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Instance-Level Panoramic Audio-Visual Saliency Detection and
Ranking

Anonymous Authors

ABSTRACT
Panoramic audio-visual saliency detection is to segment the most
attention-attractive regions in 360° panoramic videos with sound.
To meticulously delineate the detected salient regions and effec-
tively model human attention shift, we extend this task to more
fine-grained instance scenarios: identifying salient object instances
and inferring their saliency ranks. In this paper, we propose the first
instance-level framework that can simultaneously be applied to
segmentation and ranking of multiple salient objects in panoramic
videos. Specifically, it consists of a distortion-aware pixel decoder
to overcome panoramic distortions, a sequential audio-visual fusion
module to integrate audio-visual information, and a spatio-temporal
object decoder to separate individual instances and predict their
saliency scores. Moreover, owing to the absence of such annota-
tions, we create the ground-truth saliency ranks for the PAVS10K
benchmark. Extensive experiments demonstrate that our model is
capable of achieving state-of-the-art performance on the PAVS10K
for both saliency detection and ranking tasks. The code and dataset
will be released soon.

CCS CONCEPTS
• Computing methodologies→ Video segmentation.

KEYWORDS
Audio-visual Fusion, Saliency Detection and Ranking, Panoramic
Video, Contrastive Learning, Transformer

1 INTRODUCTION
Recent years have witnessed a burgeoning interest in audio-visual
salient object detection (AV-SOD) [2], with the aim of locating video
regions that are noticeable and eye-attracting from both visual and
audio sources. To study human attention in 360° panoramic real-life
environment, [45] establish the first large-scale 360° video dataset
and formulates this task as a pixel-wise binary prediction task. Due
to being unaware of individual instances of salient objects, we refer
to the task as object-level panoramic audio-visual salient object
detection (PAV-SOD) in Fig. 1 (b).

Humans, however, are demonstrated to have the ability to iden-
tify object instances in the detected salient regions and shift at-
tention from one instance to another when viewing a video of a
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(a) Input Video Frame (b) Object-level PAV-SOD

(c) Instance-level PAV-SOD (d) Instance-level PAV-SOR

Rank-1 Rank-2 Rank-3 Rank-4 Rank-5

Figure 1: Comparison of different panoramic audio-visual
saliency tasks. (b) Object-level panoramic audio-visual
salient object detection (PAV-SOD) only requires binary seg-
mentation. (c) Instance-level PAV-SOD segments individual
salient instances. (d) Instance-level panoramic audio-visual
salient object ranking (PAV-SOR) further predicts the relative
saliency ranks of different salient instances. Different colors
denote different object instances.

complex scene. Modeling this ability is crucial for the understand-
ing of how humans interpret videos, and facilitates a wide range of
multi-modal applications, e.g., virtual reality, autonomous driving,
robot navigation, robot-human interactions. Following this idea, in
this paper, we introduce two novel tasks: instance-level panoramic
audio-visual salient object detection and ranking, namely instance-
level PAV-SOD and PAV-SOR, as depicted in Fig. 1 (c-d). The former
segments individual salient instances, and the latter further pre-
dicts the relative saliency ranks of these instances. The goal of the
proposed tasks is to perform more detailed parsing within detected
salient regions and account for inter-observer variability by as-
signing confidence to different salient instances, making models
mimic human perceptual mechanisms promising. For the above
instance-level tasks, three key problems need to be considered:

(i) How to solve panoramic distortions and perceive com-
plicated geometries? 360° Panoramic video captures the entire
surrounding environment and represents each pixel on a 3D sphere.
In general, to facilitate storage and transportation, raw panoramic
video is transformed into a regular 2D format via equirectangular
projection (ERP). However, ERP exhibits severe geometrical distor-
tions, especially in the polar area. Considering the ERP distortion,
[36, 37] utilize the combination of equirectangular and cubemap
projection as input to the framework, since the distortion can be
removed by converting a single equirectangular image into several
perspective ones. Nevertheless, this two-branch architecture has

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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significantly increased the parameters that incurred high computa-
tional complexity. In addition, some works use deformable convolu-
tion [44] and MLP [11] to mitigate panoramic distortions. For this
Problem, we present a distortion-aware transformer, which con-
sists of the following steps: 1) sample a small set of neighbor points
around each pixel on cubemap and equirectangular projection; 2)
aggregate all neighbor features to output the pixel’s de-distorted
representation; 3) dynamically adjust neighbor positions with learn-
able position bias. Due to the combination of equirectangular and
cubemap projections, our model can effectively avoid panoramic
distortions while mitigating discontinuities on cube maps.

(ii) How to parse audio signals and fuse audio-visual in-
formation? Audio exhibits high overlapping nature, as multiple
objects can make sounds simultaneously. Even worse, these audio
signals tend to be similar and indistinguishable when the sounding
objects are homogeneous. Furthermore, background interference in
panoramic videos is stronger than 2D videos with limited field-of-
view, leading to audio-visual misalignment. Traditional approaches
[45] directly combine entangled audio features with image embed-
dings by using a bi-linear layer or other fusion operations. However,
they fail to effectively unmix audio and correctly locate the sources
of sound in visual space. For this Problem, we first use the pre-
trained SoundNet [1] to extract audio features, and then adopt
a sequential multi-modal fusion strategy to integrate visual and
audio features. Specifically, an audio-visual spatial activation mod-
ule embeds entangled audio information into image features and
highlights all sounding regions via element-wise summation and
convolution operation. To unmix audio signals, we present audio
ProtoNet to map dense ambisonics into multiple audio prototypes
by using an MLP and a transformer encoder. Then, an audio-visual
instance alignment module, equipped with two cross-modal trans-
formers, aligns audio prototypes with visual objects and performs
instance-aware audio-visual fusion. Furthermore, we introduce a
contrastive learning scheme in the training to ensure each visual
object possesses a unique sound semantic corresponding to itself.

(iii) How to identify individual object instances and predict
their saliency ranks? Instance-level saliency detection is first
proposed by [17], and they propose a three-stage method, including
salient region detection, object contour detection, and instance
generation. This pipeline is cumbersome and its performance is
sensitive to post-processing steps. Recently, CATR [18] adopts a
DETR-like architecture for audio-visual segmentation (AVS) and
treats audio as the prompt to query and segment all sounding
object instances. Unlike the AVS task, PAV-SOD aims to predict
subjects’ fixations and segment the corresponding salient objects,
that is, audio cannot be viewed as the necessary and sufficient
condition for judging saliency. Moreover, saliency ranks are affected
by various factors like object position, motion, sound, etc., making
model prediction more difficult. For this Problem, a transformer-
based object decoder is introduced to establish spatio-temporal
relationships among instances and generate final segmentation
masks. Note that audio is not the query, but has been embedded as
auxiliary information into the visual features. We also show that
saliency ranking can be addressed with the same network. After
the object decoder, an MLP is added to predict the saliency score
for each instance. Additionally, due to the lack of rank annotation,
we provide the ground-truth saliency rank based on the attention

shift of multiple observers for the PAVS10K dataset. In summary,
our contributions can be summarized as:

• To the best of our knowledge, this is the first work proposing
a unified framework for the instance-level panoramic audio-
visual saliency detection and ranking.

• A distortion-aware pixel decoder is designed to mitigate
panoramic distortions by aggregating the features of neigh-
bor points sampled from cubemap and equirectangular pro-
jection for each pixel.

• A sequential audio-visual fusion module is presented to ac-
tivate sounding regions and successively perform instance-
aware cross-modal fusion. Besides, we introduce contrastive
learning to provide regularization for the audio disentangle-
ment and audio-visual alignment.

• Extensive experiments indicate that our model makes great
achievements on the PAVS10K dataset, outperforming other
SOTA methods. For the ranking task, we provide a new eval-
uation metric and ground-truth saliency rank annotations.

2 RELATEDWORK
2.1 Video Salient Object Detection
Video salient object detection (VSOD), an extension of image saliency
detection, aims to segment the most eye-catching objects in a video
sequence. Traditional VSOD methods are usually based on hand-
crafted features, such as motion boundaries [27], center prior [15],
long-term point trajectories [25], etc. Recently, some works employ
either ConvLSTM [32], 3D convolution [16] or attention mecha-
nisms [8, 12] to better establish the temporal relation in consecutive
frames. Furthermore, optical flow is introduced to capture motion
saliency clues and enhance spatio-temporal representation. With
this strong prior, optical-flow-based models [14, 49] can easily lo-
cate the representative salient objects and have achieved impressive
performance in VSOD. However, all the abovementioned methods
rely on only visual data for saliency detection, neglecting audio
hints that also significantly attract human attention under realistic
scenarios. Besides, this is contrary to what psychological studies
[23, 24] have found out, i.e., human attention is sensitive and sus-
ceptible to both visually salient objects and sonic-emitting entities.

2.2 Audio-Visual Salient Object Detection
By imitating human perceptual mechanisms in complicated audio-
visual scenes, audio-visual salient object detection (AVSOD) is to
locate and segment video regions that are salient in both visual
and audio sources simultaneously. The main challenge of AVSOD
is how to appropriately fuse audio-visual information and learn
consistency across modalities. DAVE [34] adopts a straightforward
deep-learning-based plain fusion strategy, which takes audio-visual
features as input and then concatenates them before saliency predic-
tion. [5] utilize de-convolution operation for the audio-visual align-
ment, where 1D audio vector is expanded to be the same size as 2D
visual counterpart. This strategy views the audio cues as auxiliary
information, with corresponding spatial locations being emphasized
through embedded semantic consistency. Recent works [35, 45] ap-
ply the bi-linear operation to combine multi-modal features. Such
a method can maintain spatial structure well, free from dimension
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Figure 2: The overall framework for instance-level panoramic audio-visual saliency detection and ranking. Firstly, the video
sequence is divided into T segments, andwe use two encoders to extract visual and audio features, respectively. Then, a distortion-
aware pixel decoder integrates multi-stage visual features while reducing panoramic distortions via a bi-projection point
sampling and a feature aggregation module. Next, we perform audio-visual fusion using the audio-visual spatial activation
module and audio-visual instance alignment module sequentially. Finally, a spatio-temporal object decoder takes initial
learnable queries and the above cross-modal representations to generate instance-level saliency maps and rank scores.

mismatching, and enable strong interaction between visual and
audio. Moreover, [47] use the self-attention mechanism to build
relationships between the visual pixels and the audio signals. This
benefits video segmentation with accurate auditory entities while
ignoring those spurious sound sources that do not actually emit
acoustic signals. [45] propose a new panoramic audio-visual salient
object detection (PAVSOD) task, aiming at segmenting the salient
objects in 360° panoramic videos. To support the proposed task,
they collect the first benchmark PAVS10K for PAVSOD and present
a baseline model CAV-Net for object-level panoramic saliency pre-
diction by bi-linear fusion and conditional variational auto-encoder.
Different from CAV-Net that focuses on detecting pixels belonging
to salient regions without considering individual instances, we pro-
pose the first pixel-wise instance-level AVSOD method. Instead of
just detecting salient regions, our model also distinguishes individ-
ual object instances within them. This is essential for real-world
applications that require finer distinction.

2.3 Audio-Visual Localization and Segmentation
Audio-visual localization [28, 30] aims to locate the regions of
sounding objects within the visual frame. Previous methods typi-
cally tackle the task through self-supervised or weakly-supervised
learning to explore the correlations between audio and visual fea-
tures, where the goal is to predict the coarse heatmap or bounding
box of the sounding object. As a complex extension to the AVL task,
audio-visual segmentation [19, 22] is a more challenging task as
it requires more fine-grained pixel-level shape description besides
localization. Specifically, Zhou et al. [48] focus on multi-stage fu-
sion of audio-visual features to facilitate supervised segmentation
tasks on their AVSBench dataset, predicting the probability of each

pixel in the image belonging to the sounding object. More recently,
CATR [18] proposes a decoupled audio-visual transformer that
combines audio and video features from temporal and spatial di-
mensions, capturing their combinatorial dependence. Additionally,
they introduce a set of audio-constrained learnable queries to select
which object is being referred to segment. In this work, we focus
on saliency detection, which imitates human attention and predict
subjects’ fixations, instead of querying sounding objects. That is,
audio cannot be viewed as the necessary and sufficient condition
for judging saliency, so this query-based segmentation paradigm is
not suitable for saliency detection and ranking tasks.

3 METHODOLOGY
Given an input video sequence containing both visual and audio
tracks, we first split it into𝑇 non-overlapping visual and associated
audio segment pairs {XV

𝑖 ,XA
𝑖 }𝑇𝑖=1. For each visual snippet, we

sample a fixed number of frames. As shown in Fig. 2, we apply an
image encoder, ResNet [10], to extract multi-level visual features
fV ∈ R𝑇×𝐻×𝑊 ×𝐶 on video frames. For each audio snippet XA, we
encode it into a feature vector fA ∈ R𝐷 using the first seven 1D
convolutions layers of SoundNet [1]. Then, a distortion-aware pixel
decoder (Sec. 3.1) is proposed to integrate multi-level visual fea-
tures while reducing panoramic distortions via a bi-projection point
sampling and a feature aggregation module. Next, our model per-
forms audio-visual fusion using the audio-visual spatial activation
module and audio-visual instance alignment module sequentially,
as detailed in Sec. 3.2. Lastly, a spatio-temporal object decoder (Sec.
3.3) takes initial queries and the above cross-modal features to gen-
erate the final salient object instance segmentation masks and the
corresponding rank scores.
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Figure 3: The cubemap-based sampling method is employed to find neighboring points around each pixel. Firstly, each pixel is
projected from the equirectangular domain to the perspective domain. Then, we look up the position of eight nearest neighbors
on the cube faces. Lastly, these neighbor points are all projected back to the equirectangular domain.

3.1 Distortion-Aware Pixel Decoder
The equirectangular, commonly used in panoramic videos, is suscep-
tible to geometrical distortions, particularly in the north and south
polar regions. To overcome this problem, we present a distortion-
aware pixel decoder (DPD) for pixel-wise omnidirectional vision
tasks following the three loop steps: 1) sample a small set of initial
neighbor points on the cubic and equirectangular domains for each
pixel; 2) aggregate all neighborhood features to form the pixel’s out-
put feature across multi-scale feature maps; 3) dynamically adjust
the position of sampling points with learnable position bias. By ag-
gregating relative neighbor points, our model mitigates panoramic
distortions while learning intricate patterns and local region rep-
resentation, thereby improving performance in panoramic dense
prediction tasks.
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Figure 4: The distortion-aware aggregation module. This
module is the basic building block of the proposed distortion-
aware pixel decoder. It takes central points and image feature
maps as input, and then learn the neighbor positions of each
central point. Finally, we aggregate all neighbors’ features
and output the final feature of each central point, thereby
reducing the negative effect of distortions and perceive more
complicated geometric structures.

3.1.1 Bi-Projection Neighbor Point Sampling. Given the input im-
age feature map fV, let 𝑝𝑖 be a pixel in the feature map, namely
central point, and 𝑝𝑖 𝑗 refers to its neighbor point. We adopt a bi-
projection neighbor point sampling scheme to find neighbor points
around each central point by leveraging two projections: equirect-
angular (ER) and cubemap projections. Specifically, cubemap projec-
tion avoids distortion but incurs discontinuity at the cube boundary,

whereas ER projection incorporates a complete field-of-view but
introduces distortion. To mitigate distortions and ensure continu-
ity simultaneously, we sample neighbors on both the cubic and
ER domains. For ER sampling, we directly select the eight nearest
neighbor pixels of each pixel on the ER projection as neighbor
points. The process is given as follows:

𝑝𝑖 𝑗 = 𝑝𝑖 (𝑥 ± 𝑎,𝑦 ± 𝑏), {𝑎, 𝑏 = 0, 1;𝑎, 𝑏 = 0, 2} (1)

where 𝑎 and 𝑏 are the sampling step size. For cubemap sampling, it
contains the following steps: i) equirectangular-to-cube trans-
formation. Let the side length of a cube map be 𝑤 . As the field-
of-view (FoV) of each face is 90◦, each face can be treated as a
perspective camera with a focal length of 𝑤

2 , and they all share
the same center point in the world coordinate system. Due to the
fixed viewing direction in cubemap projection, a rotation matrix
𝑅ℎ can represent the extrinsic matrix of each camera. For a pixel 𝑝𝑖
on equirectangular map, we can transform it into the coordinate
on the certain cube face ℎ by the following mapping:

𝑞𝑥𝑖 = sin(𝜃 ) · cos(𝜙);𝑞𝑦
𝑖
= sin(𝜙);𝑞𝑧𝑖 = cos(𝜃 ) · cos(𝜙)

𝐾 =


𝑤/2 0 𝑤/2
0 𝑤/2 𝑤/2
0 0 1

 ;𝑝𝑖 = 𝐾 · 𝑅𝑇
ℎ
· 𝑞𝑖 (2)

where 𝜃 and 𝜙 represent the longitude and latitude of point 𝑝𝑖
on the sphere, respectively. The range of 𝜃 spans from −𝜋 to +𝜋 ,
while the range of 𝜙 spans from −0.5𝜋 to +0.5𝜋 . The x, y, and
z components of vector 𝑞𝑖 are represented as 𝑞𝑥

𝑖
, 𝑞𝑦

𝑖
, and 𝑞𝑧

𝑖
, re-

spectively. ii) uniform sampling on the cube map. Similar to
ER sampling, we select the eight nearest neighbor pixels of each
central pixel in the perspective domain, as shown in Fig. 3. iii)
cube-to-equirectangular transformation. All these neighbors
are projected back to the ER domain. Given a neighboring point 𝑝𝑖 𝑗
on a specific face ℎ, we can perform a coordinate transformation to
map it onto the ER projection using the following mapping:

𝑞𝑖 𝑗 = 𝑅𝑖 · 𝐾−1 · ˆ𝑝𝑖 𝑗

𝜃 = arctan
(
𝑞𝑥𝑖 𝑗/𝑞

𝑧
𝑖 𝑗

)
;𝜙 = arcsin

(
𝑞
𝑦

𝑖 𝑗
/
��𝑞𝑖 𝑗 ��) (3)

Take 15 × 30 feature map as an example, Fig. 8 visualizes all the
central points and their neighbor points that are projected from
cube map to equirectangular map.
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3.1.2 Multi-scale Distortion-Aware Aggregation. As illustrated in
Fig. 4, image feature maps FV are flattened and reshaped into a
sequence, and then a linear projection is applied to produce query
Q and value V, inspired by [50]. Next, we sample two groups of
neighbor points for each central point via the bi-projection neigh-
bor point sampling strategy, and combine them as initial sampling
points pij. The Q is passed into two linear layers for calculating
neighbor scores A after a softmax operator and the neighbor offsets
Δp. The initial neighbor points pij and Δp are added together to
obtain the final neighbor points. By dynamically adjusting the spa-
tial distribution of sampling points, our model can capture various
geometric characteristics and perceive more complicated patterns.
Moreover, we adopt bi-linear interpolation on V to generate neigh-
bor features and then aggregate them using neighbor scores A.
Lastly, a linear projection is used to output distortion-aware visual
features. Note that we perform distortion-aware aggregation on
multi-stage features with resolution 1/8, 1/16, and 1/32 at once.

3.2 Sequential Audio-Visual Fusion
Our objective is to fuse visual and audio features, thereby retrieving
salient objects from both modalities. To achieve this, we propose
a sequential multi-modal fusion scheme with two components:
1) an audio-visual spatial activation module to embed entangled
audio information into visual features and activate all sounding
regions; 2) an audio ProtoNet to unmix dense ambisonics into a set
of prototypes, and then an audio-visual instance alignment module
to assign them into individual visual instances and capture instance-
aware audio-visual dependence by introducing contrastive learning
and cross-modal transformer, respectively.

3.2.1 Audio-Visual Spatial Activation Module. As shown in Fig.
2, audio-visual spatial activation module (AV-SAM) takes audio
features fA and distortion-aware image features fD from DPD as
inputs. Specifically, fA is first spatially duplicated 𝑇𝐻𝑊 times and
projected to the same size as fD. Then we add the above features
of two modalities and apply 3 × 3 convolution to locate sounding
regions, which can be formulated as:

fSAi = 𝐶𝑜𝑛𝑣 (fDi + copy1×1→𝐻×𝑊 (fAi )),∀𝑖 ∈ {1 . . .𝑇 } (4)

In this way, 1D audio features are treated as auxiliary information
and correlated to each spatial location of the visual counterpart.
This simple multi-modal fusion strategy can well retain 2D spatial
structure and activate all sounding objects.

3.2.2 Audio-Visual Instance Alignment Module. While AV-SAM can
exploit audio information and build inter-modal relations, the in-
teraction between visual and audio is still weak and ambiguous. To
better learn the matching relationship between each visual object
and sounds in complicated scenarios, we propose an audio ProtoNet
and an audio-visual instance alignment module (AV-IAM), as de-
picted in Fig. 2. In audio ProtoNet, we first use an MLP to transform
audio feature fA into multiple implicit sub-variables (referred to as
audio prototypes) pA ∈ R(𝑇×𝑁 )×𝐶 , where 𝑁 is the number of the
object query. Next, an original transformer encoder [6] is adopted
to perform self-attention on 𝑇𝑁 audio prototypes as:

p̂A = 𝑆𝑒𝑙 𝑓 𝐴𝑡𝑡𝑛(reshape𝑇×𝑁𝐶→𝑇𝑁×𝐶 (𝑀𝐿𝑃 (fA))) (5)

Audio Feature

MLP

𝟏×𝑫

𝑻×𝑪

Video Feature

𝑯
×
𝑾
×
𝑪+

𝟏×𝑪

c
FC

Audio-Visual 
Transformer

Visual-Audio 
Transformer

Transformer

Q K/V Q

K/V

3*3 Conv

Audio-Visual Spatial
Activation Module

Audio-Visual Instance
Alignment Module

Audio ProtoNet

Figure 5: The sequential audio-visual fusion module. It con-
sists of two main components: 1) an audio-visual spatial acti-
vation module (blue) to embed entangled audio information
into visual features and activate all sounding regions; 2) an
audio ProtoNet (red) to unmix dense ambisonics into a set
of prototypes, and then an audio-visual instance alignment
module (orange) to assign them into individual visual in-
stances and capture instance-aware audio-visual dependence.

In AV-IAM, audio prototypes p̂A and AV-SAM features fSA are
passed as input to an audio-visual transformer, where the query
is pA and the key/value is fSA. Consequentially, the audio-visual
transformer produces audio-conditioned image attention and a-to-v
representations in the audio stream, so as to associate each audio
prototype with different sounding objects:

fAV = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑛(p̂A, fSA, fSA) (6)
In order to ensure the disentanglement of audio representations

and align the corresponding audio prototypes and pixel features, we
introduce an audio-visual contrastive learning objective after the
audio-visual transformer. To be specific, we measure the similarity
between a-to-v representations fAV and query features fQ from
spatio-temporal object decoder by calculating cosine distance be-
tween them in embedding space, where the cosine distance function
is defined as 𝑠 (𝑢, 𝑣) = 𝑢𝑇 𝑣/∥𝑢∥∥𝑣 ∥. We would like to enforce the
consistency between modalities by pulling close the query features
whose category is the salient object with its corresponding audio
prototypes. To increase the heterogeneity between audio proto-
types, we push away the above audio representations. Therefore,
by implementing the NT-Xent loss [3], our audio-visual contrastive
loss between fAV and fQ can be formulated as follows:

L𝑐𝑙 = − log
exp

(
𝑠

(
fQn , fAVn

)
/𝜏
)

∑𝑁
𝑘=1
𝑘≠𝑛

exp
(
𝑠

(
fQn , f

Q
k

)
/𝜏
)
+∑𝑁

𝑘=1 exp
(
𝑠

(
fQn , fAVk

)
/𝜏
) (7)

where ∀𝑛,∀𝑘 ∈ {1 . . . 𝑁 }. 𝜏 is a temperature co-efficient and 𝑁 is
the number of object query. For an audio prototype fQn , the cor-
responding (fQn , fAVn ) is regarded as a positive pair, and the rest
𝑁 − 1 audio prototypes constitute negative examples. We intend to
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maximize the similarity of positive pairs while minimizing the sim-
ilarity of negative pairs in embedding space. This process enables
our model to disengage dense audio signals into unique sounding
embeddings. After that, a visual-audio transformer treats fSA as
query and a-to-v representation as key/value, and computes cross-
attention on them to retrieve the audio prototype for each pixel.
This instance-aware alignment method allows our model to embed
disentangled audio representations into individual visual objects
and further guide the proposed instance-level saliency detection
and ranking tasks. The process can be defined as:

fVA = 𝐶𝑟𝑜𝑠𝑠𝐴𝑡𝑡𝑛(fSA, fAV, fAV) (8)

3.3 Spatio-Temporal Object Decoder
Spatio-temporal object decoder (STOD) aims to predict salient ob-
ject instance masks for each frame. Motivated by [38], we also ini-
tialize a fixed number of learnable positional embeddings, termed
object queries. Assuming the model decodes 𝑁 instances per frame,
the total number of object queries for 𝑇 frames becomes 𝑇 × 𝑁 ,
which corresponds to the size of the audio embeddings. All queries
are fed into STOD along with the AV-IAM features. Similar to [4],
STOD consists of two successive attention modules: 1) masked self-
attention is performed among all queries from𝑇 frames to integrate
temporal information; 2) cross-attention is computed between ob-
ject queries and v-to-a features from the visual-audio transformer
to generate query features fQ over space. Ultimately, two linear
classifiers, i.e., class head and rank head, determine whether each
object query is a salient object and output the corresponding rank
order. For mask prediction, a dot product followed by a sigmoid
activation is applied between the query features and DPD’s features
to produce the final masks.

In the training phase, we assign a unique ground truth for each
instance prediction. The matching process can be done through
one-to-one bipartite matching strategy. To find the best assignment
of a prediction to ground truth, we uniformly sample a set of points
on the predicted mask and then construct a cost matrix. Given a
matching, each prediction is supervised with a saliency classifica-
tion loss and a mask loss. The former is binary cross-entropy loss
and the latter is composed of a focal loss and a dice loss. The final
loss function can be formulated as:

L = 𝜆𝑐𝑒L𝑐𝑒 + 𝜆𝑓 𝑜𝑐𝑎𝑙L𝑓 𝑜𝑐𝑎𝑙 + 𝜆𝑑𝑖𝑐𝑒L𝑑𝑖𝑐𝑒 + 𝜆𝑐𝑙L𝑐𝑙 (9)

4 EXPERIMENTS
4.1 Dataset and Evaluation Metrics
We evaluate the performance of our method on the PAVS10K dataset
[45], comprising 40 training videos totaling 5,796 frames and 27
testing videos with 4,669 frames. These videos are randomly se-
lected from 67 4K-resolution equirectangular videos (each of 30
seconds), following an approximate 6:4 ratio. Instance-level pixel-
wise masks have been provided in the original PAVS10K dataset. For
the PAV-SOR, we use the rank labeling method proposed in [31] to
generate our ground-truth saliency rank annotations. Quantitative
results on 6 widely used evaluation metrics are reported: F-measure,
E-measure, S-measure, MAE, SOR, and #images used.

4.2 Implementation Details
We use PyTorch and follow CAV-Net [45] setting for instance-level
PAV-SOD and PAV-SOR. The shorter side of all frames is resized to
480 during training and evaluation, without relying on multi-scale
or any other data augmentation strategies. Our model is optimized
by AdamW algorithm with weight decay 0. By setting the default
video clip length as 2 and batchsize as 2, the training of the entire
framework starts with an initial learning rate of 1𝑒 − 4 on a single
NVIDIA Quadro RTX 6000 GPU.

4.3 Panoramic Audio-Visual Saliency Detection
To verify the effectiveness of our model on PAV-SOD, we compare
our model with the state-of-the-art methods, including Image SOD
(I.): CPD-R [41], SCRN [42], F3Net [39], MINet [26], LDF [40], CSFR2
[7], GateNet [46], Video SOD (V.): COSNet [20], RCRNet [43], PCSA
[9], 3DC [21], RTNet [29], Panoramic Image SOD (PI.): FANet [13],
and Panoramic Audio-Visual SOD (PAV.): CAVNet.

Table 1: Quantitative comparison with different SOD meth-
ods on the F-measure (F𝛽 ), E-measure(E𝜖 ), S-measure(S𝛼 ) and
MAE (M) metrics. These object-level (Obj.) approaches and
our instance-level (Ins.) model are equipped with the ResNet-
50 backbone. Ours and Ours† are the PAV-SOD and PAV-SOR
models, respectively.

Level Type Model F𝛽 ↑ S𝛼 ↑ E𝜖 ↑ M ↓

Obj.

I.

CPD-R [41] 24.3 60.9 64.8 .026
SCRN [42] 28.6 65.5 64.1 .034
F3Net [39] 31.0 64.2 69.1 .029
MINet [26] 28.6 62.4 65.2 .044
LDF [40] 32.2 64.5 70.1 .035
CSFR2 [7] 29.0 64.6 68.4 .026

GateNet [46] 27.3 65.3 63.6 .033

V.

COSNet [20] 18.1 58.2 55.9 .023
RCRNet [43] 31.0 65.4 68.8 .029
PCSA [9] 18.4 60.0 57.0 .027

3DCSeg [21] 30.0 64.0 60.8 .055
RTNet [29] 24.7 59.1 68.3 .029

PI. FANet [13] 24.1 59.6 65.4 .025
PAV. CAVNet [45] 32.5 63.3 69.8 .027

Ours 43.2 69.9 74.0 .033
Ins. PAV. Ours† 43.6 70.2 74.4 .028

The quantitative results are shown in Table 1. For main metrics,
our model has obvious improvement among various approaches.
Specifically, it reaches 43.2% on F𝛽 , 69.9% on S𝛼 , and 74.0% on
E𝜖 , surpassing the second-best ones with 10.7%, 6.6%, and 4.2%,
respectively. When introducing ranking supervision, our model
exhibits superior results, suggesting that the newly incorporated
rank prediction branch can augment the performance of PAV-SOD
task. Additionally, our model is the first one that addresses instance-
level saliency detection while the existing ones are object-level.

The qualitative results are shown in Fig 6.We compare our model
with CAVNet on PAVS10K dataset and the result indicates that our
model performs better in various challenging cases based on the
following fundamental observations: 1) locate the correct salient
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Figure 6: Predicted saliency results for the PAVS10K dataset.

objects from the multi-instance scenario (e.g., singing persons in
the 3𝑟𝑑 and 4𝑡ℎ rows); 2) predict the accurate segmentation mask
closer to ground truth in severe distortions (e.g., skiing persons in
the 6𝑡ℎ row); 3) detect very small objects (e.g., running dogs in the
2𝑛𝑑 row). We attribute this to the strong distortion resistance of our
DPD and the effective audio-visual fusion of AV-SAM and AV-IAM.
Additionally, it is highlighted our method is the first instance-level
saliency detection network, and the novelty lies in its ability to
differentiate different instances.

4.4 Panoramic Audio-Visual Saliency Ranking

Table 2: Quantitative comparisonwith different SORmethods
on the widely used SOR, #Image used, MAE (M), and adaptive
MAE (AM) metrics.

Model SOR ↑ #Image used ↑ M ↓ AM ↓
zeros - - 0.020 0.460

ASSR [31] 82.3 2477 0.034 0.316
PSR [33] 88.5 2629 0.023 0.280
Ours† 89.5 3029 0.022 0.248

To verify the effectiveness of our model on PAV-SOR, we com-
pare our model with ASSR [31] and PSR [33]. Table 2 shows that our
model outperforms other recent approaches for all measurements.
In panoramic images with 360° omnidirectional view, MAE is dom-
inated by the background region, owing to the small proportion
of the foreground region. From the 1𝑠𝑡 row in Table 2, zeros (w/o.
masks) achieves the lowest 0.02 MAE. To provide a more compre-
hensive and unbiased assessment, we introduce a new evaluation
metric, namely adaptive MAE (AM), equalizing the significance
of foreground and background:

AM =

∑
(𝑖,𝑗 ) ∈F |𝐺 (𝑖, 𝑗 ) − 𝑆 (𝑖, 𝑗 ) |

2F +
∑

(𝑖,𝑗 ) ∈B |𝐺 (𝑖, 𝑗 ) − 𝑆 (𝑖, 𝑗 ) |
2B (10)

where 𝐺 and 𝑆 denote ground truth and the prediction, and F and
B indicate the foreground and background region of ground truth,
respectively. We present our qualitative result in Fig. 7. Compared
to PSR [33], our model produces almost-the-same segmentation
masks with regard to the ground truth while correctly predicting
ranking orders.

Frames GT PSR Ours

Rank-1 Rank-2 Rank-3 Rank-4 Rank-5

High Low

Figure 7: Qualitative results of rank order of salient objects.

4.5 Ablation Studies
4.5.1 Impact of Distortion-Aware Pixel Decoder. Table 3 provides a
comprehensive validation of the efficacy of our proposed distortion-
aware pixel decoder (DPD). In the 2𝑛𝑑 row, we introduce DPD,
which samples neighbor points only on the equirectangular pro-
jection and then aggregates the corresponding neighbor features.
The comparison between the first two rows indicates that the inte-
gration of local information significantly bolsters the visual feature
representation. Nonetheless, the equirectangular map suffers from
inherent distortions. The information from rectangular and regular
neighbor priors may occasionally deviate from the true spatial ar-
rangement. To address this, we propose cubemap neighbor point
sampling, as depicted in Fig. 3. Back-projecting the sampled neigh-
bor points onto the equirectangular map allows us to derive a set
of distortion-aware neighbor points. This strategy can effectively
capture complex shapes and alleviate the adverse effects of dis-
tortions inherent in panoramic images. The results presented in
the 3𝑟𝑑 row underscore the significant performance boost. While
the cubemap projection circumvents panoramic distortions, it will
induce discontinuity at points near the cube’s boundary. Remark-
ably, by concatenating and jointly utilizing the results derived from
both projections, we manage to achieve an optimal outcome, as
evidenced in 4th row of Table 3.

Table 3: Impact of DPD and different sampling methods.

DPD Equi. Cube F𝛽 ↑ S𝛼 ↑ E𝜖 ↑ M ↓
39.1 67.3 72.0 .039
41.7 68.8 72.7 .038
42.5 69.1 73.1 .034
43.2 69.9 74.0 .033

Take a 15 × 30 feature map as an example, Fig. 8 visualizes all
the central points and their neighbor points that are projected
from cube map to equirectangular map. Considering the bottom-
left green neighbor point in Fig. 3, its corresponding position is
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depicted as a point in the bottom-left map of Fig. 8. To generalize,
this bottom-left map in Fig. 8 illustrates the offset position of all
bottom-left neighbor points in the original 15 × 30 feature map.
Similar information is conveyed in the projection maps of the other
7 directions.

Figure 8: Visualization of the cube-to-equirectangular projec-
tion with respect to the central points and their 8 neighbor
points on a 15 × 30 feature map.

4.5.2 Impact of Sequential Audio-Visual Fusion. Table 4 validates
the efficacy of our proposed sequential audio-visual fusion method,
including an audio-visual spatial activation module (AV-SAM) and
an audio-visual instance alignment module (AV-IAM). With the
integration of AV-SAM, audio signals are seamlessly infused into
the visual encoding space via element-wise summation and local
convolution operation. It aggregates the audio and image features
in a pixel-wise manner, furnishing the pixel decoder with robust
localization cues of the sound-emitting object. Row 1 and 2 reveal
a noticeable improvement in all metrics, underscoring the crucial
role of the acoustic modality in salient object detection and the
necessity of our AV-SAM. However, as the sound information of all
objects is encompassed within a single audio feature, the model en-
counters challenges in distinguishing instance-level salient objects.
Hence, further unmixing the audio signals is deemed necessary.
Row 3 illustrates the performance boost conferred by the AV-IAM,
with F𝛽 increasing by +1.8%, S𝛼 by +1.0%, and E𝜖 by +1.3%. This im-
provement can be attributed to the model’s capacity to perform an
implicit separation of multiple sound sources, thereby enabling our
spatio-temporal object decoder’s object queries to possess distinct
sound source semantic information. This results in a more efficient
and precise frame-by-frame instance-level salient sound source
localization. Moreover, we further discuss the cross-modal fusion at
various stages. It can be seen that applying the cross-modal fusion
at three stages will increase all metrics, showing our model can
fuse and balance audio-visual features from multiple stages.

4.5.3 Impact of Audio-Visual Instance Alignment Module. Table 5
summarizes the experimental results on the arranging methods of

Table 4: Impact of sequential audio-visual fusion method.

AV-SAM AV-IAM level F𝛽 ↑ S𝛼 ↑ E𝜖 ↑ M ↓
{3, 4, 5} 40.8 68.3 72.2 .044
{3, 4, 5} 41.4 68.9 72.7 .034
{5} 42.2 69.0 72.8 .038

{3, 4, 5} 43.2 69.9 74.0 .033

audio-visual and visual-audio transformers. From the results, we
can find that performing cross-modal fusion sequentially infers
a finer attention map than doing in parallel. Audio prototypes
have undergone regularization through contrastive learning before
inputting into the visual-audio transformer. Each audio prototype
is assigned to a visual object and exhibits heterogeneity with other
audio prototypes. Therefore, it helps the visual-audio transformer
to align pixels with audio and perform instance-aware fusion.

Table 5: Impact of different combining strategies of audio-
visual and visual-audio transformer in the AV-IAM.

connection F𝛽 ↑ S𝛼 ↑ E𝜖 ↑ M ↓
parallel 41.9 68.6 73.5 .038

sequential 43.2 69.9 74.0 .033

4.6 Attention Visualization
To verify that dense audio has been disentangled, we upsample
and visualize the attention matrices between audio prototypes and
image features from the audio-visual transformer. As illustrated in
Fig. 9, when introducing contrastive learning, two audio prototypes
can activate two different object instances, that is, the audio signal
has been well unmixed and assigned to different sounding objects.

High Low

Ours w. CL Ours wo. CL

Figure 9: Attention maps between audio prototypes and im-
age features from the audio-visual transformer in the audio-
visual instance alignment module at the fifth stage.

5 CONCLUSION
In this paper, we introduce two challenging tasks, i.e., instance-level
PAV-SOD and PAV-SOR, and then propose a unified framework to
solve the above tasks. Three key components of our model are
designed: a distortion-aware pixel decoder mitigates panoramic dis-
tortions; a sequential cross-modal fusion method integrates audio-
visual information in an instance-aware manner; a spatio-temporal
object decoder generates segmentation mask and saliency rank
for each salient object instance. Without bells and whistles, our
model achieves satisfactory performances on PAVS10K benchmark.
We hope the framework could serve as a preferred baseline for
panoramic audio-visual saliency detection.
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