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Multi-Agent RL

joint state St

I__>°1 4 D ) reward T,

g Agent 1 3 E I
H N
V
_::r2 Agent2 F— joint action 3, R
\—/ > O
. N
. M
Oj E
. N

P

Source: Nowe, Vrancx & De Hauwere 2012

George Washington University | ECE | SEAS

B/24/2023 MLArchSys - ISCA'23



Outline

Multi-Agent RL : Background

Workload Characterization

Neighbor Sampling Strategy

Conclusion & Future work

George Washington University | ECE | SEAS

B/24/2023 MLArchSys - ISCA'23



Action selection Landmark 1, ..
Agent 1 Action! . .
Agent Landmark 2

i Actor Network |—> . .

: Predator 1

' Prey g
Agent N

Environment interactions

Store experiences
(obs, act, rewards, next obs)

_>[E1perience Replay Buffer]‘_
Mini-batch sampling Mini-batch sampling

Sample all the agents'
trajectories

Sample all the agents'
trajectories

RN
EAN

e
I BN I BN S .

breakdown

Ta rget Q Concatenate

Target Q Concatenate
Obs;j + Act;

Obs; + Act;

e

e

I Update Critic Update Critic
Update Actor Update Actor
Update() Update() )
| Agent! Update all tmin'.ts Agent N

>
L-----

George Washington University | ECE | SEAS
MLArchSys - ISCA'Z23




Mini-batch sampling
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Random memory access patterns ]

Mini-batch sampling
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More details in the paper

» Target Q calculation

* State and action spaces grow exponentially

* Back-propagation phases of Actor & Critic networks

* Sequential updates of Actor-Critic networks

* Mini-batch size limitations in MARL for real-world systems

* Communication overhead
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Methodology

« MARL Workloads
— MADDPG
— MASAC (more details in the paper)

* Multi-Agent Particle Environment

— Competitive task (Predator-Prey) - N predators work cooperatively to
block the way of M fast paced prey agents. The prey agents are
environment controlled and they try to avoid the collision with predators

 Hyper-parameters

— The workloads are trained for 60K episodes, max episode length is 25,

size of replay buffer is 1M, mini-batch size is 1024, entropy coefficient
for MASAC is 0.05

* Platform (experimental testbed)
— Ampere Architecture NVIDIA-RTX 3090
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MADDPG: Training time from 3 to 48 agents
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= MASAC algorithm also exhibits the same pattern!
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Can we retrieve
Goal: Eliminate random memory access patterns { neighboring J

transitions?
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Effect of neighbor sampling

l Experience Replay Buffer

!

|

..............:> ter-1
!

| Experience Replay Buffer

I
|
|

..I@.I...I....@ ter-1 |
|
I
! Experlence Replay Buffer + Neighbor transitions

|

!

|

.ﬂ@........@ fer-1 |
!

Layout of Neighbor sampling strategy

George Washington University | ECE | SEAS
6/24/2023 MLArchSys - ISCA'Z3 l4



Effect of neighbor sampling
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Results

Training time performance improvement Average of mean rewards
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Conclusion & Future work

* We understand and characterize several MARL algorithms to identify key

bottlenecks from a systems perspective

 We implemented a simple heuristic, neighbor sampling strategy to address the

mini-batch sampling phase

 For future work, we will investigate:

* Various efficient sampling strategies and design a hardware-friendly architecture

to efficiently fetch the transitions in large-scale MARL

* Use algorithmic optimizations into systems to reduce the observation-action

space
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Thank You!
Q & A
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