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Multi-Agent RL
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Workload
breakdown
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Mini-batch sampling
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Mini-batch sampling
Random memory access patterns
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• Target Q calculation

• State and action spaces grow exponentially

• Back-propagation phases of Actor & Critic networks 

• Sequential updates of Actor-Critic networks

• Mini-batch size limitations in MARL for real-world systems

• Communication overhead
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More details in the paper



Methodology
• MARL Workloads

– MADDPG

– MASAC (more details in the paper)

• Multi-Agent Particle Environment

– Competitive task (Predator-Prey) - N predators work cooperatively to 
block the way of M fast paced prey agents. The prey agents are 
environment controlled and they try to avoid the collision with predators

• Hyper-parameters

– The workloads are trained for 60K episodes, max episode length is 25, 
size of replay buffer is 1M, mini-batch size is 1024, entropy coefficient 
for MASAC is 0.05

• Platform (experimental testbed)

– Ampere Architecture NVIDIA-RTX 3090
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MADDPG: Training time from 3 to 48 agents
        Entire workload      Update all trainers
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MASAC algorithm also exhibits the same pattern!
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Goal: Eliminate random memory access patterns
Can we retrieve 

neighboring 

transitions?

        Layout of Random sampling 
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Effect of neighbor sampling

Layout of Neighbor sampling strategy
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Effect of neighbor sampling

Layout of Neighbor sampling strategy, micro-batch size = 2

Out of 
bounds?
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Results

   Training time performance improvement 

26.66 26.68 27.39
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Conclusion & Future work

• We understand and characterize several MARL algorithms to identify key 

bottlenecks from a systems perspective

• We implemented a simple heuristic, neighbor sampling strategy to address the 

mini-batch sampling phase

• For future work, we will investigate:

• Various efficient sampling strategies and design a hardware-friendly architecture 

to efficiently fetch the transitions in large-scale MARL

• Use algorithmic optimizations into systems to reduce the observation-action 

space
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Thank You!
Q & A
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