)

2. The corresponding population loss is L(f̂) :=
E[1n

∑n
i=1(f̂(xi)− y′i)

2|f̂] where y′i are new data points. It is clear that E[L(f̂)] = MSE[f̂] + σ2.

2.2 BESOV SPACES AND BOUND VARIATION SPACE

Besov space, denoted as Bα
p,q , is a flexible function class parameterized by α, p, q whose definition

is deferred to Section C.1. Here α ≥ 0 determines the smoothness of functions, 1 ≤ p ≤ ∞
determines the averaging (quasi-)norm over locations, 1 ≤ q ≤ ∞ determines the averaging (quasi-
)norm over scale which plays a relatively minor role. Smaller p is more forgiving to inhomogeneity
and loosely speaking, when the function domain is bounded, smaller p induces a larger function
space. On the other hand, it is easy to see from definition that Bα

p,q ⊂ Bα
p,q′ , if q < q′. Without loss

of generalizability, in the following discussion we will only focus on Bα
p,∞.

When p = 1, the Besov space allows higher inhomogeneity, and it is more general than the Sobolev
or Hölder space.

Bounded variation (BV) space is a more interpretable class of functions with spatially heteroge-
neous smoothness (Donoho et al., 1998). It is defined through the total variation (TV) of a function.
For (m + 1)th differentiable function f : [0, 1] → R, the mth order total variation is defined as
TV (m)(f) := TV (f (m+1)) =

∫
[0,1]

|f (m+1)(x)|dx, and the corresponding mth order Bounded

Variation class BV (m) := {f : TV (f (m)) < ∞}. The more general definition is given in Sec-
tion C.2. Bounded variation class is tightly connected to Besov classes. Specifically (DeVore &
Lorentz, 1993):

Bm+1
1,1 ⊂ BV (m) ⊂ Bm+1

1,∞ (1)
This allows the results derived for the Besov space to be easily applied to BV space.

Minimax MSE It is well known that minimax rate for Besov and 1D BV classes are O(n− 2α
2α+d)

and O(n−(2m+2)/(2m+3)) respectively . The minimax rate for linear estimators in 1D BV classes is
known to be O(n−(2m+1)/(2m+2)) (Mammen & van de Geer, 1997; Donoho et al., 1998).

3

Under review as a conference paper at ICLR 2023

x
W(1)

W(2)

. . .
W(L−1)

W(L)

W
(2)
1 W

(2)
M

. . .

W
(L−1)
1 W

(L−1)
M

. . .

W
(L)
1 W

(L)
M

y

minfj L(
∑

j fj) + λ
∑L

ℓ=1

∑M
j=1 ∥W

(ℓ)
j ∥2F .

W(ℓ):

W
(ℓ)
1

W
(ℓ)
2

W
(ℓ)
M

0 0

0

0

0

0
(c) Block diagonal weights

(a) Parallel NN with Weight Decay

x
W̄(1)

W̄(2)

. . .
W̄(L−1)

W̄(L)

W̄
(2)
1 W̄

(2)
M

. . .

W̄
(L−1)
1 W̄

(L−1)
M

. . .

W̄
(L)
1 W̄

(L)
M

. . .

. . .a1 aM

y

min{aj ,f̄j} L(
∑

j aj f̄j) s.t.
∑M

j=1 |aj |2/L ≤ P ′.

(b) Sparse Regression with Learned Representation

Figure 2: Parallel neural network and the equivalent sparse regression model we discovered.

3 MAIN RESULTS: PARALLEL RELU DNNS

Consider a parallel neural network containing M multi layer perceptrons (MLP) with ReLU activa-
tion functions called subnetworks. Each subnetwork has width w and depth L. The input is fed to
all the subnetworks, and the output of the parallel NN is the summation of the output of each sub-
network. The architecture of a parallel neural network is shown in Figure 2a. This parallel neural
network is equivalent to a vanilla neural network with block diagonal weights in all but the first and
the last layers (Figure 2(c)). Let W(ℓ)

j and b
(ℓ)
j denote the weight and bias in the ℓ-th layer in the

j-th subnetwork respectively. Training this model with weight decay returns:

argmin
{W(ℓ)

j ,b
(ℓ)
j }

L̂(f) + λ

M∑
j=1

L∑
ℓ=1

∥∥W(ℓ)
j

∥∥2
F
, (2)

where f(x) =
∑M

j=1 fk(x) denotes the parallel neural network, fj(·) denotes the j-th subnetwork,
and λ > 0 is a fixed scaling factor.

Theorem 1. For any fixed α− d/p > 1, q ≥ 1, L ≥ 3, for any f0 ∈ Bα
p,q , given an L-layer parallel

neural network satisfying

• The width of each subnetwork is fixed and large enough: w ≳ d. See Theorem 8 for the
detail.

• The number of subnetworks is large enough: M ≳ mdn
1−2/L

2α/d+1−2/(pL) where m = ⌈α− 1⌉.

With proper choice of the parameter of weight decay λ, the solution f̂ parameterized by (2) satisfies

MSE(f̂) = C(w,L)Õ
(
n− 2α/d(1−2/L)

2α/d+1−2/(pL)
)
+ e−c6L. (3)

where Õ shows the scale up to a logarithmic factor, c6 > 0 is a numerical constant from Theorem 8,

C(w,L) ≂ (w4−4/LL2−4/L)
2α/d

2α/d+1−2/(pL) depends polynomially on L and the trailing constant
term decreases exponentially with L.

We explain the proof idea in the next section,but defer the extended form of the theorem and the full
proof to Section F. Before that, we comment on a few interesting aspects of the result.

Near optimal rates and the effect of depth. The first term in the MSE bound is the estimation error
and the second term is (part of) the approximation error of this NN. Recall that the minimax rate of
a Besov class is O(n− 2α

2α+d) thus as the depth parameter L increases it can get arbitrarily close to
the minimax rate. The constant term would be a negligible if we choose L ≳ log n.

4

Under review as a conference paper at ICLR 2023

Corollary 2. Under the conditions of Theorem 1, for any f0 ∈ Bα
p,q , there is a numerical constant

C such that when we choose C log n ≤ L ≤ 100C log n,

MSE(f̂) = Õ(n− 2α
2α+d (1−o(1))),

where Õ hides only logarithmic factors and the o(1) factor in the exponent is O(1/ log(n)).

This result says that deeper parallel neural networks achieves lower error and gets closer to the
statistical limit.

Overparameterization and sparsity. We also note that the result does not depend on M as long
as M is large enough. This means that the neural network can be arbitrarily overparameterized
while not overfitting. The underlying reason is sparsity. As it will become clearer in the proof
sketch, weight decayed training of a parallel L-layer ReLU NNs is equivalent to a sparse regression
problem with an ℓp penalty assigned to the coefficient vector of a learned dictionary. Here p = 2/L
which promotes even sparser solutions than an ℓ1 penalty.

No architecture tuning. For any fixed L, the required architecture of the model does not depend
on the dataset or the target function (n, α) expect the number of subnetworks M , for which the only
requirement is being large enough. As a result, one can design a model using a large guess on M ,
and achieve the claimed near-optimal error rate by only tuning the weight decay parameter.

Bounded variation classes. Thanks to the Besov space embedding of the BV class (1), our theorem
also implies the result for the BV class in 1D.
Corollary 3. If the target function is in bounded variation class f0 ∈ BV (m), For any fixed L ≥ 3,
for a neural network satisfying the requirements in Theorem 1 with d = 1 and with proper choice of
the parameter of weight decay λ, the NN f̂ parameterized by (5) satisfies

MSE(f̂) = Õ(n− (2m+2)(1−2/L)
2m+3−2/L) + Const.

where Õ shows the scale up to a logarithmic factor, and the trailing constant term decreases expo-
nentially with L.

It is known that any linear estimators such as kernel smoothing and smoothing splines cannot have
an error lower than O(n−(2m+1)/(2m+2)) for BV (m) (Donoho et al., 1998). This partly explains
the advantage of DNNs over kernels.

Representation learning and adaptivity. The results also shed a light on the role of representation
learning in DNN’s ability to adapt. Specifically, different from the two-layer NN in (Parhi & Nowak,
2021a), which achieves the minimax rate of BV (m) by choosing appropriate activation functions
using each m, each subnetwork of a parallel NN can learn to approximate the spline basis of an
arbitrary order, which means that if we choose L to be sufficiently large, such Parallel NN with
optimally tuned λ is simultaneously near optimal for m = 1, 2, 3, In fact, even if different
regions of the space has different orders of smoothness, the paralle NN will still be able to learn
appropriate basis functions in each local region. To the best of our knowledge, this is a property that
none of the classical nonparametric regression methods possess.

Synthesis v.s. analysis methods. Our result could also inspire new ideas in estimator design.
There are two families of methods in non-parametric estimation. One called synthesis framework
which focuses on constructing appropriate basis functions to encode the contemplated structures
and regress the data to such basis, e.g., wavelets (Donoho et al., 1998). The other is called anal-
ysis framework which uses analysis regularization on the data directly (see, e.g., RKHS methods
(Scholkopf & Smola, 2001) or trend filtering (Tibshirani, 2014)). It appears to us that parallel NN
is doing both simultaneously. It has a parametric family capable to synthesizing an O(n) subset of
an exponentially large family of basis, then implicitly use sparsity-inducing analysis regularization
to select the relevant basis functions. In this way the estimator does not actually have to explicitly
represent that exponentially large set of basis functions, thus computationally more efficient.

4 PROOF OVERVIEW

We start by first proving that a parallel neural network trained with weight decay is equivalent to an
ℓp-sparse regression problem with representation learning (Section 4.1); which helps decompose its

5

Under review as a conference paper at ICLR 2023

MSE into an estimation error and approxmation error. Then we bound the two terms in Section 4.2
and Section 4.3 respectively.

4.1 EQUIVALENCE TO ℓp SPARSE REGRESSION

It is widely known that ReLU function is 1-homogeneous: σ(ax) = aσ(x),∀a ≥ 0, x ∈ R. In any
consecutive two layers in a neural network (or a subnetwork), one can multiply the weight and bias
in one layer with a positive constant, and divide the weight in another layer with the same constant.
The neural network after such transformation is equivalent to the original one:

W(2)σ(W(1)x+ b(1) =
1

c
W(2)σ(cW(1)x+ cb(1)), ∀c > 0,x. (4)

This property allows us to reformulate (2) to an ℓp sparsity constraint problem:
Proposition 4. Fix the input dataset Dn and a constant c1 > 0. There exists an one-to-one mapping
between λ > 0 and P ′ > 0 such that (2) is equivalent to the following problem:

argmin
{W̄(ℓ)

j ,b̄
(ℓ)
j ,aj}

L̂
(M∑

j=1

aj f̄j

)
=

1

n

∑
i

(yi − f̄1:M (xi)
Ta)2

s.t. ∥W̄(1)
j ∥F ≤ c1

√
d,∀j ∈ [M],

∥W̄(ℓ)
j ∥F ≤ c1

√
w,∀j ∈ [M], 2 ≤ ℓ ≤ L, ∥{aj}∥2/L2/L ≤ P ′

(5)

where f̄j(·) is a subnetwork with parameters W̄(ℓ)
j , b̄

(ℓ)
j .

This equivalent model is demonstated in Figure 2b. The proof can be found in Section D.1. The
constraint ∥W̄(1)

j ∥F ≲
√
d, ∥W̄(ℓ)

j ∥F ≲
√
w,∀ℓ > 1 is typical in deep learning for better numerical

stability. The equivalent model in Proposition 4 is also a parallel neural network, but it appends one
layer with parameters {ak} at the end of the neural network and the constraint on the Frobenius
norm is converted to the 2/L norm on the factors {ak}. Since L ≫ 2 in a typical application,
2/L ≪ 1 and this constraint can enforce a sparser model than that in Section B.

There are two useful implications of Proposition 4. First, it gives an intuitive explanation on how
a weight decayed Parallel NN works. Specifically, it can be viewed as a sparse linear regression
with representation learning. Second, the conversion into the constrained form allows us to adapt
generic statistical learning machinery (a self-bounding argument) from Suzuki (2018, Proposition 4)
for studying this constrained ERM problem. The adaptation is nontrivial because (1) our regression
problem has a fixed design (so data points are not iid); (2) there is an unconstrained subspace with
no bounded metric entropy. Specifically, our Proposition 15 shows that the MSE of the regression
problem can be bounded by

MSE(f̂) =O

(
inf
f∈F

MSE(f)︸ ︷︷ ︸
approximation error

+
logN (F∥, δ, ∥ · ∥∞) + d(F⊥)

n
+ δ︸ ︷︷ ︸

estimation error

)

in which F decomposes into F∥×F⊥, where F⊥ is an unconstrained subspace with finite dimension,
and F∥ is a compact set in the orthogonal complement with a δ-covering number of N (F∥, δ, ∥·∥∞)
in ∥·∥∞-norm. This decomposes MSE into an approximation errorand an estimation error. The novel
analysis of these two represents the major technical contribution of this paper.

4.2 ESTIMATION ERROR ANALYSIS

The decomposition above reveals that to bound the estimation error, it suffices to compute the cov-
ering number of the constraint set in the sup-norm of the function it represents.

Previous results that bound the covering number of neural networks (Yarotsky, 2017; Suzuki, 2018)
depends on the width of the neural networks explicitly, which cannot be applied when analysing
a potentially infinitely wide neural network. In this section, we leverage the ℓp-norm bounded
coefficients to avoid the dependence in M in the covering number bound.

6

Under review as a conference paper at ICLR 2023

Theorem 5. The covering number of the model defined in (5) apart from the bias in the last layer
satisfies

logN (F , δ) ≲ w2+2/(1−2/L)L2
√
dP ′ 1

1−2/L δ−
2/L

1−2/L log(wP ′/δ). (6)

The proof can be found in Section D.2. It requires the following lemma:
Lemma 6. logN (G, δ) ≲ k log(1/δ) for some finite c3, and for any g ∈ G, |a| ≤ 1, we have

ag ∈ G. The covering number of F =
{∑M

i=1 aigi

∣∣∣gi ∈ G, ∥a∥pp ≤ P, 0 < p < 1
}

for any P > 0

satisfies
logN (F , ϵ) ≲ kP

1
1−p (δ/c3)

− p
1−p log(c3P/δ)

up to a double logarithmic factor.

See Section D.3 for the proof of Lemma 6. The covering number in Theorem 5 does not depend
on the number of subnetworks M . In other words, it provides a bound of estimation error for an
arbitrarily wide parallel neural network as long as the total Frobenius norm is bounded.

4.3 APPROXIMATION ERROR ANALYSIS

The approximation error analysis involves two steps. We first analyse how a subnetwork can ap-
proximate a B-spline basis, which is defered to Section E.1. Then we show that a sparse linear
combination of B-spline bases approximates Besov functions. Both add up to the total error in
approximating Besov functions with a parallel neural network (Theorem 8).
Proposition 7. Let α − d/p > 1, r > 0. For any function in Besov space f0 ∈ Bα

p,q and any
positive integer M̄ , there is an M̄ -sparse approximation using B-spline basis of order m satisfying
0 < α < min(m,m− 1 + 1/p): f̌M̄ =

∑M̄
i=1 aki,si

Mm,ki,si
for any positive integer M̄ such that

the approximation error is bounded as ∥f̌M̄ − f0∥r ≲ M̄−α/d∥f0∥Bα
p,q

, and the coefficients satisfy

∥{2kiaki,si}ki,si∥p ≲ ∥f0∥Bα
p,q

.

The proof can be found in Section E.2.
Remark 1. The requirement in Proposition 7: α− d/p > 1 is stronger than the condition typically
found in approximation theorem α−d/p ≥ 0 (Dũng, 2011), so-called “Boundary of continuity”, or
the condition in Suzuki (2018) α > d(1/p− 1/r)+ . This is because although the functions in Bα

p,q

when 0 ≤ α − d/p < 1 can be approximated by B-spline basis, the sum of weighted coefficients
may not converge. One simple example is the step function fstep(x) = 1(x ≥ 0.5), fstep ∈ B1

1,∞.
Although it can be decomposed using first order B-spline basis as in (10), the summation of the
coefficients is infinite. Actually one only needs a ReLU neural network with one hidden layer and
two neurons to approximate this function to arbitrary precision, but the weight need to go to infinity.
Theorem 8. Under the same condition as Proposition 7, for any positive integer M̄ , any function
in Besov space f0 ∈ Bα

p,q can be approximated by a parallel neural network with no less than
O(mdM̄) number of subnetworks satisfying:

1. Each subnetwork has width w = O(d) and depth L.

2. The weights in each layer satisfy ∥W̄(ℓ)
k ∥F ≤ O(

√
w) except the first layer ∥W̄(1)

k ∥F ≤
O(

√
d),

3. The scaling factors have bounded 2/L-norm: ∥{aj}∥2/L2/L ≲ mde2md/LM̄1−2/(pL).

4. The approximation error is bounded by

∥f̃ − f0∥r ≤ (c4M̄
−α/d + c5e

−c6L)∥f∥Bα
p,q

where c4, c5, c6 are constants that depend only on m, d and p.

Here M̄ is the number of “active” subnetworks, which is not to be confused with the number of
subnetworks at initialization. The proof can be found in Section E.3.

Using the estimation error in Theorem 5 and approximation error in Theorem 8, by choosing M̄ to
minimax the total error, we can conclude the sample complexity of parallel neural networks using
weight decay, which is the main result (Theorem 1) of this paper. See Section F for the detail.

7

Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

Observation
Target function
Trend Filtering
Wavelet Denosing
Smoothing Spline
Parallel Neural Network
Neural Network

(a) Dopler, DoF=30.

25 50 75 100 125150175200
Degree of freedom

0.00

0.05

0.10

0.15

0.20

0.25

M
SE

Parallel Neural Network
Neural Network
Trend Filter
Smoothing Spline
Wavelet Denoising

(b) MSE versus DoF.

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.5

0.0

0.5

1.0

1.5

2.0

(c) Active subnetworks.

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2 Observation
Target function
Trend Filtering
Wavelet Denosing
Smoothing Spline
Parallel Neural Network
Neural Network

(d) “Vary”, DoF=50.

25 50 75 100 125 150 175 200
Degree of freedom

10 3

10 2

M
SE

Parallel Neural Network
Neural Network
Trend Filter
Smoothing Spline
Wavelet Denoising

(e) MSE versus DoF

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

0.2

0.4

0.6

0.8

(f) Active subnetworks.

0.00 0.05 0.10 0.15 0.20

0

1

2

3

0.00 0.05 0.10 0.15 0.20

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

(g) Zoom in to (a)(d)

102 103

Number of samples

0.03

0.05

0.1

M
SE

Parallel Neural Network
Neural Network
Trend Filter
Smoothing Spline

(h) MSE versis n, Dopler

102 103 104

Number of samples

0.0002

0.0005

0.001

0.002

0.005

M
SE

Parallel Neural Network
Neural Network
Trend Filter
Smoothing Spline
Linear Minimax
Minimax

(i) MSE versis n, “Vary”

Figure 3: Numerical experiment results of the Doppler function (a-c,h), and “vary” function (d-f,g).
All the “active” subnetworks are plotted in (c)(f). The horizontal axis in (b) is not linear.

5 EXPERIMENT

We empirically compare a parallel neural network (PNN) and a vanilla ReLU neural network (NN)
with smoothing spline, trend filtering (TF) (Tibshirani, 2014), and wavelet denoising. Trend filtering
can be viewed as a more efficient discrete spline version of locally adaptive regression spline and
enjoys the same optimal rates for the BV classes. Wavelet denoising is also known to be minimax-
optimal for the BV classes. The results are shown in Figure 3. We use two target functions: a
Doppler function whose frequency is decreasing(Figure 3(a)-(c)(h)), and a combination of piecewise
linear function and piecewise cubic function, or “vary” function (Figure 3(d)-(f)(i)). We repeat each
experiment 10 times and take the average. The shallow area in Figure 3(b)(e) shows 95% confidence
interval by inverting the Wald’s test. The degree of freedom (DoF) is computed based on Tibshirani
(2015).

As can be shown in the figure, both TF and wavelet denoising can adapt to the different levels of
smoothness in the target function, while smoothing splines tend to be oversmoothed where the target
function is less smooth (the left side in (a)(d), enlarged in (g)). The prediction of PNN is similar to
TF and wavelet denoising and shows local adaptivity. Besides, the MSE of PNN almost follows the

8

Under review as a conference paper at ICLR 2023

same trend as TF and wavelet denoising which is consistent with our theoretical understanding that
the error rate of neural network is closer to locally adaptive methods. Notably PNN, TF and wavelet
denoising achieve lower error at a much smaller degree-of-freedom than smoothing splines.

In a vanilla NN, weight decay is equivalent to ℓ1 regularizer in any two successive layers, but to the
best of our knowledge it does not lead to sparse representation learning unless some specific sparse
structure is enforced. While our theory does not apply to vanilla neural networks, the results seem
to suggest the NN behaves similar to smoothing spline and is not locally adaptive.

There are some mild drops in the best MSE one can achieve with NN vs TF in both examples. We
are surprised that the drop is small because NN needs to learn the basis functions that TF essentially
hard-coded. The additional price to pay for using a more adaptive and more flexible representation
learning method seems not high at all.

In Figure 3(c)(f), we give the output all the “active” subnetwork, i.e. the subnetworks whose output
is not a constant. Notice that the number of active subnetworks is much smaller than the initializa-
tion. This is because weight decay induces ℓp sparsity and the weight in most of the subnetworks
reduces towards 0 after training. More details are shown in Section G.

In Figure 3(h)(i), we plot the MSE versus the number of training samples for “Doppler” and “Vary”
respectively. It is clear that parallel NN works the best overall. In (i), we further compare the scaling
of the MSE against the minimax rate (n−4/5) and the minimax linear rate (n−3/4), i.e., the best rate
kernel methods could achieve. As is predicted by our theory, when n is large, the MSE of parallel
neural networks and trend filtering decreases at almost the same rate as the minimax rate, while
smoothing splines, as expected, is converging at the (suboptimal) minimax linear rate. Interestingly,
vanilla NN seems to converge at the optimal rate too on this example. It remains an open question
whether vanila NN is merely “lucky” on this example, or it also achieves the minimax rate for all
functions in BV(m).

6 CONCLUSION AND DISCUSSION

In this paper, we show that a deep parallel neural network can be locally adaptive by tuning only
the weight decay parameter. This confirms that neural networks can be nearly optimal in learning
functions with heterogeneous smoothness which separates them from kernel methods.

We prove that training an L layer parallel neural network with weight decay is equivalent to an
ℓ2/L-penalized regression model with representation learning. Since in typical application L ≫ 2,
weight decay promotes a sparse linear combination of the learned bases. Using this method, we
proved that a parallel neural network can achieve close to the minimax rate in the Besov space and
bounded variation (BV) space.

Our result reveals that one do not need to specify the smoothness parameter α (or m) when training
a parallel neural network. Parallel neural networks can adapt to different degree of smoothness,
or choose different parameters for different regions of the domain of the target function. This is a
new type of adaptivity not possessed by traditional adaptive nonparametric regression methods like
locally adaptive regression spline or trend filtering.

On the other hand, as the depth of neural network L increases, 2/L tends to 0 and the error rate
moves closer to the minimax rate of Besov and BV space. This indicates that when the sample size
is large enough, deeper models have smaller error than shallower models, and helps explain why
empirically deep neural networks has better performance than shallow neural networks.

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. What can resnet learn efficiently, going beyond kernels? Ad-
vances in Neural Information Processing Systems, 32, 2019.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. In Proceedings of the 33rd International
Conference on Neural Information Processing Systems, pp. 8141–8150, 2019.

9

Under review as a conference paper at ICLR 2023

Dheeraj Baby and Yu-Xiang Wang. Online forecasting of total-variation-bounded sequences. In
Neural Information Processing Systems (NeurIPS), 2019.

Dheeraj Baby and Yu-Xiang Wang. Adaptive online estimation of piecewise polynomial trends.
Neural Information Processing Systems (NeurIPS), 2020.

Andrew R Barron. Approximation and estimation bounds for artificial neural networks. Machine
learning, 14(1):115–133, 1994.

Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To understand deep learning we need to under-
stand kernel learning. In International Conference on Machine Learning, pp. 541–549. PMLR,
2018.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Carl De Boor, Carl De Boor, Etats-Unis Mathématicien, Carl De Boor, and Carl De Boor. A practical
guide to splines, volume 27. Springer-Verlag New York, 1978.

Ronald A DeVore and George G Lorentz. Constructive approximation, volume 303. Springer
Science & Business Media, 1993.

David L Donoho, Richard C Liu, and Brenda MacGibbon. Minimax risk over hyperrectangles, and
implications. The Annals of Statistics, pp. 1416–1437, 1990.

David L Donoho, Iain M Johnstone, et al. Minimax estimation via wavelet shrinkage. The annals
of Statistics, 26(3):879–921, 1998.

Dinh Dũng. Optimal adaptive sampling recovery. Advances in Computational Mathematics, 34(1):
1–41, 2011.

Tolga Ergen and Mert Pilanci. Implicit convex regularizers of cnn architectures: Convex optimiza-
tion of two-and three-layer networks in polynomial time. arXiv preprint arXiv:2006.14798, 2020.

Tolga Ergen and Mert Pilanci. Convex geometry and duality of over-parameterized neural networks.
Journal of machine learning research, 2021a.

Tolga Ergen and Mert Pilanci. Global optimality beyond two layers: Training deep relu networks
via convex programs. In International Conference on Machine Learning, pp. 2993–3003. PMLR,
2021b.

Tolga Ergen and Mert Pilanci. Path regularization: A convexity and sparsity inducing regularization
for parallel relu networks. arXiv preprint arXiv:2110.09548, 2021c.

Tolga Ergen and Mert Pilanci. Revealing the structure of deep neural networks via convex duality.
In International Conference on Machine Learning, pp. 3004–3014. PMLR, 2021d.

Jerome Friedman, Trevor Hastie, and Rob Tibshirani. Regularization paths for generalized linear
models via coordinate descent. Journal of statistical software, 33(1):1, 2010.

Behrooz Ghorbani, Song Mei, Theodor Misiakiewicz, and Andrea Montanari. When do neural
networks outperform kernel methods? Advances in Neural Information Processing Systems, 33:
14820–14830, 2020.

Benjamin D Haeffele and René Vidal. Global optimality in neural network training. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7331–7339, 2017.

Daniel Hsu, Sham M Kakade, and Tong Zhang. An analysis of random design linear regression.
arXiv preprint arXiv:1106.2363, 2011.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Binarized
neural networks. In Proceedings of the 30th international conference on neural information pro-
cessing systems, pp. 4114–4122. Citeseer, 2016.

10

Under review as a conference paper at ICLR 2023

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: convergence and gen-
eralization in neural networks. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, pp. 8580–8589, 2018.

Seung-Jean Kim, Kwangmoo Koh, Stephen Boyd, and Dimitry Gorinevsky. \ell_1 trend filtering.
SIAM review, 51(2):339–360, 2009.

Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-Dickstein, and Guy Gur-Ari. The large
learning rate phase of deep learning: the catapult mechanism. arXiv preprint arXiv:2003.02218,
2020.

Stéphane Mallat. A wavelet tour of signal processing. Elsevier, 1999.

Enno Mammen and Sara van de Geer. Locally adaptive regression splines. The Annals of Statistics,
25(1):387–413, 1997.

Elizbar A Nadaraya. On estimating regression. Theory of Probability & Its Applications, 9(1):
141–142, 1964.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics:
Theory and Experiment, 2021(12):124003, 2021.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the
role of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.

Greg Ongie, Rebecca Willett, Daniel Soudry, and Nathan Srebro. A function space view of bounded
norm infinite width relu nets: The multivariate case. In International Conference on Learning
Representations, 2019.

Rahul Parhi and Robert D Nowak. Banach space representer theorems for neural networks and ridge
splines. J. Mach. Learn. Res., 22:43–1, 2021a.

Rahul Parhi and Robert D Nowak. What kinds of functions do deep neural networks learn? insights
from variational spline theory. arXiv preprint arXiv:2105.03361, 2021b.

Rahul Parhi and Robert D Nowak. Near-minimax optimal estimation with shallow relu neural net-
works. arXiv preprint arXiv:2109.08844, 2021c.

Mert Pilanci and Tolga Ergen. Neural networks are convex regularizers: Exact polynomial-time con-
vex optimization formulations for two-layer networks. In International Conference on Machine
Learning, pp. 7695–7705. PMLR, 2020.

Carl Edward Rasmussen and Christopher KI Williams. Gaussian processes for machine learning.
MIT Press, 2006.

Veeranjaneyulu Sadhanala, Yu-Xiang Wang, Addison J Hu, and Ryan J Tibshirani. Multivariate
trend filtering for lattice data. arXiv preprint arXiv:2112.14758, 2021.

Pedro Savarese, Itay Evron, Daniel Soudry, and Nathan Srebro. How do infinite width bounded
norm networks look in function space? In Conference on Learning Theory, pp. 2667–2690.
PMLR, 2019.

Johannes Schmidt-Hieber. Nonparametric regression using deep neural networks with relu activation
function. The Annals of Statistics, 48(4):1875–1897, 2020.

Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector machines,
regularization, optimization, and beyond. MIT press, 2001.

Nathan Srebro, Jason DM Rennie, and Tommi S Jaakkola. Maximum-margin matrix factorization.
In NIPS, volume 17, pp. 1329–1336. Citeseer, 2004.

Taiji Suzuki. Adaptivity of deep relu network for learning in besov and mixed smooth besov spaces:
optimal rate and curse of dimensionality. arXiv preprint arXiv:1810.08033, 2018.

11

Under review as a conference paper at ICLR 2023

Ryan J Tibshirani. Adaptive piecewise polynomial estimation via trend filtering. The Annals of
Statistics, 42(1):285–323, 2014.

Ryan J Tibshirani. Degrees of freedom and model search. Statistica Sinica, pp. 1265–1296, 2015.

Ryan J Tibshirani. Equivalences between sparse models and neural networks. 2021. URL http:
//www.stat.cmu.edu/~ryantibs/papers/sparsitynn.pdf.

Ryan J Tibshirani. Personal communication, Jan. 24, 2022.

Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles of
relatively shallow networks. Advances in neural information processing systems, 29:550–558,
2016.

Stefan Wager, Sida Wang, and Percy Liang. Dropout training as adaptive regularization. arXiv
preprint arXiv:1307.1493, 2013.

Grace Wahba. Spline models for observational data, volume 59. Siam, 1990.

Yu-Xiang Wang, Alex Smola, and Ryan Tibshirani. The falling factorial basis and its statistical
applications. In International Conference on Machine Learning, pp. 730–738. PMLR, 2014.

Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient descent learn-
ing. Constructive Approximation, 26(2):289–315, 2007.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural
Networks, 94:103–114, 2017. ISSN 0893-6080. doi: https://doi.org/10.1016/j.neunet.
2017.07.002. URL https://www.sciencedirect.com/science/article/pii/
S0893608017301545.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint
arXiv:1605.07146, 2016.

Hongyang Zhang, Junru Shao, and Ruslan Salakhutdinov. Deep neural networks with multi-branch
architectures are intrinsically less non-convex. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 1099–1109. PMLR, 2019.

12

http://www.stat.cmu.edu/~ryantibs/papers/sparsitynn.pdf
http://www.stat.cmu.edu/~ryantibs/papers/sparsitynn.pdf
https://www.sciencedirect.com/science/article/pii/S0893608017301545
https://www.sciencedirect.com/science/article/pii/S0893608017301545

Under review as a conference paper at ICLR 2023

A OTHER RELATED WORKS

NN and kernel methods. Jacot et al. (2018) draws the connection between neural networks
and kernel methods. However, it has been found that neural networks often outperform any kernel
method, especially when the learning rate is relatively large (Lewkowycz et al., 2020). A series of
work tried to distinguish NN from kernel methods by providing examples of function spaces that NN
provably outperform kernel methods (Allen-Zhu & Li, 2019; Ghorbani et al., 2020). However, these
papers did not consider the local adaptivity of nerual networks, which provides a more systematic
explanation.

NN and splines. Besides Parhi & Nowak (2021a) which we discussed earlier, Parhi & Nowak
(2021b;c) also leveraged the connections between NNs and splines. Parhi & Nowak (2021b) fo-
cused on characterizing the variational form of multi-layer NN. Parhi & Nowak (2021c) showed
that two-layer ReLU activated NN achieves minimax rate for a BV class of order 1 but did not cover
multilayer NNs nor BV class with order > 1, which is our focus.

Weight-decay regularization with sparsity-inducing penalties. The connection between weight-
decay regularization with sparsity-inducing penalties in two-layer NNs is folklore and used by
Neyshabur et al. (2014); Savarese et al. (2019); Ongie et al. (2019); Ergen & Pilanci (2021a;d);
Parhi & Nowak (2021a;c); Pilanci & Ergen (2020). The key underlying technique — an application
of the AM-GM inequality (which we used in this paper as well) — can be traced back to Srebro
et al. (2004) (see a recent exposition by Tibshirani (2021)). Tibshirani (2021) also generalized the
result to multi-layered NNs, but with a simple (element-wise) connections. Besides, Ergen & Pi-
lanci (2020) proved that training a two-layer convolution neural network (CNN) with weight decay
induces sparsity, and points to a potential extension to these works including our work.

Approximation and estimation. The approximation-theoretic and estimation-theoretic research
for neural network has a long history too (Cybenko, 1989; Barron, 1994; Yarotsky, 2017; Schmidt-
Hieber, 2020; Suzuki, 2018). Most existing work considered the Holder, Sobolev spaces and their
extensions, which contain only homogeneously smooth functions and cannot demonstrate the ad-
vantage of NNs over kernels. The only exception is Suzuki (2018) which, as we discussed earlier,
requires modifications to NN architecture for each class. In contrast, we require tuning only the
standard weight decay parameter.

B TWO-LAYER NEURAL NETWORK WITH TRUNCATED POWER ACTIVATION
FUNCTIONS

We start by recapping the result of Parhi & Nowak (2021a) and formalizing its implication in esti-
mating BV functions. Parhi & Nowak (2021a) considered a two layer neural network with truncated
power activation function. Let the neural network be

f(x) =

M∑
j=1

vjσ
m(wjx+ bj) + c(x), (7)

where wj , vj denote the weight in the first and second layer respectively, bj denote the bias in the
first layer, c(x) is a polynomial of order up to m, σm(x) := max(x, 0)m. Parhi & Nowak (2021a,
Theorem 8) showed that when M is large enough, The optimization problem

min
w,v

L̂(f) +
λ

2

M∑
j=1

(|vj |2 + |wj |2m) (8)

is equivalent to the locally adaptive regression spline:

min
f

L̂(f) + λTV (f (m)(x)), (9)

which optimizes over arbitrary functions that is m-times weakly differentiable. The latter was
studied in Mammen & van de Geer (1997), which leads to the following MSE:

Theorem 9. Let M ≥ n−m, and f̂ be the function (7) parameterized by the minimizer of (8), then

MSE(f̂) = O(n−(2m+2)(2m+3)).

13

Under review as a conference paper at ICLR 2023

We show a simpler proof in the univariate case due to Tibshirani (2022):

Proof. As is shown in Parhi & Nowak (2021a, Theorem 8), the minimizer of (8) satisfy

|vj | = |wj |m,∀k
so the TV of the neural network fNN is

TV (m)(fNN) = TV (m)c(x) +

M∑
j=1

|vj ||wj |mTV (m)(σ(m)(x))

=

M∑
j=1

|vj ||wj |m

=
1

2

M∑
j=1

(|vj |2 + |wj |2m)

which shown that (8) is equivalent to the locally adaptive regression spline (9) as long as the number
of knots in (9) is no more than M . Furthermore, it is easy to check that any spline with knots no
more than M can be expressed as a two layer neural network (8). It suffices to prove that the solution
in (9) has no more than n−m number of knots.

Mammen & van de Geer (1997, Proposition 1) showed that there is a solution to (9) f̂(x) such that
f̂(x) is a mth order spline with a finite number of knots but did not give a bound. Let the number of
knots be M , we can represent f̂ using the truncated power basis

f̂(x) =

M∑
j=1

aj(x− tj)
m
+ + c(x) :=

M∑
j=1

ajσ
(m)
j (x) + c(x)

where tj are the knots, c(x) is a polynomial of order up to m, and define σ
(m)
j (x) = (x− tj)

m
+ .

Mammen & van de Geer (1997) however did not give a bound on M . Parhi & Nowak (2021a)’s
Theorem 1 implies that M ≤ n − m. Its proof is quite technical and applies more generally to a
higher dimensional generalization of the BV class.

Tibshirani (2022) communicated to us the following elegant argument to prove the same using ele-
mentary convex analysis and linear algebra, which we present below.

Define Πm(f) as the L2(Pn) projection of f onto polynomials of degree up to m, Π⊥
m(f) :=

f −Πm(f). It is easy to see that

Π⊥
mf(x) =

M∑
j=1

ajΠ
⊥
mσ

(m)
j (x)

Denote f(x1:n) := {f(x1), . . . , f(xn)} ∈ Rn as a vector of all the predictions at the sample points.

Π⊥
mf̂(x1:n) =

M∑
j=1

ajΠ
⊥
mσ

(m)
j (x1:n) ∈ Π⊥

mconv{±σ
(m)
j (x1:n)} ·

M∑
j=1

|aj | =∈ conv{±Π⊥
mσ

(m)
j (x1:n)} ·

M∑
j=1

|aj |

where conv denotes the convex hull of a set. The convex hull conv{±σ
(m)
j (x1:n)} ·

∑M
j=1 |aj | is an

n-dimensional space, and polynomials of order up to m is an m + 1 dimensional space, so the set
defined above has dimension n−m− 1. By Carathéodory’s theorem, there is a subset of points in
this space

{Π⊥
mσ

(m)
jk

(x1:n)} ⊆ {Π⊥
mσ

(m)
j (x1:n)}, 1 ≤ k ≤ n−m

such that

Π⊥
mf(x) =

n−m∑
k=1

ãkΠ
⊥
mσ

(m)
jk

(x),

n−m∑
k=1

|ak| ≤ 1

14

Under review as a conference paper at ICLR 2023

In other word, there exist a subset of knots {t̃j , j ∈ [n−m]} that perfectly recovers Π⊥
mf̂(x) at all

the sample points, and the TV of this function is no larger than f̂ .

This shows that

f̃(x) =

n−m∑
j=1

ãj(x− tj)
m
+ , s.t.f̃(xi) = f(xi)

for all xi in n onbservation points.

The MSE of locally adaptivity regressive spline (9) was studied in Mammen & van de Geer (1997,
Section 3), which equals the error rate given in Theorem 9.

This indicates that the neural network (7) is minimax optimal for BV (m).

Let us explain a few the key observations behind this equivalence. (a) The truncated power functions
(together with an mth order polynomial) spans the space of an mth order spline. (b) The neural
network in (7) is equivalent to a free-knot spline with M knots (up to reparameterization). (c) A
solution to (9) is a spline with at most n−m knots (Parhi & Nowak, 2021a, Theorem 8). (d) Finally,
by the AM-GM inequality

|vj |2 + |wj |2m ≥ 2|vj ||wj |m = 2|cj |
where cj = vj |wj |m is the coefficient of the corresponding jth truncated power basis. The mth
order total variation of a spline is equal to

∑
j |cj |. It is not hard to check that the loss function

depends only on cj , thus the optimal solution will always take “=” in the AM-GM inequality.

C INTRODUCTION TO COMMON FUNCTION CLASSES

In the following definition define Ω be the domain of the function classes, which will be omitted in
the definition.

C.1 BESOV CLASS

Definition 1. Modulus of smoothness: For a function f ∈ Lp(Ω) for some 1 ≤ p ≤ ∞, the r-th
modulus of smoothness is defined by

wr,p(f, t) = sup
h∈Rd:∥h∥2≤t

∥∆r
h(f)∥p,

∆r
h(f) :=


r∑

j=0

(rj)(−1)r−jf(x+ jh), if x ∈ Ω, x+ rh ∈ Ω,

0, otherwise.
Definition 2. Besov space: For 1 ≤ p, q ≤ ∞, α > 0, r := ⌈α⌉+ 1, define

|f |Bα
p,q

=


(∫ ∞

t=0

(t−αwr,p(f, t))
q dt

t

) 1
q

, q < ∞

sup
t>0

t−αwr,p(f, t), q = ∞,

and define the norm of Besov space as:
∥f∥Bα

p,q
= ∥f∥p + |f |Bα

p,q
.

A function f is in the Besov space Bα
p,q if ∥f∥Bα

p,q
is finite.

Note that the Besov space for 0 < p, q < 1 is also defined, but in this case it is a quasi-Banach space
instead of a Banach space and will not be covered in this paper.

Functions in Besov space can be decomposed using B-spline basis functions. Any function f in
Besov space Bα

p,q, α > d/p can be decomposed using B-spline of order m,m > α: let x ∈ Rd,

f(x) =

∞∑
k=0

∑
s∈J(k)

ck,s(f)Mm,k,s(x) (10)

15

Under review as a conference paper at ICLR 2023

where J(k) := {2−ks : s ∈ [−m, 2k+m]d ⊂ Zd}, Mm,k,s(x) := Mm(2k(x−s)), and Mk(x) =∏d
i=1 Mk(xi) is the cardinal B-spline basis function which can be expressed as a polynomial:

Mm(x) =
1

m!

m+1∑
j=1

(−1)j
(
m+ 1

j

)
(x− j)m+

= ((m+ 1)/2)m
1

m!

m+1∑
j=1

(−1)j
(
m+ 1

j

)(x− j

(m+ 1)/2

)m
+
,

(11)

Furthermore, the norm of Besov space is equivalent to the sequence norm:

∥{ck,s}∥bαp,q :=
(∞∑
k=0

(2(α−d/p)k∥{ck,s(f)}s∥p)q
)1/q

≂ ∥f∥Bα
p,q

.

See e.g. Dũng (2011, Theorem 2.2) for the proof.

The Besov space is closely connected to other function spaces including the Hölder space (Cα) and
the Sobolev space (Wα

p). Specifically, if the domain of the functions is d-dimensional (Suzuki, 2018;
Sadhanala et al., 2021),

• ∀α ∈ N, Bα
p,1 ⊂ Wα

p ⊂ Bα
p,∞, and Bα

2,2 = Wα
2 .

• For 0 < α < ∞ and α ∈ N , Cα = Bα
∞,∞.

• If α > d/p, Bα
p,q ⊂ C0.

C.2 OTHER FUNCTION SPACES

Definition 3. Hölder space: let m ∈ N, the m-th order Holder class is defined as

Cm =

{
f : max

|a|=k

|Daf(x)−Daf(z)|
∥x− z∥2

< ∞,∀x, z ∈ Ω

}
where Da denotes the weak derivative.

Note that fraction order of Hölder space can also be defined. For simplicity, we will not cover that
case in this paper.
Definition 4. Sobolev space: let m ∈ N , 1 ≤ p ≤ ∞, the Sobolev norm is defined as

∥f∥Wm
p

:=

 ∑
|a|≤m

∥Daf∥pp

1/p

,

the Sobolev space is the set of functions with finite Sobolev norm:

Wm
p := {f : ∥f∥Wm

p
< ∞}.

Definition 5. Total Variation (TV): The total variation (TV) of a function f on an interval [a, b] is
defined as

TV (f) = sup
P

nP−1∑
i=1

|f(xi+1)− f(xi)|

where the P is taken among all the partitions of the interval [a, b].

In many applications, functions with stronger smoothness conditions are needed, which can be mea-
sured by high order total variation.
Definition 6. High order total variation: the m-th order total variation is the total variation of the
(m− 1)-th order derivative

TV (m)(f) = TV (f (m−1))

Definition 7. Bounded variation (BV): The m-th order bounded variation class is the set of functions
whose total variation (TV) is bounded.

BV (m) := {f : TV (f (m)) < ∞}.

16

Under review as a conference paper at ICLR 2023

D PROOF OF ESTIMATION ERROR

D.1 EQUIVALENCE BETWEEN PARALLEL NEURAL NETWORKS AND p-NORM PENALIZED
PROBLEMS

Proposition 4. Fix the input dataset Dn and a constant c1 > 0. There exists an one-to-one mapping
between λ > 0 and P ′ > 0 such that (2) is equivalent to the following problem:

argmin
{W̄(ℓ)

j ,b̄
(ℓ)
j ,aj}

L̂
(M∑

j=1

aj f̄j

)
=

1

n

∑
i

(yi − f̄1:M (xi)
Ta)2

s.t. ∥W̄(1)
j ∥F ≤ c1

√
d,∀j ∈ [M],

∥W̄(ℓ)
j ∥F ≤ c1

√
w,∀j ∈ [M], 2 ≤ ℓ ≤ L, ∥{aj}∥2/L2/L ≤ P ′

where f̄j(·) is a subnetwork with parameters W̄(ℓ)
j , b̄

(ℓ)
j .

Proof. Using Lagrange’s method, one can easily find (2) is equivalent to a constrained optimization
problem:

argmin
{W(ℓ)

j ,b
(ℓ)
j }

L̂
(M∑

j=1

fj

)
, s.t.

M∑
j=1

L∑
ℓ=1

∥∥W(ℓ)
j

∥∥2
F
≤ P (12)

for some constant P that depends on λ and the dataset D.

We make use of the property from (4) to minimize the constraint term in (12) while keeping this
neural network equivalent to the original one. Specifically, let W(1), b(1), . . .W(L), b(L) be the
parameters of an L-layer neural network.

f(x) = W(L)σ(W(L−1)σ(. . . σ(W(1)x+ b(1)) . . .) + b(L−1)) + b(L),

which is equivalent to

f(x) = αLW̃
(L)σ(αL−1W̃

(L−1)σ(. . . σ(α1W̃
(1)x+ b̃

(1)
) . . .) + b̃

(L−1)
) + b̃

(L)
,

as long as αℓ > 0,
∏L

ℓ=1 α
L =

∏L
ℓ=1 ∥W(ℓ)∥F , where W̃(ℓ) := W(ℓ)

∥W(ℓ)∥F
. By the AM-GM inequal-

ity, the ℓ2 regularizer of the latter neural network is

L∑
ℓ=1

∥αℓW̃
(ℓ)∥2F =

L∑
ℓ=1

α2
ℓ ≥ L

(
L∏

ℓ=1

aℓ

)2/L

= L

(
L∏

ℓ=1

∥W(ℓ)∥F
)2/L

and equality is reached when α1 = α2 = · · · = αL. In other word, in the problem (2), it suffices to
consider the network that satisfies

∥W(1)
j ∥F = ∥W(2)

j ∥F = · · · = ∥W(L)
j ∥F ,∀j ∈ [M], ℓ ∈ [L]. (13)

Using (4) again, one can find that the neural network is also equivalent to

f(x) =

M∑
j=1

ajW̄
(L)σ(W̄

(L−1)
j σ(. . . σ(W̄

(1)
j x+ b̄

(1)
j) . . .) + b̄

(L−1)
j) + b̄

(L)
j ,

where

∥W̄(ℓ)
j ∥F ≤ β(ℓ), aj =

∏L
ℓ=1 ∥W

(ℓ)
j ∥F∏L

ℓ=1 β
(ℓ)

=
∥W(1)

j ∥LF∏L
ℓ=1 β

(ℓ)
=

(
∑L

ℓ=1 ∥W
(ℓ)
j ∥2F /L)L/2∏L

ℓ=1 β
(ℓ)

, (14)

where the last two equality comes from the assumption (13). Choosing β(ℓ) = c1
√
w expect ℓ = 1

where β(1) = c1
√
d, and scaling b̄

(ℓ) accordingly and taking the constraint in (12) into (14) finishes
the proof.

17

Under review as a conference paper at ICLR 2023

D.2 COVERING NUMBER OF PARALLEL NEURAL NETWORKS

Theorem 5. The covering number of the model defined in (5) apart from the bias in the last layer
satisfies

logN (F , δ) ≲ w2+2/(1−2/L)L2
√
dP ′ 1

1−2/L δ−
2/L

1−2/L log(wP ′/δ).

The proof relies on the covering number of each subnetwork in a parallel neural network
(Lemma 10), observing that |f(x)| ≤ 2L−1wL−1

√
d under the condition in Lemma 10, and

then apply Lemma 6. We argue that our choice of condition on ∥b(ℓ)∥2 in Lemma 10 is suf-
ficient to analyzing the model apart from the bias in the last layer, because it guarantees that√
w∥W(ℓ)Aℓ−1(x)∥2 ≤ ∥b(ℓ)∥2. This leads to

∥W(ℓ)Aℓ−1(x)∥∞ ≤ ∥W(ℓ)Aℓ−1(x)∥2 ≤ √
w∥b(ℓ)∥2 ≤ ∥b(ℓ)∥∞

If this condition is not met, W(ℓ)Aℓ−1(x) + b(ℓ) is either always positive or always negative
for all feasible x along at least one dimension. If (W(ℓ)Aℓ−1(x) + b(ℓ))i is always negative,
one can replace b(ℓ))i with −maxx ∥W(ℓ)Aℓ−1(x)∥∞ without changing the output of this model
for any feasible x. If (W(ℓ)Aℓ−1(x) + b(ℓ))i is always positive, one can replace b(ℓ))i with
maxx ∥W(ℓ)Aℓ−1(x)∥∞, and adjust the bias in the next layer such that the output of this model
is not changed for any feasible x. In either cases, one can replace the bias b(ℓ) with another one with
smaller norm while keeping the model equivalent except the bias in the last layer.

Lemma 10. Let F ⊆ {f : Rd → R} denote the set of L-layer neural network (or a subnetwork in
a parallel neural network) with width w in each hidden layer. It has the form

f(x) = W(L)σ(W(L−1)σ(. . . σ(W(1)x+ b(1)) . . .) + b(L−1)) + b(L),

W(1) ∈ Rw×d, ∥W(1)∥F ≤
√
d, b(1) ∈ Rw, ∥b(1)∥2 ≤

√
dw,

W(ℓ) ∈ Rw×w∥W(ℓ)∥F ≤ √
w, b(ℓ) ∈ Rw, ∥b(ℓ)∥2 ≤ 2ℓ−1wℓ−1

√
dw, ∀ℓ = 2, . . . L− 1,

W(L) ∈ R1×w, ∥W(L)∥F ≤ √
w, b(L) = 0

(15)
and σ(·) is the ReLU activation function, the input satisfy ∥x∥2 ≤ 1, then the supremum norm
δ-covering number of F obeys

logN (F , δ) ≤ c7Lw
2 log(1/δ) + c8

where c7 is a constant depending only on d, and c8 is a constant that depend on d,w and L.

Proof. First study two neural networks which differ by only one layer. Let gℓ, g′ℓ be two neural net-
works satisfying (15) with parameters W1, b1, . . . ,WL, bL and W′

1, b
′
1, . . . ,W

′
L, b

′
L respectively.

Furthermore, the parameters in these two models are the same except the ℓ-th layer, which satisfy

∥Wℓ −W′
ℓ∥F ≤ ϵ, ∥bℓ − b′ℓ∥2 ≤ ϵ̃.

Denote the model as

gℓ(x) = Bℓ(WℓAℓ(x) + bℓ), g
′
ℓ(x) = Bℓ(W

′
ℓAℓ(x) + b′ℓ)

where Aℓ(x) = σ(Wℓ−1σ(. . . σ(W1x+b1) . . .)+bℓ−1) denotes the first ℓ−1 layers in the neural
network, and Aℓ(x) = WLσ(. . . σ(Wℓ+1σ(x)+bℓ+1) . . .)+bL) denotes the last L−ℓ−1 layers,
with definition A1(x) = x,BL(x) = x.

Now focus on bounding ∥A(x)∥. Let W ∈ Rm×m′
, ∥W∥F ≤

√
m′,x ∈ Rm′

, b ∈ Rm, ∥b∥2 ≤√
m

∥σ(Wx+ b)∥2 ≤ ∥Wx+ b∥2
≤ ∥W∥2∥x∥2 + ∥b∥2
≤ ∥W∥F ∥x∥2 + ∥b∥2
≤

√
m′∥x∥2 +

√
m

18

Under review as a conference paper at ICLR 2023

where we make use of ∥ · ∥2 ≤ ∥ · ∥F . Because of that,

∥A2(x)∥2 ≤
√
d+

√
dw ≤ 2

√
dw,

∥A3(x)∥2 ≤ √
w∥A2(x)∥2 + 2w

√
dw ≤ 4w

√
dw,

. . .

∥Aℓ(x)∥2 ≤ √
w∥Aℓ−1(x)∥2 ≤ 2

√
dw(2w)ℓ−2.

(16)

Then focus on B(x). Let W ∈ Rm×m′
, ∥W∥F ≤

√
m′,x,x′ ∈ Rm′

, b ∈ Rm, ∥b∥2 ≤ √
m.

Furthermore, ∥x− x′∥2 ≤ ϵ, then

∥σ(Wx+ b)− σ(Wx′ + b)∥2 ≤ ∥W(x− x′)∥2 ≤ ∥W∥F ∥x− x′∥2
which indicates that ∥B(x)− B(x)′∥2 ≤ (

√
w)L−ℓ∥x− x′∥2

Finally, for any W,W′ ∈ Rm×m′
,x ∈ Rm′

, b, b′ ∈ Rm, one have

∥(Wx+ b)− (W′x+ b′)∥2 = ∥(W −W′)x+ (b− b′)∥2
≤ ∥W −W′∥2∥x∥2 + ∥b− b′∥2.
≤ ∥W −W′∥F ∥x∥2 +

√
m∥b− b′∥∞.

In summary,

|gℓ(x)− g′ℓ(x)| = |Bℓ(WℓAℓ(x) + bℓ)− Bℓ(W
′
ℓAℓ(x) + b′ℓ)|

≤ (
√
w)L−ℓ∥(WℓAℓ(x) + bℓ)− (W′

ℓAℓ(x) + b′ℓ)∥2
≤ (

√
w)L−ℓ(∥Wℓ −W′

ℓ∥F ∥Aℓ(x)∥2 + ∥bℓ − b′ℓ∥2)
≤ 2(ℓ−1)w(L+ℓ−3)/2d1/2ϵ+ w(L−ℓ)/2ϵ̄

Let f(x), f ′(x) be two neural networks satisfying (15) with parameters W1, b1, . . . ,WL, bL and
W ′

1, b
′
1, . . . ,W

′
L, b

′
L respectively, and ∥Wℓ −W ′

ℓ∥F ≤ ϵℓ, ∥bℓ − b′ℓ∥F ≤ ϵ̃ℓ. Further define fℓ be the
neural network with parameters W1, b1, . . . ,Wℓ, bℓ,W

′
ℓ+1, b

′
ℓ+1, . . . ,W

′
L, b

′
L, then

|f(x)− f ′(x)| ≤ |f(x)− f1(x)|+ |f1(x)− f2(x)|+ · · ·+ |fL−1(x)− f ′(x)|

≤
L∑

ℓ=1

2(ℓ−2)d1/2w(L+ℓ−3)/2ϵ+ w(L−ℓ)/2ϵ̄

For any δ > 0, one can choose

ϵℓ =
δ

2ℓw(L+ℓ−3)/2d1/2
, ϵ̃ℓ =

δ

2w(L−ℓ)/2

such that |f(x)− f ′(x)| ≤ δ.

On the other hand, the ϵ-covering number of {W ∈ Rm×m′
: ∥W∥F ≤

√
m′} on Frobenius norm

is no larger than (2
√
m′/ϵ + 1)m×m′

, and the ϵ̄-covering number of {b ∈ Rm : ∥b∥2 ≤ 1} on
infinity norm is no larger than (2/ϵ̄+ 1)m. The entropy of this neural network can be bounded by

logN (f ; δ) ≤ w2L log(2L+1wL−1/δ + 1) + wL log(2L−1w(L−1)/2d1/2/δ + 1)

D.3 COVERING NUMBER OF p-NORM CONSTRAINED LINEAR COMBINATION

Lemma 6. logN (G, δ) ≲ k log(1/δ) for some finite c3, and for any g ∈ G, |a| ≤ 1, we have

ag ∈ G. The covering number of F =
{∑M

i=1 aigi

∣∣∣gi ∈ G, ∥a∥pp ≤ P, 0 < p < 1
}

for any P > 0

satisfies
logN (F , ϵ) ≲ kP

1
1−p (δ/c3)

− p
1−p log(c3P/δ)

up to a double logarithmic factor.

19

Under review as a conference paper at ICLR 2023

Proof. Let ϵ be a positive constant. Without the loss of generality, we can sort the coefficients in
descending order in terms of their absolute values. There exists a positive integer M (as a function
of ϵ), such that |ai| ≥ ϵ for i ≤ M, and |ai| < ϵ for i > M.

By definition, Mϵp ≤ ∑M
i=1 |ai|p ≤ P so M ≤ P/ϵp, and |ai|p ≤ P, |ai| ≤ P 1/p for all i.

Furthermore, ∑
i>m

|ai| =
∑
i>M

|ai|p|ai|1−p <
∑
i>M

|ai|pϵ1−p ≤ Pϵ1−p

Let g̃i = argming∈G̃ ∥g − ai

P 1/p gi∥∞ where G̃ is the δ′-convering set of G. By definition of the
covering set,∥∥∥∥∥

M∑
i=1

aigi(x)−
M∑
i=1

P 1/pg̃i(x)

∥∥∥∥∥
∞

≤
∥∥∥∥∥

M∑
i=1

(aigi(x)− P 1/pg̃i(x))

∥∥∥∥∥
∞

+

∥∥∥∥∥
M∑

i=M+1

aigi(x)

∥∥∥∥∥
∞

≤ MP 1/pδ′ + c3Pϵ1−p.
(17)

Choosing
ϵ = (δ/2c3P)

1
1−p , δ′ ≂ P− 1

p(1−p) (δ/2c3)
1

1−p /2, (18)

we have M ≤ P
1

1−p (δ/2c3)
− p

1−p ,MP 1/pδ′ ≤ δ/2, c3Pϵ1−p ≤ δ/2, so (17) ≤ δ. One can
compute the covering number of F by

logN (F , δ) ≤ M logN (G, δ′) ≲ kM log(1/δ′) (19)

Taking (18) into (19) finishes the proof.

E PROOF OF APPROXIMATION ERROR

E.1 APPROXIMATION OF NEURAL NETWORKS TO B-SPLINE BASIS FUNCTIONS

Lemma 11. Let Mm,k,s be the B-spline of order m with scale 2−k in each dimension and position
s ∈ Rd: Mm,k,s(x) := Mm(2k(x − s)), Mm is defined in (11). There exists a parallel neural
network that has the structure and satisfy the constraint in Proposition 4 for d-dimensional input
and one output, containing M = O(md) subnetworks, each of which has width w = O(d) and
depth L = O(log(c(m, d)/ϵ)) for some constant w, c that depends only on m and d, denoted as
M̃m(x),x ∈ Rd, such that

• |M̃m,k,s(x)−Mm,k,s(x)| ≤ ϵ, if 0 ≤ 2k(xi − si) ≤ m+ 1,∀i ∈ [d],

• M̃m,k,s(x) = 0, otherwise.

• The weights in the last layer satisfy ∥a∥2/L2/L ≲ 2kmde2md/L.

Note that the product of the coefficients among all the layers are proportional to 2k, instead of 2km
when approximating truncated power basis functions. This is because the transformation from Mm

to Mm,k,s only scales the domain of the function by 2k, while the codomain of the function is not
changed. To apply the transformation to the neural network, one only need to scale weights in the
first layer by 2k, which is equivalent to scaling the weights in each layer bt 2k/L and adjusting the
bias according.

As for the proof, we follow the method developed in Yarotsky (2017); Suzuki (2018), while putting
our attention on bounding the Frobenius norm of the weights.

Lemma 12 (Yarotsky (2017, Proposition 3)). : There exists a neural network with two-dimensional
input and one output f×(x, y), with constant width and depth O(log(1/δ)), and the weight in each
layer is bounded by a global constant c1, such that

• |f×(x, y)− xy| ≤ δ, ∀ 0 ≤ x, y ≤ 1,

• f×(x, y) = 0,∀ x = 0 or y = 0.

20

Under review as a conference paper at ICLR 2023

We first prove a special case of Lemma 11 on the unscaled, unshifted B-spline basis function by
fixing k = 0, s = 0:
Proposition 13. There exists a parallel neural network that has the structure and satisfy the con-
straint in Proposition 4 for d-dimensional input and one output, containing M = ⌈(m+ 1)/2⌉d =
O(md) subnetworks, each of which has width w = O(d) and depth L = O(log(c(m, d)/ϵ)) for
some constant w, c that depends only on m and d, denoted as M̃m(x),x ∈ Rd, such that

• |M̃m(x) − Mm(x)| ≤ ϵ, if 0 ≤ xi ≤ m + 1,∀i ∈ [d], while Mm(·) denote m-th order
B-spline basis function, and c only depends on m and d.

• M̃m(x) = 0, if xi ≤ 0 or xi ≥ m+ 1 for any i ∈ [d].

• The weights in the last layer satisfy ∥a∥2/L2/L ≲ mde2md/L.

Proof. We first show that one can use a neural network with constant width w0, depth L ≂
log(m/ϵ1) and bounded norm ∥W (1)∥F ≤ O(

√
d), ∥W (ℓ)∥F ≤ O(

√
w),∀ℓ = 2, . . . , L to

approximate truncated power basis function up to accuracy ϵ1 in the range [0, 1]. Let m =∑⌈log2 m⌉
i=0 mi2

i,mi ∈ {0, 1} be the binary digits of m, and define m̄j =
∑i

j=0 mi, γ = ⌈log2 m⌉,
then for any x

xm
+ = x

m̄γ

+ ×
(
x2γ

+

)mγ

[x
m̄γ

+ , x2γ

+] = [x
m̄γ−1

+ ×
(
x2γ−1

+

)mγ−1
, x2γ−1

+ × x2γ−1

+]

. . .

[xm̄2
+ , x4

+] = [xm̄1
+ ×

(
x2
+

)m1
, x2

+ × x2
+]

[xm̄1
+ , x2

+] = [xm̄0
+ × xm0

+ , x+ × x+]

(20)

Notice that each line of equation only depends on the line immediately below. Replacing the
multiply operator × with the neural network approximation shown in Lemma 12 demonstrates the
architecture of such neural network approximation. For any x, y ∈ [0, 1], let |f×(x, y) − xy| ≤
δ, |x− x̃| ≤ δ1, |y− δy| ≤ δ2, then |f×(x̃, ỹ)− xy| ≤ δ1 + δ2 + δ. Taking this into (20) shows that
ϵ1 ≂ 2γδ ≂ mδ, where ϵ1 is the upper bound on the approximate error to truncated power basis of
order m and δ is the approximation error to a single multiply operator as in Lemma 12.

A univariate B-spline basis can be expressed using truncated power basis, and observing that it is
symmetric around (m+ 1)/2:

Mm(x) =
1

m!

m+1∑
j=1

(−1)j
(
m+ 1

j

)
(x− j)m+

=
1

m!

⌈(m+1)/2⌉∑
j=1

(−1)j
(
m+ 1

j

)
(min(x,m+ 1− x)− j)m+

=
((m+ 1)/2)m

m!

⌈(m+1)/2⌉∑
j=1

(−1)j
(
m+ 1

j

)(min(x,m+ 1− x)− j

(m+ 1)/2

)m
+
,

A multivariate (d-dimensional) B-spline basis function can be expressed as the product of truncated
power basis functions and thus can be decomposed as

Mm(x) =

d∏
i=1

Mm(xi)

=
((m+ 1)/2)md

(m!)d

d∏
i=1

(⌈(m+1)/2⌉∑
j=1

(−1)j
(
m+ 1

j

)(min(xi,m+ 1− x)− j

(m+ 1)/2

)m
+

)

=
((m+ 1)/2)md

(m!)d

⌈(m+1)/2⌉∑
j1,...,jd=1

d∏
i=1

(−1)ji
(
m+ 1

ji

)(min(x,m+ 1− x)− ji
(m+ 1)/2

)m
+

(21)

21

Under review as a conference paper at ICLR 2023

Using Lemma 12, one can construct a parallel neural network containing M = ⌈(m + 1)/2⌉d =
O(md) subnetworks, and each subnetwork corresponds to one polynomial term in (21). Using the
results above, the approximation of this constructed neural network can be bounded by

((m+ 1)/2)md

(m!)d

⌈(m+1)/2⌉∑
j1,...,jd=1

d∏
i=1

(−1)ji
(
m+ 1

ji

)
ϵ1 ≲ emdϵ1

where we applied Stirling’s approximation and δ and ϵ1 has the same definition as above. Choosing
δ = ϵ

d(e2m
√
m+1)

, and recall ϵ1 ≂ mδ proves the approximation error.

To bound the norm of the factors ∥a∥2/L2/L, first observe that

|aj1,...,jd | =
((m+ 1)/2)md

(m!)d
1

(m+ 1)/2

d∏
i=1

(
m+ 1

ji

)
≤ ((m+ 1)/2)md

(m!)d
2md

(m+ 1)/2
= O(emd)

where the first inequality is from
(
m+1
ji

)
≤ 2m+1, the last equality is from Stirling’s appropximation.

Finally,

∥a∥2/L2/L ≤ md max
j

|aj |2/L ≲ mde2md/L

which finishes the proof.

The proof of the Lemma 11 for general k, s follows by appending one more layer in the front, as we
show below.

Proof of Lemma 11. Using the neural network proposed in Proposition 13, one can construct a neu-
ral network for appropximating Mm,k,s by adding one layer before the first layer:

σ(2kIdx− 2ks)

The unused neurons in the first hidden layer is zero padded. The Frobenius norm of the weight is
2k∥Id∥F = 2k

√
d. Following the proof of Proposition 4, rescaling the weight in this layer by 2−k,

and the weight matrix in the last layer by 2k, and scaling the bias properly, one can verify that this
neural network satisfy the statement.

E.2 SPARSE APPROXIMATION OF BESOV FUNCTIONS USING B-SPLINE WAVELETS

Proposition 7. Let α − d/p > 1, r > 0. For any function in Besov space f0 ∈ Bα
p,q and any

positive integer M̄ , there is an M̄ -sparse approximation using B-spline basis of order m satisfying
0 < α < min(m,m− 1 + 1/p): f̌M̄ =

∑M̄
i=1 aki,siMm,ki,si for any positive integer M̄ such that

the approximation error is bounded as ∥f̌M̄ − f0∥r ≲ M̄−α/d∥f0∥Bα
p,q

, and the coefficients satisfy

∥{2kiaki,si
}ki,si

∥p ≲ ∥f0∥Bα
p,q

.

The proof is divided into three steps:

1. Bound the 0-norm and the 1-norm of the coefficients of B-spline basis in order to approxi-
mate an arbitrary function in Besov space up to any ϵ > 0.

2. Bound p-norm of the coefficients of B-spline basis functions where 0 < p < 1 using the
results above .

3. Add the approximation to neural network to B-spline basis computed in ?? into Step 2.

22

Under review as a conference paper at ICLR 2023

Proof. Dũng (2011, Theorem 3.1) Suzuki (2018, Lemma 2) proposed an adaptive sampling recovery
method that approximates a function in Besov space. The method is divided into two cases: when
p ≥ r, and when p < r.

When p ≥ r, there exists a sequence of scalars λj , j ∈ P d(µ), Pd(µ) := {j ∈ Zd : |ji| ≤ µ,∀i ∈
d} for some positive µ, for arbitrary positive integer k̄, the linear operator

Qk̄(f,x) =
∑

s∈J(k̄,m,d)

ak̄,s(f)Mk̄,s(x), ak̄,s(f) =
∑

j∈Zd,Pd(µ)

λj f̄(s+ 2−k̄j)

has bounded approximation error

∥f −Qk̄(f, x)∥r ≤ C2−αk̄∥f∥Bα
p,q

,

where f̄ is the extrapolation of f , J(k̄,m, d) := {s : 2k̄s ∈ Zd,−m/2 ≤ 2k̄si ≤ 2k̄ +m/2,∀i ∈
[d]}. See Dũng (2011, 2.6-2.7) for the detail of the extrapolation as well as references for options of
sequence λj .

Furthermore, Qk̄(f) ∈ Bα
p,q so it can be decomposed in the form (10) with M =

∑k̄
k=0(2

k +m−
1)d ≲ 2k̄d components and ∥{c̃k,s}k,s∥ ≲ ∥Qk̄(f)∥Bα

p,q
≲ ∥f∥Bα

p,q
where c̃k,s is the coefficients of

the decomposition of Qk̄(f). Choosing k̄ ≂ log2 M/d leads to the desired approximation error.

On the other hand, when p < r, there exists a greedy algorithm that constructs

G(f) = Qk̄(f) +

k∗∑
k=k̄+1

nk∑
j=1

ck,sj (f)Mk,sj

where k̄ ≂ log2(M), k∗ = [ϵ−1 log(λM)] + k̄ + 1, nk = [λM2−ϵ(k−k̄)] for some 0 < ϵ <
α/δ − 1, δ = d(1/p− 1/r), λ > 0, such that

∥f −G(f)∥r ≤ M̄−α/d∥f∥Bα
p,q

and
k̄∑

k=0

(2k +m− 1)d +

k∗∑
k=k̄+1

nk ≤ M̄.

See Dũng (2011, Theorem 3.1) for the detail.

Finally, since α− d/p > 1,

∥{2kicki,si
}ki,si

∥p ≤
k̄∑

k=0

2k∥{cki,si
}si

∥p

=

k̄∑
k=0

2(1−(α−d/p))k(2(α−d/p)k∥{cki,si}si∥p)

≲
k̄∑

k=0

2(1−(α−d/p))k∥f∥Bα
p,q

≂ ∥f∥Bα
p,q

(22)

where the first line is because for arbitrary vectors ai, i ∈ [n], ∥∑n
i=1 ai∥p ≤ ∑n

i=1 ∥ai∥p, the
third line is because the sequence norm of B-spline decomposition is equivalent to the norm in
Besov space (see Section C.1) .

Note that when α − d/p = 1, the sequence norm (22) is bounded (up to a factor of constant) by
k∗∥f∥Bα

p,q
, which can be proven by following (22) except the last line. This adds a logarithmic term

with respect to M̄ compared with the result in Proposition 7. This will add a logarithmic factor to
the MSE. We will not focus on this case in this paper of simplicity.

23

Under review as a conference paper at ICLR 2023

E.3 SPARSE APPROXIMATION OF BESOV FUNCTIONS USING PARALLEL NEURAL NETWORKS

Theorem 8. Under the same condition as Proposition 7, for any positive integer M̄ , any function
in Besov space f0 ∈ Bα

p,q can be approximated by a parallel neural network with no less than
O(mdM̄) number of subnetworks satisfying:

1. Each subnetwork has width w = O(d) and depth L.

2. The weights in each layer satisfy ∥W̄(ℓ)
k ∥F ≤ O(

√
w) except the first layer ∥W̄(1)

k ∥F ≤
O(

√
d),

3. The scaling factors have bounded 2/L-norm: ∥{aj}∥2/L2/L ≲ mde2md/LM̄1−2/(pL).

4. The approximation error is bounded by

∥f̃ − f0∥r ≤ (c4M̄
−α/d + c5e

−c6L)∥f∥Bα
p,q

where c4, c5, c6 are constants that depend only on m, d and p.

We first prove the following lemma.

Lemma 14. For any a ∈ RM̄ , 0 < p′ < p, it holds that:

∥a∥p
′

p′ ≤ M̄1−p′/p∥a∥p′

p .

Proof.

∑
i

|ai|p
′
= ⟨1, |a|p′⟩ ≤

(∑
i

1

)1− p′
p
(∑

i

(|ai|p
′
)

p
p′

) p′
p

= M̄1− p′
p ∥a∥p′

p

The first inequality uses a Holder’s inequality with conjugate pair p
p′ and 1/(1− p′

p).

Proof of Theorem 8. Using Proposition 7, one can construct M̄ number of PNN each O(md) sub-
networks according to Lemma 11, and in each PNN, such that each PNN represents one B-spline
basis function.The weights in the last layer of each PNN is scaled to match the coefficients in Propo-
sition 7. Taking p′ in Lemma 14 as 2/L and combining with Lemma 11 finishes the proof.

F PROOF OF THE MAIN THEOREM

Theorem 1 extended form. For any fixed α− d/p > 1, q ≥ 1, L ≥ 3, for any f0 ∈ Bα
p,q , given an

L-layer parallel neural network satisfying

• The width of each subnetwork is fixed and large enough: w ≳ d. See Theorem 8 for the
detail.

• The number of subnetworks is large enough: M ≳ mdn
1−2/L

2α/d+1−2/(pL) where m = ⌈α− 1⌉.

With proper choice of the parameter of weight decay λ, the solution f̂ parameterized by (2) satisfies

MSE(f̂) = Õ

((w4−4/LL2−4/L

n1−2/L

) 2α/d
2α/d+1−2/(pL)

+ e−c6L

)
where Õ shows the scale up to a logarithmic factor, and c6 is the constant defined in Theorem 8.

Proof. First recall the relationship between covering number (entropy) and estimation error:

Proposition 15. Let F ⊆ {Rd → [−F, F]} be a set of functions. Assume that F can be decomposed
into two orthogonal spaces F = F∥ × F⊥ where F⊥ is an affine space with dimension of N. Let
f0 ∈ {Rd → [−F, F]} be the target function and f̂ be the least squares estimator in F:

f̂ = argmin
f∈F

n∑
i=1

(yi − f(xi))
2, yi = f0(xi) + ϵi, ϵi ∼ N (0, σ2)i.i.d.,

24

Under review as a conference paper at ICLR 2023

then it holds that

MSE(f̂) ≤ Õ
(
argmin

f∈F
MSE(f) +

N + logN (F∥, δ) + 2

n
+ (F + σ)δ

)
.

The proof of Proposition 15 is defered to the section below. We choose F as the set of functions
that can be represented by a parallel neural network as stated, the (null) space F⊥ = {f : f(x) =
constant} be the set of functions with constant output, which has dimension 1. This space captures
the bias in the last layer, while the other parameters contributes to the projection in F∥. See Sec-
tion D.2 for how we handle the bias in the other layers. One can find that F∥ is the set of functions
that can be represented by a parallel neural network as stated, and further satisfy

∑n
i=1 f(xi) = 0.

Because F∥ ⊆ F , N (F∥, δ) ≤ N (F , δ) for all δ > 0, and the latter is studied in Theorem 5.

In Theorem 1, the width of each subnetwork is no less than what is required in Theorem 8, while the
depth and norm constraint are the same, so the approximation error is no more that that in Theorem 8.
Choosing r = 2, p = 2/L, and taking Theorem 5 and Theorem 8 into this Proposition 15, one gets

MSE(f̂) ≲ M̄−2α/d +
w2+2/(1−2/L)L2

n
M̄

1−2/(pL)
1−2/L δ−

2/L
1−2/L (log(M̄/δ) + 3) + δ,

where ∥f∥Bα
p,q

,m and d taken as constants. The stated MSE is obtained by choosing

δ ≂
w4−4/LL2−4/LM̄1−2/(pL)

n1−2/L
, M̄ ≂

(n1−2/L

w4−4/LL2−4/L

) 1
2α/d+1−2/(pL)

Note that there exists a weight decay parameter λ′ such that the (2/L)-norm of the coefficients
of the parallel neural network satisfy that ∥{aj}∥2/L2/L = mde2md/L∥{ãj,M̄}∥2/L2/L where {ãj,M̄}
is the coefficient of the particular M̄ -sparse approximation, although {aj} is not necessarily M̄
sparse. Empirically, one only need to guarantee that during initialization, the number of subnetworks
M ≥ M̄ such that the M̄ -sparse approximation is feasible, thus the approximation error bound
from Theorem 8 can be applied. Theorem 8 also says that ∥{aj}∥2/L2/L = mde2md/L∥{ãj,M̄}∥2/L2/L ≲

M̄1−2/pL, thus we can apply the covering number bound from Theorem 5 with P ′ = M̄1−2/pL.
Finally, if λ is optimally chosen, then it achieves a smaller MSE than this particular λ′, which has
been proven to be no more than O(M̄−α/d) and completes the proof.

Proof of Proposition 15. For any function f ∈ F , define f⊥ = argminh∈F⊥

∑n
i=1(f(xi) −

h(xi))
2 be the projection of f to F⊥, and define f∥ = f − f⊥ be the projection to the orthogo-

nal complement. Note that f∥ is not necessarily in F∥. However, if f ∈ F , then f∥ ∈ F∥. yi⊥ and
yi∥ are defined by creating a function fy such that fy(xi) = yi,∀i, e.g. via interpolation. Because
F∥ and F⊥ are orthononal, the empirical loss and population loss can be decomposed in the same
way:

L∥(f) =
1

n

n∑
i=1

(f∥(x)− f0∥(x))
2 +

n−N

n
σ2, L⊥(f) =

1

n

n∑
i=1

(f⊥(x)− f0⊥(x))
2 +

N

n
σ2,

L̂∥(f) =
1

n

n∑
i=1

(f∥(x)− yi∥)
2, L̂⊥(f) =

1

n

n∑
i=1

(f⊥(x)− yi⊥(x))
2,

MSE∥(f) = ED

[1
n

n∑
i=1

(f∥(x)− f0∥(x))
2
]
, MSE⊥(f) = ED

[1
n

n∑
i=1

(f⊥(x)− f0⊥(x))
2
]
,

such that L(f) = L∥(f) + L⊥(f), L̂(f) = L̂∥(f) + L̂⊥(f). This can be verified by de-
composing f̂ , f0 and y into two orthogonal components as shown above, and observing that∑n

i=1 f1⊥(xi)f2∥(xi) = 0,∀f1, f2.

First prove the following claim

25

Under review as a conference paper at ICLR 2023

Claim 16. Assume that f̂ = argminf∈F L̂(f) is the empirical risk minimizer. Then f̂⊥ =

argminf∈F⊥
L̂⊥(f), f̂∥ = argminf∈F∥

L̂∥(f), where f̂⊥ is the projections of f̂ in F⊥, and

f̂∥ = f̂ − f̂⊥ respectively.

Proof. Since f̂ ∈ F , by definition f̂∥ ∈ F∥. Assume that there exist f̂ ′
⊥, f̂

′
∥, and either L̂⊥(f̂

′
⊥) <

L̂⊥(f̂⊥), or L̂∥(f̂
′
∥) < L̂∥(f̂∥). Then

L̂(f̂ ′) = L̂(f̂ ′
⊥ + f̂ ′

∥) = L̂∥(f̂
′
⊥ + f̂ ′

∥) + L̂⊥(f̂
′
⊥ + f̂ ′

∥) = L̂∥(f̂
′
∥) + L̂⊥(f̂

′
⊥)

< L̂∥(f̂∥) + L̂⊥(f̂⊥) = L̂∥(f̂⊥ + f̂∥) + L̂⊥(f̂⊥ + f̂∥) = L̂(f̂)

which shows that f̂ is not the minimizer of L̂(f) and violates the assumption.

Then we bound MSE⊥(f). We convert this part into a finite dimension least square problem:

f̂⊥ = argmin
f∈F⊥

L̂⊥(f)

= argmin
f∈F⊥

1

n

n∑
i=1

(f(xi)− f0⊥(xi)− ϵi⊥)
2

= argmin
f∈F⊥

1

n

n∑
i=1

(f(xi)− f0⊥(xi)− ϵi⊥)
2 + ϵ2i∥

= argmin
f∈F⊥

1

n

n∑
i=1

(f(xi)− f0⊥(xi)− ϵi⊥ − ϵi∥)
2

= argmin
f∈F⊥

1

n

n∑
i=1

(f(xi)− f0⊥(xi)− ϵi)
2

The forth line comes from our assumption that F⊥ is orthogonal to F∥, so ∀f ∈ F⊥, f + f0⊥ + ϵ⊥
is orthogonal to ϵ∥.

Let the basis function of F⊥ be h1, h2, . . . , hN , the above problem can be reparameterized as

argmin
θ∈RN

1

n
∥Xθ − y∥2

where X ∈ Rn×N : Xi = hj(xi),y = y0⊥ + ϵ,y0⊥ = [f0⊥(x1), . . . , f0⊥(xn)], ϵ = [ϵ1, . . . , ϵn].
This problem has a closed-form solution

θ = (XTX)−1XTy

Observe that f0⊥ ∈ F⊥, let y0⊥ = Xθ∗,The MSE of this problem can be computed by

L(f̂⊥) =
1

n
∥Xθ − y0⊥∥2 =

1

n
∥X(XTX)−1XT (Xθ∗ + ϵ)−Xθ∗∥2

=
1

n
∥X(XTX)−1XT ϵ∥2

Observing that Π := X(XTX)−1XT is an idempotent and independent projection whose rank is
N , and that E[ϵϵT] = σ2I, we get

MSE⊥(f̂⊥) = E[L(f̂⊥)] =
1

n
∥Πϵ∥2 =

1

n
tr(ΠϵϵT) =

σ2

n
tr(Π)

which concludes that
MSE⊥(f̂) = O

(N
n
σ2
)
. (23)

See also (Hsu et al., 2011, Proposition 1).

26

Under review as a conference paper at ICLR 2023

Next we study MSE∥(f̂). Denote σ̃2
∥ = 1

n

∑n
i=1 ϵ

2
i∥, E = maxi |ϵi|. Using Jensen’s inequality and

union bound, we have

exp(tE[E]) ≤ E[exp(tE)] = E[max exp(t|ϵi|)] ≤
n∑

i=1

E[exp(t|ϵi|)] ≤ 2n exp(t2σ2/2)

Taking expectation over both sides, we get

E[E] ≤ log 2n

t
+

tσ2

2

maximizing the right hand side over t yields

E[E] ≤ σ
√

2 log 2n.

Let F̃∥ be the covering set of F∥ = {f∥ : f ∈ F}. For any f̃∥ ∈ F̃∥,

L∥(fj)− L̂∥(fj) =
1

n

n∑
i=1

(fj∥(xi)− f0∥(xi))
2 − 1

n

n∑
i=1

(f̃∥(xi)− yi∥)
2 +

n−N

n
σ2

=
1

n

n∑
i=1

ϵi∥(2f̃∥(xi)− f0∥(xi)− yi∥) +
n−N

n
σ2

=
1

n

n∑
i=1

ϵi(2f̃∥(xi)− f0∥(xi)− yi∥) +
n−N

n
σ2

=
1

n

n∑
i=1

ϵi(2f̃∥(xi)− 2f0∥(xi)) +
n−N

n
σ2 − σ̃2

∥

The first term can be bounded using Bernstein’s inequality: let hi = ϵi(fj∥(xi) − f0∥(xi)), by
definition |hi| ≤ 2EF ,

Var[hi] = E[ϵ2i (f̃∥(xi)− f0∥(xi))
2]

= (f̃∥(xi)− f0∥(xi))
2E[ϵ2i]

= (f̃∥(xi)− f0∥(xi))
2σ2

using Bernstein’s inequality, for any f̃∥ ∈ F̃∥, with probably at least 1− δp,

1

n

n∑
i=1

ϵi(2f̃∥(xi)− 2f0∥(xi)) =
2

n

n∑
i=1

hi

≤ 2

n

√√√√2

n∑
i=1

(
f̃∥(xi)− f0∥(xi)

)2
σ2 log(1/δp) +

8EF log(1/δp)

3n

= 2

√(
L∥(f̃∥)−

n−N

n
σ2
)2σ2 log(1/δp)

n
+

8EF log(1/δp)

3n

≤ ϵ
(
L∥(f̃∥)−

n−N

n
σ2
)
+

8σ2 log(1/δp)

nϵ
+

8EF log(1/δp)

3n

the last inequality holds true for all ϵ > 0. The union bound shows that with probably at least 1− δ,
for all f̃∥ ∈ F̃∥,

L∥(f̃∥)− L̂∥(f̃∥) ≤ ϵ
(
L∥(f̃∥)−

n−N

n
σ2
)
+

8σ2 log(N (F∥, δ)/δp)

nϵ
+

8EF log(N (F∥, δ)/δp)

3n

+
n−N

n
σ2 − σ̃2

∥.

By rearanging the terms and using the definition of L(f̃∥), we get

(1− ϵ)
(
L∥(f̃∥)−

n−N

n
σ2
)
≤ L̂∥(f̃∥) +

8σ2 log(N (F∥, δ)/δp)

nϵ
+

8EF log(N (F∥, δ)/δp)

3n
− σ̃2

∥.

27

Under review as a conference paper at ICLR 2023

Taking the expectation (over D) on both sides, and notice that E[σ̃2
∥] =

n−N
n σ2. Furthermore, for

any random variable X,E[X] =
∫∞
−∞ xdP (X ≤ x), we get

max
f̃∥∈F̃∥

(
(1− ϵ)MSE∥(f̃∥)− E[L̂∥(f̃∥)]

)
≤
(8σ2

nϵ
+

8Fσ
√
2 log 2n

3n

)(
logN (F∥, δ)−

∫ 1

δ=0

log(δp)dδp

)
− n−N

n
σ2

=
(8σ2

nϵ
+

8Fσ
√
2 log 2n

3n

)
(logN (F∥, δ) + 1)− n−N

n
σ2.

(24)

where the integration can be computed by replacing δ with ex. Though it is not integrable under
Riemann integral, it is integrable under Lebesgue integration.

Similarly, let f̌∥ = argminf∈F∥
L∥(f),

L∥(f̌∥)− L̂∥(f̌∥) =
1

n

n∑
i=1

ϵi(2f̌∥(xi)− 2f0∥(xi)) +
n−N

n
σ2 − σ̃2

∥

with probably at least 1− δq , for any ϵ > 0,

− 1

n

n∑
i=1

ϵi(2f̌∥(xi)− 2f0∥(xi)) ≤ ϵ
(
L∥(f̌∥)−

n−N

n
σ2
)
+

8σ2 log(1/δp)

nϵ
+

8EF log(1/δp)

3n
,

L̂∥(f̌∥) ≤ (1 + ϵ)
(
L∥(f̌∥)−

n−N

n
σ2
)
+

8σ2 log(1/δp)

nϵ
+

8EF log(1/δq)

3n
+ σ̃2

∥.

Taking the expectation on both sides,

E[L̂∥(f̌∥)] ≤ (1 + ϵ)MSE∥(f̌∥) +
8σ2

nϵ
+

8Fσ
√
2 log 2n

3n
+

n−N

n
σ2. (25)

Finally, let f̂∗ := argminf∈F̃∥

∑n
i=1(f̂∥(xi) − f(xi))

2 be the projection of f̂∥ in its δ-covering
space,

MSE∥(f̂∥) = E
[1
n

n∑
i=1

(f̂∥(xi)− f0∥(xi))
2
]

= E
[1
n

n∑
i=1

(f̂∗(xi)− f0∥(xi))
2 +

1

n

n∑
i=1

(f̂∥(xi)− f̂∗(xi))(f̂∥(xi) + f̂∗(xi)− 2f0∥(xi))
]

≤ E
[1
n

n∑
i=1

(f̂∗(xi)− f0∥(xi))
2
]
+ 4Fδ

= MSE∥(f̂∗(xi)) + 4Fδ,

and similarly

L̂∥(f̂∗) ≤ L̂∥(f̂∥) + (4F + 2E)δ. (26)

28

Under review as a conference paper at ICLR 2023

We can conclude that

MSE∥(f̂∥) ≤
1

1− ϵ

(
E[L̂∥(f̂∗)] +

(8σ2

nϵ
+

8Fσ
√
2 log 2n

3n

)
(logN (F∥, δ) + 1)− n−N

n
σ2
)

+ 4Fδ

≤ 1

1− ϵ

(
E[L̂∥(f̂∥)] + (4F + σ

√
8 log 2n)δ

+
(8σ2

nϵ
+

8Fσ
√
2 log 2n

3n

)
(logN (F∥, δ) + 1)− n−N

n
σ2
)
+ 4Fδ

≤ 1

1− ϵ

(
E[L̂∥(f̌∥)] + (4F + σ

√
8 log 2n)δ

+
(8σ2

nϵ
+

8Fσ
√
2 log 2n

3n

)
(logN (F∥, δ) + 1)− n−N

n
σ2
)
+ 4Fδ

≤ 1 + ϵ

1− ϵ
MSE∥(f̌∥) +

1

n

(8σ2

ϵ
+

8Fσ
√
2 log 2n

3

)(logN (F∥, δ) + 2

1− ϵ

)
+
(
4F +

4F + σ
√
8 log 2n

1− ϵ

)
δ,

where the first line comes from (24), and second comes from (26), the thid line is because
f̂∥ = argminf∈F∥

L̂∥(f), and the last line comes from (25). We also use that fact that L̂∥(f̂) ≤
L̂∥(f),∀f . Noticing that MSE(f̂) = MSE∥(f̂) + MSE⊥(f̂), combining this with (23) finishes the
proof.

G DETAILED EXPERIMENTAL SETUP

G.1 TARGET FUNCTIONS

The doppler function used in Figure 3(d)-(f) is
f(x) = sin(4/(x+ 0.01)) + 1.5.

The “vary” function used in Figure 3(g)-(i) is
f(x) = M1(x/0.01) +M1((x− 0.02)/0.02) +M1((x− 0.06)/0.03)

+M1((x− 0.12)/0.04) +M3((x− 0.2)/0.02) +M3((x− 0.28)/0.04)

+M3((x− 0.44)/0.06) +M3((x− 0.68)/0.08),

where M1,M3 are first and third order Cardinal B-spline bases functions respectively. We uni-
formly take 256 samples from 0 to 1 in the piecewise cubic function experiment, and uniformly
1000 samples from 0 to 1 in the doppler function and “vary” function experiment. We add zero
mean independent (white) Gaussian noise to the observations. The standard derivation of noise is
0.4 in the doppler function experiment and 0.1 in the “vary” function experiment.

G.2 TRAINING/FITTING METHOD

In the piecewise polynomial function (“vary”) experiment, the depth of the PNN L = 10, the width
of each subnetwork w = 10, and the model contains M = 500 subnetworks. The depth of NN is also
10, and the width is 240 such that the NN and PNN have almost the same number of parameters. In
the doppler function experiment, the depth of the PNN L = 12, the width of each subnetwork w =
10, and the model contains M = 2000 subnetworks, because this problem requires a more complex
model to fit. The depth of NN is 12, and the width is 470. We used Adam optimizer with learning rate
of 10−3. We first train the neural network layer by layer without weight decay. Specifically, we start
with a two-layer neural network with the same number of subnetworks and the same width in each
subnetwork, then train a three layer neural network by initializing the first layer using the trained
two layer one, until the desired depth is reached. After that, we turn the weight decay parameter and
train it until convergence. In both trend filtering and smoothing spline experiment, the order is 3,
and in wavelet denoising experiment, we use sym4 wavelet with soft thresholding. We implement
the trend filtering problem according to Tibshirani (2014) using CVXPY, and use MOSEK to solve
the convex optimization problem. We directly call R function smooth.spline to solve smoothing
spline.

29

Under review as a conference paper at ICLR 2023

G.3 POST PROCESSING

The degree of freedom of smoothing spline is returned by the solver in R, which is rounded to the
nearest integer when plotting. To estimate the degree of freedom of trend filtering, for each choice
of λ, we repeated the experiment for 10 times and compute the average number of nonzero knots as
estimated degree of freedom. For neural networks, we use the definition (Tibshirani, 2015):

2σ2df = E∥y′ − ŷ∥22 − E∥y − ŷ∥22 (27)

where df denotes the degree of freedom, σ2 is the variance of the noise, y are the labels, ŷ are
the predictions and y′ are independent copy of y. We find that estimating (27) directly by sampling
leads to large error when the degree of freedom is small. Instead, we compute

2σ2d̂f = Ê∥y0 − ŷ∥22 − Ê∥y − ŷ∥22 + Ê∥y − ȳ0∥22 − ∥y0 − ȳ0∥22 (28)

where d̂f is the estimated degree of freedom, E denotes the empirical average (sample mean), y0 is
the target function and ȳ0 is the mean of the target function in its domain.

Proposition 17. The expectation of (28) over the dataset D equals (27).

Proof.
2σ2d̂f = ED[Ê∥y0 − ŷ∥22 − Ê∥y − ŷ∥22 + Ê∥y − ȳ0∥22 − ∥y0 − ȳ0∥22]

= E∥y0 − ŷ∥22 − E∥y − ŷ∥22 + ED[Ê[(y − y0)(y + y0 − 2ȳ0)]]

= E∥y0 − ŷ∥22 − E∥y − ŷ∥22 + E
[n∑

i=1

ϵi(2yi + ϵi − 2ȳ0)
]

= E∥y0 − ŷ∥22 − E∥y − ŷ∥22 + nσ2

= E∥y′ − ŷ∥22 − E∥y − ŷ∥22
where D denotes the dataset. In the third line, we make use of the fact that E[ϵi] = 0,E[ϵ2i] = σ2,

and in the last line, we make use of E[ϵ′i] = 0,E[ϵ′i
2
] = σ2, and ϵ′i are independent of yi and y0,i

One can easily check that a “zero predictor” (a predictor that always predict ȳ0, and it always predicts
0 if the target function has zero mean) always has an estimated degree of freedom of 0.

In Figure 3(h)(i), we take the minimum MSE over different choices of λ, and plot the average over
10 runs. Due to optimization issue, sometimes the neural networks are stuck at bad local minima
and the empirical loss is larger than the global minimum by orders of magnitude. To deal with this
problem, in Figure 3(h)(i), we manually detect these results by removing the experiments where
the MSE is larger than 1.5 times the average MSE under the same setting, and remove them before
computing the average.

G.4 MORE EXPERIMENTAL RESULTS

G.4.1 REGULARIZATION WEIGHT VS DEGREE-OF-FREEDOM

As we explained in the previous section, the degree of freedom is the exact information-theoretic
measure of the generalization gap. A Larger degree-of-freedom implies more overfitting.

In figure Figure 4, we show the relationship between the estimated degree of freedom and the scaling
factor of the regularizer λ in a parallel neural network and in trend filtering. As is shown in the
figure, generally speaking as λ decreases towards 0, the degree of freedom should increase too.
However, for parallel neural networks, if λ is very close to 0, the estimated degree of freedom will
not increase although the degree of freedom is much smaller than the number of parameters —
actually even smaller than the number of subnetworks. Instead, it actually decreases a little. This
effect has not been observed in other nonparametic regression methods, e.g. trend filtering, which
overfits every noisy datapoint perfectly when λ → 0. But for the neural networks, even if we do
not regularize at all, the among of overfitting is still relatively mild 30/256 vs 80/1000. In our
experiments using neural networks, when λ is small, we denoise the estimated degree of freedom
using isotonic regression.

30

Under review as a conference paper at ICLR 2023

10 8 10 7 10 6 10 5 10 4 10 3 10 2
0

25

50

75

100

125

150

175

200

De
gr

ee
 o

f f
re

ed
om

(a)

10 8 10 7 10 6 10 5 10 4 10 3 10 2
0

50

100

150

200

250

300

De
gr

ee
 o

f f
re

ed
om

(b)

10 11 10 10 10 9 10 8
0

50

100

150

200

250

De
gr

ee
 o

f f
re

ed
om

(c)

10 10 10 9 10 8 10 7 10 6 10 5
0

100

200

300

400

500

De
gr

ee
 o

f f
re

ed
om

(d)

Figure 4: The relationship between degree of freedom and the scaling factor of the regularizer λ.
The solid line shows the result after denoising. (a)(b)in a parallel NN. (c)(d) In trend filtering. (a)(c):
the “vary” function. (b)(d) the doppler function.

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

Neural network
Observation
Target function
prediction

(a)
0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

Smoothing spline
Observation
Target function
Prediction

(b)
0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

Parallel neural network
Observation
Target function
prediction

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

Trend filtering
Observation
Target function
prediction

(d)
0.0 0.2 0.4 0.6 0.8 1.0

0

1

2

3

Wavelet denoising
Observation
Target function
Prediction

(e)
0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Output of each subnetwork

(f)

Figure 5: More experiments results of Doppler function.

We do not know the exact reason of this curious observation. Our hypothesis is that it might be
related to issues with optimization, i.e., the optimizer ends up at a local minimum that generalizes
better than a global minimum; or it could be connected to the “double descent” behavior of DNN
(Nakkiran et al., 2021) under over-parameterization.

G.4.2 DETAILED NUMERICAL RESULTS

In order to allow the readers to view our result in detail, we plot the numerical experiment results of
each method separately in Figure 5 and Figure 6.

31

Under review as a conference paper at ICLR 2023

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Neural network

Observation
Target function
prediction

(a)
0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Wavelet denoising

Observation
Target function
Prediction

(b)
0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Parallel neural network

Observation
Target function
prediction

(c)

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Trend filtering

Observation
Target function
prediction

(d)
0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Smoothing spline

Observation
Target function
Prediction

(e)
0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.0

0.2

0.4

0.6

0.8
Output of each subnetwork

(f)

Figure 6: More experiments results of the “vary” function.

G.4.3 PRACTICAL EQUIVALENCE BETWEEN THE WEIGHT-DECAYED TWO-LAYER NN AND
L1-TREND FILTERING

In this section we investigate the equivalence of two-layer NN and the locally adaptive regression
splines from Section B. In the special case when m = 1 the special regularization reduces to weight
decay and the non-standard truncated power activation becomes ReLU. We compare L1 trend filter-
ing (Kim et al., 2009) (shown to be equivalent to locally adaptive regression splines by Tibshirani
(2014)) and an overparameterized version of the neural network for all regularization parameter
λ > 0, i.e., a regularization path. The results are shown in Figure 7. It is clear that as the weight
decay increases, it induces sparsity in the number of knots it selects similarly to L1-Trend Filtering,
and the regularization path matches up nearly perfectly even though NNs are also learning knots
locations.

32

Under review as a conference paper at ICLR 2023

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.1

0.0

0.1

0.2

0.3

y

Ground truth
Training data
weight decay = 0
weight decay = 0.001
weight decay = 0.002
weight decay = 0.003
weight decay = 0.004
weight decay = 0.005
weight decay = 0.006
weight decay = 0.007
weight decay = 0.008
weight decay = 0.009
weight decay = 0.01

0.000 0.002 0.004 0.006 0.008 0.010
weight decay

0.10

0.05

0.00

0.05

0.10

co
ef

fic
ie

nt
s

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.1

0.0

0.1

0.2

0.3

y

Ground truth
Training data
lambda = 0
lambda = 0.42
lambda = 0.84
lambda = 1.26
lambda = 1.68
lambda = 2.1
lambda = 2.52
lambda = 2.94
lambda = 3.36
lambda = 3.78
lambda = 4.2

0 1 2 3 4
lambda

0.10

0.05

0.00

0.05

0.10

co
ef

fic
ie

nt
s

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 7: Comparison of the weight decayed ReLU neural networks (Top row) and L1 Trend
Filtering (Bottom row) with different regularization parameters. The left column shows the fitted
functions and the right column shows the regularization path (in the flavor of Friedman et al. (2010))
of the coefficients of the truncated power basis at individual data points (the free-knots learned by
NN are snapped to the nearest input x to be comparable).

33

	Introduction
	Preliminary
	Notation and Problem Setup.
	Besov Spaces and Bound Variation Space

	Main Results: Parallel ReLU DNNs
	Proof Overview
	Equivalence to p Sparse Regression
	Estimation Error Analysis
	Approximation Error Analysis

	Experiment
	Conclusion and Discussion
	Other related works
	Two-layer Neural Network with Truncated Power Activation Functions
	Introduction To Common Function Classes
	Besov Class
	Other Function Spaces

	Proof of Estimation Error
	Equivalence Between Parallel Neural Networks and p-norm Penalized Problems
	Covering Number of Parallel Neural Networks
	Covering Number of p-Norm Constrained Linear Combination

	Proof of Approximation Error
	Approximation of Neural Networks to B-spline Basis Functions
	Sparse approximation of Besov functions using B-spline wavelets
	Sparse approximation of Besov functions using Parallel Neural Networks

	Proof of the Main Theorem
	Detailed experimental setup
	Target Functions
	Training/Fitting Method
	Post Processing
	More experimental results
	Regularization weight vs degree-of-freedom
	Detailed numerical results
	Practical equivalence between the weight-decayed two-layer NN and L1-Trend Filtering

